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Abstract. We wish to construct an isometric transformation that
maps a hyperbolic triangle to a congruent triangle. This is accom-
plished by first finding the map that takes a triangle to its normal 
position. In two-dimensions, a triangle in normal position has one
leg on the y-axis, a vertex at (0, 1), and a vertex in Quadrant I. In
three dimensions, a triangle in normal position has one leg on the 
z-axis, a vertex at (0, 0, 1), and a vertex on the yz-plane. If two hy-
perbolic triangles are congruent, then they have the same normal 
position. This implies that a map between two congruent hyper-
bolic triangles can be constructed by transforming one triangle to
the normal position and applying the inverse of the transformation
that maps the other triangle to the normal position.

1. Background Information

Consider the hyperbolic plane, a geometry modelled by the upper
half plane. Each point in the hyperbolic plane can be considered to be
a complex number in the following way:

x = (x1, x2) = x1 + x2i.

We denote the set of all points in the hyperbolic plane as H2. The 
metric associated to the hyperbolic plane

ρ(x,y) = arccosh

(
1 +

‖x− y‖2

Im(x) Im(y)

)
where x and y are the complex representations of two points in the hy-
perbolic plane [2]. A geodesic is the shortest path between two points.
In H2, geodesics are segments of vertical lines or arcs of semicircles cen-
tered on the x-axis. Our particular objects of interest in a hyperbolic
space are hyperbolic triangles.

Definition 1.1. A hyperbolic triangle is a geometric object formed by
three points in a hyperbolic space and the geodesics connecting them.

There are angle-preserving maps on hyperbolic space called Möbius
transformations.
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Definition 1.2. A Möbius transformation is a map from a hyperbolic
space to itself described by

φ(x) =
ax + b

cx + d

where x is the complex analogue of a point in hyperbolic space and a,
b, c, and d are constants such that ad− bc 6= 0.

Note that a Möbius transformation can be encoded by a matrix[
a b
c d

]
.

Fact 1.3. Möbius transformations on H2 are isometries if they are
encoded by a matrix with determinant one. [1]

For this reason we are interested in the special linear group.

Definition 1.4. The special linear group of 2×2 matrices, or SL2(R),
is the set of 2× 2 real matrices with determinant one.

Note that SL2(R) forms a group under matrix multiplication. This
is true because SL2(R) satisfies the group axioms:

• There exists an identity matrix in SL2(R).
• Matrix multiplication is associative in SL2(R).
• Each element of SL2(R) has an inverse in SL2(R).
• The product of any two elements of SL2(R) is always an element

of SL2(R).

We will refer to a Möbius transformation in H2 as a fractional linear
transformation if it fits the following definition.

Definition 1.5. A fractional linear transformation fM is a Möbius
transformation encoded by a matrix M ∈ SL2(R).

Note that the fractional linear transformation encoded by the iden-
tity matrix is the identity map, which is to say that for all x, fI(x) = x.
The negated identity matrix, another member of SL2(R), also encodes
the identity map.

Theorem 1.6. The fractional linear transformation of a product of
matrices is the composition of fractional linear transformations of the
matrices, that is fAB = fA ◦ fB.

Proof. Let

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.
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Then

AB =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
We evaluate

(fA ◦ fB)(x) = fA(fB(x))

=
a11

b11x+b12
b21x+b22

+ a12

a21
b11x+b12
b21x+b22

+ a22

=
(a11b11 + a12b21)x + (a11b12 + a12b22)

(a21b11 + a22b21)x + (a21b12 + a22b22)

= fAB(x)

�

Consider PSL2(R).

Definition 1.7. The projective special linear group, PSL2(R), is the
set of 2 × 2 real matrices with determinant one, and a matrix and its
negation are equivalent.

Note that all of the matrices in SL2(R) are also in PSL2(R), but
there is not a distinction of uniqueness between a matrix and its nega-
tion. Let M ∈ PSL2(R). The equivalency classes of PSL2(R) are of
the type [M ] = {M,−M}. A proof that PSL2(R) forms a group can
be easily obtained by ammending the reasoning used to show SL2(R)
is a group to include equivalency classes.

Corollary 1.8. Fractional linear transformations can be considered to
be encoded by matrices in PSL2(R).

Proof. Consider fM . Using the identity maps and 1.6, we can show

fM = fIM

= fI ◦ fM
= f−I ◦ fM
= f−M .

This shows M ≡ −M when encoding a fractional linear transformation.
Hence, the additional condition on members of PSL2(R) is met. �

Corollary 1.9. The inverse of a fractional linear transformation en-
coded by the matrix A is equivalent to the fractional linear transforma-
tion encoded by the matrix A−1, that is f−1A = fA−1
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Proof.

fA ◦ f−1A (z) = z

fA ◦ f−1A = fI

f−1A ◦ fA ◦ f
−1
A = f−1A ◦ fAA−1

f−1A = f−1A ◦ fA ◦ fA−1

= fA−1

�

2. Möbius Transformations in H2

Let 4vwz be a hyperbolic triangle with counterclockwise orienta-
tion.

Definition 2.1. The normal position of 4vwz is the image of the
triangle under an isometry that maps z to (0, 1), the vertex w onto
the y-axis above z, and v to a point in Quadrant I.

The following is an example of a hyperbolic triangle in normal posi-
tion

z′ = (0, 1)

w′

v′

Note that depending on choice of vertices, a hyperbolic triangle will
take one of three normal positions. Since congruent hyperbolic triangles
will necessarily have the same set of normal positions, we can use the
inverse of the transformation to a normal position construct a map to
a congruent hyperbolic triangle.

Theorem 2.2. There exists a fractional linear transformation that
sends 4vwz to its normal position.

We want to find a series of elementary transformations that will send
4vwz to its normal position.
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Lemma 2.3. The fractional linear transformation that will send z to
the y-axis is encoded by

M1 =

[
1 −z1
0 1

]
.

The fractional linear transformation encoded by M1 is

fM1(x) = x1 + x2i− z1 = (x1 − z1, x2).
This transformation maps the vertices of the triangle in the following
way:

fM1(v) = (v1 − z1, v2)
fM1(w) = (w1 − z1, w2)

fM1(z) = (0, z2).

This eliminates the real part of z, leaving it on the y-axis.
A simple dilation is now needed to scale fM1(z) = (0, z2) to the point

(0, 1).

Lemma 2.4. The matrix corresponding to the fractional linear trans-
formation that will send fM1(z) = (0, z2) to the point (0, 1) is

M2 =
1
√
z2

[
1 0
0 z2

]
.

The fractional linear transformation encoded by M2 is

fM2(x) =

1√
z2

(x1 + x2i)

1√
z2
z2

=
x1 + x2i

z2
=

(
x1
z2
,
x2
z2

)
.

This transformation maps the image of the triangle under previous
transformations in the following way:

fM2 ◦ fM1(v) =

(
v1 − z1
z2

,
v2
z2

)
fM2 ◦ fM1(w) =

(
w1 − z1
z2

,
w2

z2

)
fM2 ◦ fM1(z) = (0, 1).

The composition of fractional linear transformations, we achieve the
desired result. Note that the following matrix corresponds to the frac-
tional linear transformation that will map 4vwz such that z is sent
to (0, 1):

M1M2 =
1
√
z2

[
1 −z1
0 z2

]
.
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Now that the image of z is (0, 1), we focus on the vertex w. Recall,
we wish to send w to a point (0, P ), where P > 1.

To send fM2M1(w) = (w1−z1
z2

, w2

z2
) to the y-axis, we use a rotation

transformation.

Lemma 2.5. The fractional linear transformation that sends fM2M1(w)
to the y-axis is encoded by

K =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
where θ is the directed angle from the tangent line to the geodesic
between fM2M1(z) and fM2M1(w) at fM2M1(z) at the point closest to
fM2M1(w) to the y-axis.

Let c =
(
w2

2+(w1−z1)2−z22
2(w1−z1)z2 , 0

)
be the center of the semicircle between

fM2M1(z) and fM2M1(w).

θ

θfM2M1(z) = (0, 1)

c

fM2M1(w)

By the above figure,

θ =

{
− arctan( 2(w1−z1)z2

w2
2+(w1−z1)2−z22

) if w1−z1
z2

< 0

arctan( 2(w1−z1)z2
w2

2+(w1−z1)2−z22
) if w1−z1

z2
≥ 0

.
The fractional linear transformation encoded by K is

fK(x) =
cos ( θ

2
)(x1 + x2i)− sin θ

2

sin ( θ
2
)(x1 + x2i) + cos θ

2

When we apply the this fractional linear transformation to fM2M1(z),
we receive (0, 1). Applying fK to fM2M1(z) yields a point on the y-axis.

Proof of 2.2. By lemmas 2.3,2.4, and 2.5, the fractional linear trans-
formation that sends 4vwz to its normal positon is fKM2M1 . �

Corollary 2.6. There exists an isometric map between any two con-
gruent hyperbolic triangles.

Proof. Let 4uvw and 4xyz be congruent hyperbolic triangles. Let
M and N encode the transformations that send 4uvw and 4xyz to
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normal position, respectively. Then fN−1M will send 4uvw to 4xyz.
�

3. Background Information for H3

Now consider hyperbolic space, a geometry modelled by the upper
half space. Each point in hyperbolic space can be considered a quater-
nionic number in the following way:

x = x1, x2, x3 = x1 + x2i + x3j.

Definition 3.1. The reversion operator, denoted (·)∗, is defined such
that

x∗ = (x1 + x2i + x3j + x4k)∗ = x1 + x2i + x3j− x4k.

For more information on quaternions see [3]. We denote the set of
all points in hyperbolic space as H3. In H3, geodesics are segments of
vertical lines or arcs of semicircles centered on the xy-plane.

We will refer to Möbius transformations on H3 as fractional linear
transformations if they are encoded by a Vahlen matrix.

Definition 3.2. A Vahlen matrix is a 2× 2 matrix of the form

V =

[
a b
c d

]
such that following conditions are satisfied:

• a, b, c, and d are quaternions.
• ab∗, cd∗, c∗a, and d∗b are in the linear span of 1, i, and j.
• detV = ad∗ − bc∗ is a nonzero real number.

Fractional linear transformations on H3 are isometries.

Proposition 3.3. Vahlen Matrices form a group under multiplication
with identity element

I =

[
1 0
0 1

]
and the inverse [

a b
c d

]−1
=

1

ad ∗ −bc∗

[
d∗ −b∗
−c∗ a∗

]
Since Vahlen matrices form a group, and 1.6 does not require com-

mutitivity, 1.6 and 1.9 hold for fractional linear transformations in H3.
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4. Möbius Transformations in H3

Let v,w, z ∈ H3 such that v = (v1, v2, v3), w = (w1, w2, w3) and
z = (z1, z2, z3).

Definition 4.1. The normal position of 4vwz is the image of the
triangle under an isometry that maps z to (0, 0, 1), the vertex w onto
the z-axis above z, and v to a point on the yz-plane.

Theorem 4.2. There exists a fractional linear transformation that
sends 4vwz to its normal position.

We want to find a series of elementary transformations that will send
4vwz to its normal position.

Lemma 4.3. The fractional linear transformation that will send z to
(0, 0, 1) is encoded by

C =

[
1 −z1 − z2i
0 z3

]
The fractional linear transformation encoded by C is

fC(x) = (x1 + x2i+ x3j − z1 − z2i)(z3)−1 = (
x1 − z1
z3

,
x2 − z2
z3

,
x3
z3

).

This transformation maps the vertices of the triangle in the following
way:

fC(v) = (
v1 − z1
z3

,
v2 − z2
z3

,
v3
z3

)

fC(w) = (
w1 − z1
z3

,
w2 − z2
z3

,
w3

z3
)

fC(z) = (0, 0, 1).

We want to send v and w to the yz-plane.

Lemma 4.4. Let φ = arctan(w1−z1
w2−z2 ). The fractional linear transfor-

mation that will send v and w to the yz-plane is encoded by

B =

[
− sin(φ

2
)i− cos(φ

2
) 0

0 sin(φ
2
)i− cos(φ

2
)

]
.

The fractional linear transformation encoded by B is

fB(x) = −(cos(
φ

2
) + sin(

φ

2
)i)(x1 + x2i + x3j)(− cos(

φ

2
) + sin(

φ

2
)i)−1

= (x1 cosφ− x2 sinφ, x1 sinφ+ x2 cosφ, x3)
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This transformation maps the image of the triangle under previous
transformations in the following way:

fB ◦ fC(v) =

(
(v1 − z1)(w2 − z2)− (v2 − z2)(w1 − z1)

z3
√

(w1 − z1)2 + (w2 − z2)2
,

(v1 − z1)(w1 − z1)− (v2 − z2)(w2 − z2)
z3
√

(w1 − z1)2 + (w2 − z2)2
,
v3
z3

)

fB ◦ fC(w) =

(
0,

√
(w1 − z1)2 + (w2 − z2)2

z3
,
w3

z3

)
fB ◦ fC(z) = (0, 0, 1).

Now that the points z,w,v have been sent to the ij-plane, we wish
to send to fix z′′ to j, send w′′ to the j-axis and keep v′′ in the ij-plane.

Let h0 =
w′1

2+w′2
2+w′3

2−1
2
√
w′1

2+w′2
2

,r0 =
√

1 + h20 and r2 =
√

1 + (h0 + r0)2

A =

[
−(h0 + r0) ((h0 + r0)

2 − r22)i
−i −(h0 + r0)

]
Theorem 4.5. The composition of fA and fBC fixes z′′ to j, sends
w′′ to the j-axis and keeps v′ to the ij-plane.

Proof.

fABC(z) = fA ◦ fBC(z) = fA(j)

= (−(h0 + r0)j + ((h0 + r0)
2 − r22)i)(−k − (h0 + r0))

−1

= (−(h0 + r0)j + ((h0 + r0)
2 − r22)i)(

−(h0 + r0)

1 + (h0 + r0)2
+

k

1 + (h0 + r0)2
)

=
(r22 − (h0 + r0)

2 − 1)(h0 + r0)i

1 + (h0 + r0)2
+

r22j

1 + (h0 + r0)2

= (0, 0, 1) = j

= z′′′ = (z′′′1 , z
′′′
2 , z

′′′
3 )

fABC(w) = fA ◦ fBC(w) = fB(iw′′2 + jw′′3)

= (−(h0 + r0)(iw
′′
2 + jw′′3) + ((h0 + r0)

2 − r22)i)(−i(iw′′2 + jw′′3)− (h0 + r0))
−1

= (−(h0 + r0)(iw
′′
2 + jw′′3) + ((h0 + r0)

2 − r22)i)(
w′′2 − (h0 + r0) + w′′3k

(w′′2 − (h0 + r0))2 + w′′23
)

= w′′′ = (0, 0, w′′′3 ) = (w′′′1 , w
′′′
2 , w

′′′
3 )
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fABC(v) = fA ◦ fBC(v) = fB(iv′′2 + jv′′3)

= (−(h0 + r0)(iv
′′
2 + jv′′3) + ((h0 + r0)

2 − r22)i)(−i(iv′′2 + jv′′3)− (h0 + r0))
−1

= (−(h0 + r0)(iv
′′
2 + jv′′3) + ((h0 + r0)

2 − r22)i)(
v′′2 − (h0 + r0) + v′′3k

(v′′2 − (h0 + r0))2 + v′′23
)

= v′′′ = (0, w′′′2 , w
′′′
3 ) = (w′′′1 , w

′′′
2 , w

′′′
3 )

�

The geometric interpretation of these calculations are more easily
explained in terms of the decomposition of the matrices encoded in the
LFT.

Our first matrix can be decomposed to the form

C = C2C1 =

[
1 −z1 − z2i
0 1

] [
1
z3

0

0 1

]
Where C2 will translate z to the j-axis and C1 will dilate the trans-

lated point on the j-axis to the unit vector j.
The next matrix is broken down into a composition of two planes.

When these two planes are encoded into the LFT, they become a com-
position of two reflections, which is a rotation. Specifically this will
rotate the hyperbolic triangle from the first octant to the ij-plane.

B = B2B1 =

[
sin(φ

2
)k + cos(φ

2
)j 0

0 −sin(φ
2
)k + cos(φ

2
)j

] [
j 0
0 j

]
Once the hyperbolic triangle is in the ij-plane we apply another

LFT in order the reach the normal position. The decomposition of the
matrix encoded into the LFT that achieves this result is the product
of a reflection about the j-axis and an inversion about a hemisphere
passing through z and w.

A = A2A1 =

[
(h0 + r0)j (r22 − (h0 + r0)

2)k
k (h0 + r0)j

] [
j 0
0 j

]
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