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Introduction

The boustrophedon transform of a sequence, an, produces a
sequence bn by populating a triangle in the following manner:

a0

a1 b1

b2 T(2,1) a2

a3 T(3,1) T(3,2) b3

b4 T(4,3) T(4,2) T(4,1) a4
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Introduction 2

The transform can be defined more formally using a recurrence
relation. Let the numbers Tk,n (k ≥ n ≥ 0) be defined

Tn,0 = an

Tk,n = Tk,n−1 + Tk−1,k−n(k ≥ n > 0).

Now,
bn = Tn,n
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Graphical Interpretation

We can think of the boustrophedon triangle as a directed
graph. Using this interpretation, we construct a bijection
between the set of paths beginning at T0,0 and ending at Tn,n

and the set of alternating permutation on [n].
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Path-Permutation Bijection Theorem

Theorem

Let π(n, n, 0) be the set of paths starting at (0, 0) and ending
at (n, n). Then there exists a bijection φ : π(n, n, 0)→ DU(n).
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Constructing the Bijection

Given a path, we can construct a permutation σ = σ1σ2 · · ·σn

using:
σ2i is the f (n − 2j + 1)th element from the left (with the
arrows) of [n] \ {σ1, σ2, · · · , σ2j−1}
and
σ2i+1 is the f (n − 2j)th element from the right (against the
arrows) of [n] \ {σ1, σ2, · · · , σ2j−1} where 0 < i ≤ n. This is
illustrated in later examples.
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Inverting the Bijection

To map a permutation to a path: Given a
σ = σ1σ2 · · ·σj · · ·σn ∈ DU(n), the set of pairs
{(k , f (k))} where

f (n − 2j) = n + 1− |{σi : σi > σ2j+1, i < 2j}| − σ2j+1

f (n − 2j − 1) = σ2j+2 − |{σi : σi < σ2j+2, i < 2j + 1}|
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Example 1

Consider σ = 316274958.

We map the permutation to a set of vertices fixing a path
on the boustrophedon graph.

We use

f (n − 2j) =n + 1− |{σi : σi > σ2j+1, i < 2j}| − σ2j+1

f (n − 2j − 1) =σ2j+2 − |{σi : σi < σ2j+2, i < 2j + 1}|

0 ≤ j <
n + 1

2
, j ∈ Z

to determine the vertex where the path enters the k − th
row, where k = n − 2j or k = n − 2j − 1

—



Umbral
Calculus and
the Boustro-

phedon
Transform

Daniel Berry,
Jonathan
Broom,
Dewayne

Dixon, Adam
Flaherty

Introduction

Results

Examples

Boustrophedon
transform of
other
sequences

Umbral
Calculus

Further
Exploration

Thanks

Works Cited

Example 1

Consider σ = 316274958.

We map the permutation to a set of vertices fixing a path
on the boustrophedon graph.

We use

f (n − 2j) =n + 1− |{σi : σi > σ2j+1, i < 2j}| − σ2j+1

f (n − 2j − 1) =σ2j+2 − |{σi : σi < σ2j+2, i < 2j + 1}|

0 ≤ j <
n + 1

2
, j ∈ Z

to determine the vertex where the path enters the k − th
row, where k = n − 2j or k = n − 2j − 1

—



Umbral
Calculus and
the Boustro-

phedon
Transform

Daniel Berry,
Jonathan
Broom,
Dewayne

Dixon, Adam
Flaherty

Introduction

Results

Examples

Boustrophedon
transform of
other
sequences

Umbral
Calculus

Further
Exploration

Thanks

Works Cited

Example 1

Consider σ = 316274958.

We map the permutation to a set of vertices fixing a path
on the boustrophedon graph.

We use

f (n − 2j) =n + 1− |{σi : σi > σ2j+1, i < 2j}| − σ2j+1

f (n − 2j − 1) =σ2j+2 − |{σi : σi < σ2j+2, i < 2j + 1}|

0 ≤ j <
n + 1

2
, j ∈ Z

to determine the vertex where the path enters the k − th
row, where k = n − 2j or k = n − 2j − 1

—



Umbral
Calculus and
the Boustro-

phedon
Transform

Daniel Berry,
Jonathan
Broom,
Dewayne

Dixon, Adam
Flaherty

Introduction

Results

Examples

Boustrophedon
transform of
other
sequences

Umbral
Calculus

Further
Exploration

Thanks

Works Cited

Example 1

Consider σ = 316274958.

We map the permutation to a set of vertices fixing a path
on the boustrophedon graph.

We use

f (n − 2j) =n + 1− |{σi : σi > σ2j+1, i < 2j}| − σ2j+1

f (n − 2j − 1) =σ2j+2 − |{σi : σi < σ2j+2, i < 2j + 1}|

0 ≤ j <
n + 1

2
, j ∈ Z

to determine the vertex where the path enters the k − th
row, where k = n − 2j or k = n − 2j − 1

—



Umbral
Calculus and
the Boustro-

phedon
Transform

Daniel Berry,
Jonathan
Broom,
Dewayne

Dixon, Adam
Flaherty

Introduction

Results

Examples

Boustrophedon
transform of
other
sequences

Umbral
Calculus

Further
Exploration

Thanks

Works Cited

Example 1

From this we obtain

f (9− 2(0)) =f (9) = 9 + 1− 0− 3 =7

f (9− 2(0)− 1) =f (8) = 1− 0 =1

f (9− 2(1)) =f (7) = 9 + 1− 0− 6 =4

f (9− 2(1)− 1) =f (6) = 2− 1 =1

f (9− 2(2)) =f (5) = 9 + 1− 0− 7 =3

f (9− 2(2)− 1) =f (4) = 4− 3 =1

f (9− 2(3)) =f (3) = 9 + 1− 0− 9 =1

f (9− 2(3)− 1) =f (2) = 5− 4 =1

f (9− 2(4)) =f (1) = 9 + 1− 1− 8 =1
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Example 1

T0,0

T1,0 T1,1

T2,2 T2,1 T2,0

T3,0 T3,1 T3,2 T3,3

T4,4 T4,3 T4,2 T4,1 T4,0

T5,0 T5,1 T5,2 T5,3 T5,4 T5,5

T6,6 T6,5 T6,4 T6,3 T6,2 T6,1 T6,0

T7,0 T7,1 T7,2 T7,3 T7,4 T7,5 T7,6 T7,7

T8,8 T8,7 T8,6 T8,5 T8,4 T8,3 T8,2 T8,1 T8,0

T9,0 T9,1 T9,2 T9,3 T9,4 T9,5 T9,6 T9,7 T9,8 T9,9

Figure: The path corresponding to Example 1
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Example 1

Following the process outlined in the Path-Permutation
Bijection Theorem, we generate a permutation from this
path as follows:

σ1 = the f (9)thfrom the right of {1, 2, 3, 4, 5, 6, 7, 8, 9} =3

σ2 = the f (8)thfrom the left of {1, 2, 4, 5, 6, 7, 8, 9} =1

σ3 = the f (7)thfrom the right of {2, 4, 5, 6, 7, 8, 9} =6

σ4 = the f (6)thfrom the left of {2, 4, 5, 7, 8, 9} =2

σ5 = the f (5)thfrom the right of {4, 5, 7, 8, 9} =7

σ6 = the f (4)thfrom the left of {4, 5, 8, 9} =4

σ7 = the f (3)thfrom the right of {5, 8, 9} =9

σ8 = the f (2)thfrom the left of {5, 8} =5

σ9 = the f (1)thfrom the right of {8} =8
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Example 1

Following the process outlined in the Path-Permutation
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Example 1

This gives us σ = 316274958, our starting permutation.
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Example 2

Now consider σ = 827361549.

We use the previous map.
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Example 2

Now consider σ = 827361549.

We use the previous map.
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Example 2

Now consider σ = 827361549.

We use the previous map.
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Example 1

From this we obtain

f (9− 2(0)) =f (9) = 9 + 1− 0− 8 =2

f (9− 2(0)− 1) =f (8) = 2− 0 =2

f (9− 2(1)) =f (7) = 9 + 1− 1− 7 =2

f (9− 2(1)− 1) =f (6) = 3− 1 =2

f (9− 2(2)) =f (5) = 9 + 1− 2− 6 =2

f (9− 2(2)− 1) =f (4) = 1− 0 =1

f (9− 2(3)) =f (3) = 9 + 1− 3− 5 =2

f (9− 2(3)− 1) =f (2) = 4− 3 =1

f (9− 2(4)) =f (1) = 9 + 1− 0− 9 =1
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f (9− 2(0)− 1) =f (8) = 2− 0 =2

f (9− 2(1)) =f (7) = 9 + 1− 1− 7 =2

f (9− 2(1)− 1) =f (6) = 3− 1 =2

f (9− 2(2)) =f (5) = 9 + 1− 2− 6 =2
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T0,0

T1,0 T1,1

T2,2 T2,1 T2,0

T3,0 T3,1 T3,2 T3,3

T4,4 T4,3 T4,2 T4,1 T4,0

T5,0 T5,1 T5,2 T5,3 T5,4 T5,5

T6,6 T6,5 T6,4 T6,3 T6,2 T6,1 T6,0

T7,0 T7,1 T7,2 T7,3 T7,4 T7,5 T7,6 T7,7

T8,8 T8,7 T8,6 T8,5 T8,4 T8,3 T8,2 T8,1 T8,0

T9,0 T9,1 T9,2 T9,3 T9,4 T9,5 T9,6 T9,7 T9,8 T9,9

Figure: The path corresponding to Example 2
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Example 1

Following the process outlined in the Path-Permutation
Bijection Theorem, we generate a permutation from this
path as follows:

σ1 = the f (9)thfrom the right of {1, 2, 3, 4, 5, 6, 7, 8, 9} =8

σ2 = the f (8)thfrom the left of {1, 2, 3, 4, 5, 6, 7, 9} =2

σ3 = the f (7)thfrom the right of {1, 3, 4, 5, 6, 7, 9} =7

σ4 = the f (6)thfrom the left of {1, 3, 4, 5, 6, 9} =3

σ5 = the f (5)thfrom the right of {1, 4, 5, 6, 9} =6

σ6 = the f (4)thfrom the left of {1, 4, 5, 9} =1

σ7 = the f (3)thfrom the right of {4, 5, 9} =5

σ8 = the f (2)thfrom the left of {4, 9} =4

σ9 = the f (1)thfrom the left of {9} =9
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Example 1

Following the process outlined in the Path-Permutation
Bijection Theorem, we generate a permutation from this
path as follows:

σ1 = the f (9)thfrom the right of {1, 2, 3, 4, 5, 6, 7, 8, 9} =8
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Example 1

This gives us σ = 827361549, our starting permutation.
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Boustrophedon transform of the Euler numbers

Euler numbers:
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521 . . .

1

1 2

4 3 1

2 6 9 10

32 30 24 15 5

Output sequence:
1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, . . .
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Euler numbers:
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521 . . .

1

1 2

4 3 1

2 6 9 10

32 30 24 15 5

Output sequence:
1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, . . .
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Boustrophedon transform of the Catalan numbers

The Catalan numbers:
1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .

1

2 3

10 8 5

14 24 32 37

149 135 111 79 42

Output sequence:
1, 3, 10, 37, 149, 648, 3039, 15401, 84619, 505500, . . .
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Mathematica Search

1 Download the Online Integer Sequence database (found at
oeis.org)

2 Apply the boustrophedon transform

3 Search the database for the resulting sequence
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Mathematica Results

Sequence A104854, defined as ak = 2Ek+1 − Ek ,
represents the number of k-digit numbers using digits of
[k] each exactly once and containing no 3-digit sequence
in increasing or decreasing order

First few terms: 1, 1, 3, 8, 27, 106, 483, 2498, 14487, . . .

First few terms of the boustrophedon transform of
A104854: 1, 2, 6, 22, 90, 422, 2226, 13102, 85170, . . .

Matches sequence A226435 for the first 210 terms

A226435 is defined as the number of permutations of [n]
with fewer than 2 interior elements having values lying
between the values of their neighbors
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Mathematica Results 2

Sequence A226435 is the 2nd column of the table T (n, k)
(sequence A226441)

T (n, k) is defined as the number of permutations of [n]
with fewer than k interior elements having values lying
between the values of their neighbors

There may be other combinations of the Euler numbers
which describe columns of this table

It may be possible to develop a general expression for the
elements of T (n, k) as a linear combination of the Euler
numbers
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Umbral Rules

Let (an) be a sequence of real numbers.

The exponential generating function (EGF) of (an) is
given by the formal power series

A(x) =
∞∑

n=0

an

n!
xn

By making the substitution of an to an, we get

∞∑
n=0

an

n!
xn =

∞∑
n=0

an

n!
xn = eax
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Umbral Rules

By mapping an → an we obtained a closed form for the
EGF of (an).

This mapping is known as the umbral substitution.

We denote it by an → An to emphasize that A is actually
an indeterminate.

A is called the umbra of (an).
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Umbral Substitution

Formally, the umbral substitution can be defined as a
linear functional.

A linear functional is a map L : V → F from a vector
space V into its field of scalars F for which

L(cu + v) = cL(u) + L(v)

for all u, v ∈ V and c ∈ F.
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Umbral Substitution

Let (an) be a sequence of real numbers.

Let R[A] denote the vector space of polynomials in A with
real coefficients.

Then we define the umbral substitution to be the linear
functional

L : R[A]→ R

given by
L(An) = an

Since {An | n ≥ 0} is a basis of R[A], this defines L on the
whole space.
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Umbral Substitution for Multiple Sequences

Let (an) and (bn) be sequences of real numbers.

Define L : R[A,B]→ R on the basis {AnBm |n,m ≥ 0} by

L(AnBm) = anbm

L(AnBm) = L(An)L(Bm)
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Umbral Calculus for a Sequence Transformation

Proposition

Let (an) and (cn) be fixed sequences of real numbers and
define a new sequence (sn) by the transformation

sn =
n∑

k=0

(
n

k

)
akcn−k

Then L(An) = L((S − C )n) for all n ≥ 1.
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Inverse Transform

Using umbral calculus we obtained the following formula for
the inverse transformation.

Proposition

The inverse of the transformation is given by the equation

an =
n∑

k=0

(−1)n−k

(
n

k

)
skcn−k
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Umbral Calculus for the Boustrophedon Transform

The boustrophedon transform can be defined by the sum

bn =
n∑

k=0

(
n

k

)
akEn−k

Using this representation and the previous propositions, we
obtain a formula for the inverse boustrophedon transform.
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Umbral Calculus for a Sequence Transformation

Corollary

The inverse of the boustrophedon transform is given by the
equation

an =
n∑

k=0

(−1)n−k

(
n

k

)
bkEn−k

for n ≥ 1.

Proof.

Take the sequence (cn) to be the Euler numbers (En) in
Proposition 2.
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Further Exploration

Can we extend these results to the boustrophedon
transform of sequences in vector spaces other than R?

What other sequences have boustrophedon transforms of
combinatorial importance?

Are there other interesting sequence transformations with
properties similar to the boustrophedon transform?
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