Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

# Umbral Calculus and the Boustrophedon Transform 

Daniel Berry, Jonathan Broom, Dewayne Dixon, Adam Flaherty

Friday July 12, 2013

Umbral Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
(1) Introduction

- Graphical Introduction
- Formal Introduction
(2) Results
- Graphical Interpretation
- Path-Permutation Bijection Theorem
- Constructing the Bijection
- Inverting the Bijection
(3) Examples
(4) Boustrophedon transform of other sequences
(5) Umbral Calculus
- Umbral Rules
(6) Further Exploration
(7) Thanks
(8) Works Cited


## Contents



## Introduction

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

The boustrophedon transform of a sequence, $a_{n}$, produces a sequence $b_{n}$ by populating a triangle in the following manner:


## Introduction 2

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

The transform can be defined more formally using a recurrence relation. Let the numbers $T_{k, n}(k \geq n \geq 0)$ be defined

$$
\begin{gathered}
T_{n, 0}=a_{n} \\
T_{k, n}=T_{k, n-1}+T_{k-1, k-n}(k \geq n>0)
\end{gathered}
$$

## Introduction 2

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

The transform can be defined more formally using a recurrence relation. Let the numbers $T_{k, n}(k \geq n \geq 0)$ be defined

$$
\begin{gathered}
T_{n, 0}=a_{n} \\
T_{k, n}=T_{k, n-1}+T_{k-1, k-n}(k \geq n>0)
\end{gathered}
$$

Now,

$$
b_{n}=T_{n, n}
$$

## Contents



## Graphical Interpretation

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

We can think of the boustrophedon triangle as a directed graph. Using this interpretation, we construct a bijection between the set of paths beginning at $T_{0,0}$ and ending at $T_{n, n}$ and the set of alternating permutation on $[n]$.

## Path-Permutation Bijection Theorem

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Theorem

Let $\pi(n, n, 0)$ be the set of paths starting at $(0,0)$ and ending at $(n, n)$. Then there exists a bijection $\phi: \pi(n, n, 0) \rightarrow D U(n)$.

## Constructing the Bijection

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration

## Thanks

Given a path, we can construct a permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ using:
$\sigma_{2 i}$ is the $f(n-2 j+1)^{\text {th }}$ element from the left (with the arrows) of $[n] \backslash\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{2 j-1}\right\}$
and
$\sigma_{2 i+1}$ is the $f(n-2 j)^{\text {th }}$ element from the right (against the arrows) of $[n] \backslash\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{2 j-1}\right\}$ where $0<i \leq n$. This is illustrated in later examples.

## Inverting the Bijection

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

- To map a permutation to a path: Given a $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{j} \cdots \sigma_{n} \in D U(n)$, the set of pairs $\{(k, f(k))\}$ where

$$
\begin{aligned}
f(n-2 j) & =n+1-\left|\left\{\sigma_{i}: \sigma_{i}>\sigma_{2 j+1}, i<2 j\right\}\right|-\sigma_{2 j+1} \\
f(n-2 j-1) & =\sigma_{2 j+2}-\left|\left\{\sigma_{i}: \sigma_{i}<\sigma_{2 j+2}, i<2 j+1\right\}\right|
\end{aligned}
$$

## Contents

```
Umbral Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Introduction
- Graphical Introduction
- Formal Introduction
Results
- Graphical Interpretation
- Path-Permutation Bijection Theorem
- Constructing the Bijection
- Inverting the Bijection
Umbral
Calculus
Thanks
Further
Exploration
Works Cited

\section*{Example 1}

Umbral Calculus and the Boustrophedon Transform

Daniel Berry, Jonathan Broom, Dewayne Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Consider \(\sigma=316274958\).

\section*{Example 1}

Umbral Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Consider \(\sigma=316274958\).
- We map the permutation to a set of vertices fixing a path on the boustrophedon graph.

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of other
sequences
Umbral
Calculus
Further Exploration
- Consider \(\sigma=316274958\).
- We map the permutation to a set of vertices fixing a path on the boustrophedon graph.
- We use
\[
\begin{aligned}
f(n-2 j) & =n+1-\left|\left\{\sigma_{i}: \sigma_{i}>\sigma_{2 j+1}, i<2 j\right\}\right|-\sigma_{2 j+1} \\
f(n-2 j-1) & =\sigma_{2 j+2}-\left|\left\{\sigma_{i}: \sigma_{i}<\sigma_{2 j+2}, i<2 j+1\right\}\right| \\
0 & \leq j<\frac{n+1}{2}, j \in \mathbb{Z}
\end{aligned}
\]
to determine the vertex where the path enters the \(k\)-th row, where \(k=n-2 j\) or \(k=n-2 j-1\)

\section*{Example 1}

Umbral Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of other
sequences
Umbral
Calculus
- Consider \(\sigma=316274958\).
- We map the permutation to a set of vertices fixing a path on the boustrophedon graph.
- We use
\[
\begin{aligned}
f(n-2 j) & =n+1-\left|\left\{\sigma_{i}: \sigma_{i}>\sigma_{2 j+1}, i<2 j\right\}\right|-\sigma_{2 j+1} \\
f(n-2 j-1) & =\sigma_{2 j+2}-\left|\left\{\sigma_{i}: \sigma_{i}<\sigma_{2 j+2}, i<2 j+1\right\}\right| \\
0 & \leq j<\frac{n+1}{2}, j \in \mathbb{Z}
\end{aligned}
\]
to determine the vertex where the path enters the \(k\)-th row, where \(k=n-2 j\) or \(k=n-2 j-1\)

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry, Jonathan Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- From this we obtain

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further Exploration

\section*{Thanks}
- From this we obtain
\[
\begin{array}{lll}
f(9-2(0)) & =f(9)=9+1-0-3 & =7 \\
f(9-2(0)-1) & =f(8)=1-0 & =1 \\
f(9-2(1)) & =f(7)=9+1-0-6 & =4 \\
f(9-2(1)-1) & =f(6)=2-1 & =1 \\
f(9-2(2)) & =f(5)=9+1-0-7 & =3 \\
f(9-2(2)-1) & =f(4)=4-3 & =1 \\
f(9-2(3)) & =f(3)=9+1-0-9 & =1 \\
f(9-2(3)-1) & =f(2)=5-4 & =1 \\
f(9-2(4)) & =f(1)=9+1-1-8 & =1
\end{array}
\]

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences

Calculus


Figure: The path corresponding to Example 1

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Following the process outlined in the Path-Permutation Bijection Theorem, we generate a permutation from this path as follows:

\section*{Example 1}

Umbral Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
- Following the process outlined in the Path-Permutation Bijection Theorem, we generate a permutation from this path as follows:
\(\sigma_{1}=\) the \(f(9)^{\text {th }}\) from the right of
\[
\{1,2,3,4,5,6,7,8,9\}=3
\]
\[
\sigma_{2}=\text { the } f(8)^{t h} \text { from the left of }
\]
\[
\{1,2,4,5,6,7,8,9\}=1
\]
\(\sigma_{3}=\) the \(f(7)^{\text {th }}\) from the right of \(\{2,4,5,6,7,8,9\}=6\)
\(\sigma_{4}=\) the \(f(6)^{\text {th }}\) from the left of
\[
\{2,4,5,7,8,9\}=2
\]
\[
\{4,5,7,8,9\}=7
\]
\[
\{4,5,8,9\}=4
\]
\[
\{5,8,9\}=9
\]
\(\sigma_{8}=\) the \(f(2)^{\text {th }}\) from the left of \(\{5,8\}=5\)
\(\sigma_{9}=\) the \(f(1)^{t h}\) from the right of
\[
\{8\}=8
\]

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
- This gives us \(\sigma=316274958\), our starting permutation.

\section*{Example 2}

Umbral
Calculus and the Boustro－ phedon Transform

Daniel Berry，
Jonathan
Broom，
Dewayne
Dixon，Adam
Flaherty

Introduction
Results

\section*{Examples}

Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Example 2}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
- Now consider \(\sigma=827361549\).

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Example 2}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
- Now consider \(\sigma=827361549\).
- We use the previous map.

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry, Jonathan Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- From this we obtain

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
- From this we obtain
\[
\begin{array}{lll}
f(9-2(0)) & =f(9)=9+1-0-8 & =2 \\
f(9-2(0)-1) & =f(8)=2-0 & =2 \\
f(9-2(1)) & =f(7)=9+1-1-7 & =2 \\
f(9-2(1)-1) & =f(6)=3-1 & =2 \\
f(9-2(2)) & =f(5)=9+1-2-6 & =2 \\
f(9-2(2)-1) & =f(4)=1-0 & =1 \\
f(9-2(3)) & =f(3)=9+1-3-5 & =2 \\
f(9-2(3)-1) & =f(2)=4-3 & =1 \\
f(9-2(4)) & =f(1)=9+1-0-9 & =1
\end{array}
\]

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences

Calculus


Figure: The path corresponding to Example 2

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Following the process outlined in the Path-Permutation Bijection Theorem, we generate a permutation from this path as follows:

\section*{Example 1}

Umbral Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
- Following the process outlined in the Path-Permutation Bijection Theorem, we generate a permutation from this path as follows:
\(\sigma_{1}=\) the \(f(9)^{\text {th }}\) from the right of
\[
\{1,2,3,4,5,6,7,8,9\}=8
\]
\[
\sigma_{2}=\text { the } f(8)^{t h} \text { from the left of }
\]
\[
\{1,2,3,4,5,6,7,9\}=2
\]
\(\sigma_{3}=\) the \(f(7)^{\text {th }}\) from the right of \(\{1,3,4,5,6,7,9\}=7\) \(\sigma_{4}=\) the \(f(6)^{\text {th }}\) from the left of \(\{1,3,4,5,6,9\}=3\) \(\{1,4,5,6,9\}=6\) \(\sigma_{6}=\) the \(f(4)^{\text {th }}\) from the left of
\[
\{1,4,5,9\}=1
\] \(\sigma_{7}=\) the \(f(3)^{t h}\) from the right of \(\sigma_{8}=\) the \(f(2)^{\text {th }}\) from the left of \(\{4,5,9\}=5\) \(\{4,9\}=4\)
\(\sigma_{9}=\) the \(f(1)^{\text {th }}\) from the left of

\section*{Example 1}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
- This gives us \(\sigma=827361549\), our starting permutation.

\section*{Contents}
```

Umbral Calculus and the Boustro－ phedon Transform
Introduction
－Graphical Introduction
－Formal Introduction
Results
－Graphical Interpretation
－Path－Permutation Bijection Theorem
－Constructing the Bijection
－Inverting the Bijection

```

\section*{Examples}
```

Boustrophedon transform of other
sequences
Examples
（4）Boustrophedon transform of other sequences
Umbral
Calculus
Thanks
Further
Exploration
Works Cited

## Boustrophedon transform of the Euler numbers

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Boustrophedon transform of the Euler numbers

Umbral<br>Calculus and the Boustrophedon Transform<br>Daniel Berry,<br>Jonathan<br>Broom,<br>Dewayne<br>Dixon, Adam<br>Flaherty

- Euler numbers: $1,1,1,2,5,16,61,272,1385,7936,50521 \ldots$

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Boustrophedon transform of the Euler numbers

Umbral<br>Calculus and the Boustrophedon<br>Transform<br>Daniel Berry,<br>Jonathan<br>Broom,<br>Dewayne<br>Dixon, Adam<br>Flaherty<br>Introduction<br>Results<br>Examples<br>Boustrophedon transform of<br>other<br>sequences<br>Umbral<br>Calculus<br>Further<br>Exploration<br>\section*{Thanks}

- Euler numbers:
$1,1,1,2,5,16,61,272,1385,7936,50521 \ldots$
1
12
431
2
6
9
10
$\begin{array}{lllll}32 & 30 & 24 & 15 & 5\end{array}$


## Boustrophedon transform of the Euler numbers

```
    Umbral
Calculus and
the Boustro-
    phedon
    Transform
Daniel Berry,
    Jonathan
    Broom,
    Dewayne
Dixon, Adam
    Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
```

- Output sequence:
$1,2,4,10,32,122,544,2770,15872,101042, \ldots$


## Boustrophedon transform of the Catalan numbers

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Boustrophedon transform of the Catalan numbers

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

- The Catalan numbers: $1,2,5,14,42,132,429,1430,4862,16796, \ldots$


## Boustrophedon transform of the Catalan numbers

UmbralCalculus andthe Boustro- phedon Transform
Daniel Berry,JonathanBroom,
Dewayne
Dixon, AdamFlaherty
Introduction

Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

- The Catalan numbers: $1,2,5,14,42,132,429,1430,4862,16796, \ldots$

1
23
$10 \quad 8 \quad 5$
14
24
32
37
149
135
111
79
42

## Boustrophedon transform of the Catalan numbers

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

- The Catalan numbers:

$$
1,2,5,14,42,132,429,1430,4862,16796, \ldots
$$

1
23
$10 \quad 8 \quad 5$
$\begin{array}{llll}14 & 24 & 32 & 37\end{array}$
$\begin{array}{lllll}149 & 135 & 111 & 79 & 42\end{array}$

- Output sequence: $1,3,10,37,149,648,3039,15401,84619,505500, \ldots$


## Mathematica Search

Umbral Calculus and the Boustrophedon Transform
Daniel Berry, Jonathan Broom, Dewayne Dixon, Adam Flaherty

Introduction

## Results

Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Mathematica Search

Umbral<br>Calculus and the Boustrophedon Transform<br>Daniel Berry,<br>Jonathan<br>Broom,<br>Dewayne<br>Dixon, Adam<br>Flaherty

(1) Download the Online Integer Sequence database (found at oeis.org)

## Mathematica Search

Umbral<br>Calculus and the Boustrophedon Transform<br>Daniel Berry,<br>Jonathan<br>Broom,<br>Dewayne<br>Dixon, Adam<br>Flaherty

Introduction
(1) Download the Online Integer Sequence database (found at oeis.org)
(2) Apply the boustrophedon transform

## Results

Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Mathematica Search

Umbral<br>Calculus and the Boustrophedon Transform<br>Daniel Berry,<br>Jonathan<br>Broom,<br>Dewayne<br>Dixon, Adam<br>Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks
(1) Download the Online Integer Sequence database (found at oeis.org)
(2) Apply the boustrophedon transform
(3) Search the database for the resulting sequence

## Mathematica Results

Umbral Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Mathematica Results

```
    Umbral
Calculus and
the Boustro-
    phedon
    Transform
Daniel Berry,
    Jonathan
    Broom,
    Dewayne
Dixon, Adam
    Flaherty
```

- Sequence A104854, defined as $a_{k}=2 E_{k+1}-E_{k}$, represents the number of $k$-digit numbers using digits of [ $k$ ] each exactly once and containing no 3-digit sequence in increasing or decreasing order


## Mathematica Results

Umbral

- Sequence A104854, defined as $a_{k}=2 E_{k+1}-E_{k}$, represents the number of $k$-digit numbers using digits of [ $k$ ] each exactly once and containing no 3-digit sequence in increasing or decreasing order
- First few terms: $1,1,3,8,27,106,483,2498,14487, \ldots$


## Mathematica Results

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other sequences

Umbral
Calculus
Further Exploration

Thanks

- Sequence A104854, defined as $a_{k}=2 E_{k+1}-E_{k}$, represents the number of $k$-digit numbers using digits of [ $k$ ] each exactly once and containing no 3-digit sequence in increasing or decreasing order
- First few terms: $1,1,3,8,27,106,483,2498,14487, \ldots$
- First few terms of the boustrophedon transform of A104854: 1, 2, 6, 22, 90, 422, 2226, 13102, 85170, ...


## Mathematica Results

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other sequences
Umbral
Calculus
Further Exploration

## Thanks

- Sequence A104854, defined as $a_{k}=2 E_{k+1}-E_{k}$, represents the number of $k$-digit numbers using digits of [ $k$ ] each exactly once and containing no 3-digit sequence in increasing or decreasing order
- First few terms: $1,1,3,8,27,106,483,2498,14487, \ldots$
- First few terms of the boustrophedon transform of A104854: 1, 2, 6, 22, 90, 422, 2226, 13102, 85170, ...
- Matches sequence A226435 for the first 210 terms


## Mathematica Results

Umbral

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

- Sequence A104854, defined as $a_{k}=2 E_{k+1}-E_{k}$, represents the number of $k$-digit numbers using digits of [ $k$ ] each exactly once and containing no 3-digit sequence in increasing or decreasing order
- First few terms: $1,1,3,8,27,106,483,2498,14487, \ldots$
- First few terms of the boustrophedon transform of A104854: 1, 2, 6, 22, 90, 422, 2226, 13102, 85170, ...
- Matches sequence A226435 for the first 210 terms
- A226435 is defined as the number of permutations of [ $n$ ] with fewer than 2 interior elements having values lying between the values of their neighbors


## Mathematica Results 2

```
    Umbral
Calculus and
the Boustro-
    phedon
    Transform
Daniel Berry,
    Jonathan
    Broom,
    Dewayne
Dixon, Adam
    Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
```

- Sequence A226435 is the $2 n d$ column of the table $T(n, k)$ (sequence A226441)


## Mathematica Results 2

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

- Sequence A226435 is the 2nd column of the table $T(n, k)$ (sequence A226441)
- $T(n, k)$ is defined as the number of permutations of [ $n$ ] with fewer than $k$ interior elements having values lying between the values of their neighbors


## Mathematica Results 2

Umbral

Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other sequences

Umbral
Calculus
Further Exploration

Thanks

- Sequence A226435 is the 2nd column of the table $T(n, k)$ (sequence A226441)
- $T(n, k)$ is defined as the number of permutations of [ $n$ ] with fewer than $k$ interior elements having values lying between the values of their neighbors
- There may be other combinations of the Euler numbers which describe columns of this table


## Mathematica Results 2

Umbral
Calculus and
the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other sequences

Umbral Calculus

- Sequence A226435 is the 2nd column of the table $T(n, k)$ (sequence A226441)
- $T(n, k)$ is defined as the number of permutations of [ $n$ ] with fewer than $k$ interior elements having values lying between the values of their neighbors
- There may be other combinations of the Euler numbers which describe columns of this table
- It may be possible to develop a general expression for the elements of $T(n, k)$ as a linear combination of the Euler numbers


## Contents

```
Umbral Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Introduction
- Graphical Introduction
- Formal Introduction
```



```
- Graphical Interpretation
- Path-Permutation Bijection Theorem
- Constructing the Bijection
- Inverting the Bijection
Umbral
Calculus
Thanks
Further
Exploration
Works Cited

\section*{Umbral Rules}

Umbral
Calculus and the Boustro－ phedon Transform

Daniel Berry， Jonathan Broom， Dewayne Dixon，Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.
- The exponential generating function (EGF) of \(\left(a_{n}\right)\) is given by the formal power series
\[
A(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
\]

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.
- The exponential generating function (EGF) of \(\left(a_{n}\right)\) is given by the formal power series
\[
A(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
\]
- By making the substitution of \(a_{n}\) to \(a^{n}\), we get
\[
\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{a^{n}}{n!} x^{n}=e^{a x}
\]

\section*{Umbral Rules}

Umbral
Calculus and the Boustro－ phedon Transform

Daniel Berry， Jonathan Broom， Dewayne Dixon，Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- By mapping \(a_{n} \rightarrow a^{n}\) we obtained a closed form for the EGF of \(\left(a_{n}\right)\).

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform
- By mapping \(a_{n} \rightarrow a^{n}\) we obtained a closed form for the EGF of \(\left(a_{n}\right)\).
- This mapping is known as the umbral substitution.

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
- By mapping \(a_{n} \rightarrow a^{n}\) we obtained a closed form for the EGF of \(\left(a_{n}\right)\).
- This mapping is known as the umbral substitution.
- We denote it by \(a_{n} \rightarrow A^{n}\) to emphasize that \(A\) is actually an indeterminate.

\section*{Umbral Rules}

Umbral
Calculus and the Boustrophedon Transform
- By mapping \(a_{n} \rightarrow a^{n}\) we obtained a closed form for the EGF of \(\left(a_{n}\right)\).
- This mapping is known as the umbral substitution.
- We denote it by \(a_{n} \rightarrow A^{n}\) to emphasize that \(A\) is actually an indeterminate.
- \(A\) is called the umbra of \(\left(a_{n}\right)\).

\section*{Umbral Substitution}

Umbral
Calculus and the Boustro－ phedon Transform

Daniel Berry，
Jonathan
Broom，
Dewayne
Dixon，Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Umbral Substitution}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Formally, the umbral substitution can be defined as a linear functional.

\section*{Umbral Substitution}

Umbral
Calculus and
the Boustrophedon
Transform
```

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

```
- Formally, the umbral substitution can be defined as a linear functional.
- A linear functional is a map \(L: V \rightarrow \mathbb{F}\) from a vector space \(V\) into its field of scalars \(\mathbb{F}\) for which
\[
L(c u+v)=c L(u)+L(v)
\]
for all \(u, v \in V\) and \(c \in \mathbb{F}\).

\section*{Umbral Substitution}

Umbral
Calculus and the Boustro－ phedon Transform

Daniel Berry，
Jonathan
Broom，
Dewayne
Dixon，Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Umbral Substitution}
Umbral Calculus and the Boustrophedon Transform
```

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

```
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.

\section*{Umbral Substitution}
```

    Umbral
    Calculus and
the Boustro-
phedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

```
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.
- Let \(\mathbb{R}[A]\) denote the vector space of polynomials in \(A\) with real coefficients.

\section*{Umbral Substitution}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.
- Let \(\mathbb{R}[A]\) denote the vector space of polynomials in \(A\) with real coefficients.
- Then we define the umbral substitution to be the linear functional
\[
L: \mathbb{R}[A] \rightarrow \mathbb{R}
\]
given by
\[
L\left(A^{n}\right)=a_{n}
\]

\section*{Umbral Substitution}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- Let \(\left(a_{n}\right)\) be a sequence of real numbers.
- Let \(\mathbb{R}[A]\) denote the vector space of polynomials in \(A\) with real coefficients.
- Then we define the umbral substitution to be the linear functional
\[
L: \mathbb{R}[A] \rightarrow \mathbb{R}
\]
given by
\[
L\left(A^{n}\right)=a_{n}
\]
- Since \(\left\{A^{n} \mid n \geq 0\right\}\) is a basis of \(\mathbb{R}[A]\), this defines \(L\) on the whole space.

\section*{Umbral Substitution for Multiple Sequences}

Umbral
Calculus and the Boustrophedon Transform

\author{
Daniel Berry,
}

Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Umbral Substitution for Multiple Sequences}
```

    Umbral
    Calculus and
the Boustro-
phedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

```
- Let \(\left(a_{n}\right)\) and \(\left(b_{n}\right)\) be sequences of real numbers.

\section*{Umbral Substitution for Multiple Sequences}

\author{
Umbral \\ Calculus and the Boustrophedon Transform \\ Daniel Berry, \\ Jonathan \\ Broom, \\ Dewayne \\ Dixon, Adam Flaherty
}
- Let \(\left(a_{n}\right)\) and \(\left(b_{n}\right)\) be sequences of real numbers.
- Define \(L: \mathbb{R}[A, B] \rightarrow \mathbb{R}\) on the basis \(\left\{A^{n} B^{m} \mid n, m \geq 0\right\}\) by
\[
L\left(A^{n} B^{m}\right)=a_{n} b_{m}
\]

\section*{Umbral Substitution for Multiple Sequences}
Umbral
Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
- Let \(\left(a_{n}\right)\) and \(\left(b_{n}\right)\) be sequences of real numbers.
- Define \(L: \mathbb{R}[A, B] \rightarrow \mathbb{R}\) on the basis \(\left\{A^{n} B^{m} \mid n, m \geq 0\right\}\) by
\[
L\left(A^{n} B^{m}\right)=a_{n} b_{m}
\]
- \(L\left(A^{n} B^{m}\right)=L\left(A^{n}\right) L\left(B^{m}\right)\)

\section*{Umbral Calculus for a Sequence Transformation}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration

\section*{Thanks}

\section*{Umbral Calculus for a Sequence Transformation}

Umbral Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Proposition}

Let \(\left(a_{n}\right)\) and \(\left(c_{n}\right)\) be fixed sequences of real numbers and define a new sequence \(\left(s_{n}\right)\) by the transformation
\[
s_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} c_{n-k}
\]

Then \(L\left(A^{n}\right)=L\left((S-C)^{n}\right)\) for all \(n \geq 1\).

\section*{Inverse Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Inverse Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of other
sequences
Umbral
Calculus
Further
Exploration
Thanks

Using umbral calculus we obtained the following formula for the inverse transformation.

\section*{Inverse Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

Using umbral calculus we obtained the following formula for the inverse transformation.

\section*{Proposition}

The inverse of the transformation is given by the equation
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} s_{k} c_{n-k}
\]

\section*{Umbral Calculus for the Boustrophedon Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration

\section*{Thanks}

\section*{Umbral Calculus for the Boustrophedon Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- The boustrophedon transform can be defined by the sum
\[
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} E_{n-k}
\]

\section*{Umbral Calculus for the Boustrophedon Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- The boustrophedon transform can be defined by the sum
\[
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} E_{n-k}
\]
- Using this representation and the previous propositions, we obtain a formula for the inverse boustrophedon transform.

\section*{Umbral Calculus for the Boustrophedon Transform}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- The boustrophedon transform can be defined by the sum
\[
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} E_{n-k}
\]
- Using this representation and the previous propositions, we obtain a formula for the inverse boustrophedon transform.

\section*{Umbral Calculus for a Sequence Transformation}

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

\section*{Corollary}

The inverse of the boustrophedon transform is given by the equation
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{k} E_{n-k}
\]
for \(n \geq 1\).

\section*{Umbral Calculus for a Sequence Transformation}

Umbral Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus

\section*{Corollary}

The inverse of the boustrophedon transform is given by the equation
\[
a_{n}=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} b_{k} E_{n-k}
\]
for \(n \geq 1\).

\section*{Proof.}

Take the sequence \(\left(c_{n}\right)\) to be the Euler numbers \(\left(E_{n}\right)\) in Proposition 2.

\section*{Contents}
```

Umbral Calculus and the Boustro－ phedon Transform
Daniel Berry，
Jonathan
Broom，
Dewayne
Dixon，Adam
Flaherty
Introduction
Results
Examples
Boustrophedon transform of other
sequences
Introduction
－Graphical Introduction
－Formal Introduction
Results
－Graphical Interpretation
－Path－Permutation Bijection Theorem
－Constructing the Bijection
－Inverting the Bijection
Umbral
Calculus
Thanks
Further
Exploration
Works Cited

## Further Exploration

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

## Further Exploration

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

- Can we extend these results to the boustrophedon transform of sequences in vector spaces other than $\mathbb{R}$ ?


## Further Exploration

Umbral
Calculus and the Boustrophedon Transform

Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks

- Can we extend these results to the boustrophedon transform of sequences in vector spaces other than $\mathbb{R}$ ?
- What other sequences have boustrophedon transforms of combinatorial importance?


## Further Exploration

Umbral
Calculus and
the Boustro-
phedon
Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty

- Can we extend these results to the boustrophedon transform of sequences in vector spaces other than $\mathbb{R}$ ?
- What other sequences have boustrophedon transforms of combinatorial importance?
- Are there other interesting sequence transformations with properties similar to the boustrophedon transform?


## Contents

```
    Umbral
Calculus and
the Boustro-
    phedon
    Transform
Daniel Berry,
    Jonathan
    Broom,
    Dewayne
Dixon, Adam
    Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
    Introduction
    - Graphical Introduction
    e Formal Introduction
    Results
    - Graphical Interpretation
    - Path-Permutation Bijection Theorem
    - Constructing the Bijection
    - Inverting the Bijection
    Further Exploration
    Thanks
    Further
Exploration
    Works Cited
Thanks

\section*{Thanks}
Umbral
Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
Thanks
- LSU
- Our Parent Universities
- SMILE @ LSU and Dr. Davidson
- The NSF
- Dr. DeAngelis
- Our wonderful mentor Emily McHenry

\section*{Contents}
```

Umbral Calculus and the Boustrophedon Transform
Daniel Berry,
Jonathan
Broom,
Dewayne
Dixon, Adam
Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Introduction

- Graphical Introduction
- Formal Introduction
Results
- Graphical Interpretation
- Path-Permutation Bijection Theorem
- Constructing the Bijection
- Inverting the Bijection
Umbral
Calculus
Thanks
Further
Exploration
Works Cited


## Works Cited

```
    Umbral
Calculus and
the Boustro-
    phedon
    Transform
Daniel Berry,
    Jonathan
    Broom,
    Dewayne
Dixon, Adam
    Flaherty
Introduction
Results
Examples
Boustrophedon
transform of
other
sequences
Umbral
Calculus
Further
Exploration
© Miller, J. \& Sloane, N.J.A. \& Young, N.E., A New Operation on Sequences: The Boustrophedon Transform*, J. Combinatorial Theory, Series A, volume 76, pages 44-54, 1996.
(in Roman, S. \& Rota, G., The Umbral Calculus, Volume 27, Number 2, pages 95-120. New York \& London: Academic Press, 1978.```

