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Abstract. Well-known proofs of the decomposition of a complex-valued ma-

trix into a linear combination of projections and nilpotents rely on some heavy

machinery. We give a new proof of the Jordan Decomposition using the Z-
transform. In this way, we arrive at the result using only calculus.

1. Introduction

In 1986, Schmidt wrote a paper [S86] on canonical forms of complex-valued
matrices. In his paper, he gave a proof of the Jordan decomposition of a matrix
by using the Laplace transform. This method of proof only involves elementary
calculus and an in-depth study of the matrix equation eA(s+t) = eAseAt, as opposed
to more advanced topics like other known proofs. In this paper, we prove a similar
result, written below and proven in Theorem 6.2, using only the Z-transform and
a careful study of the matrix equation Ak+` = A`Ak.

Theorem 1.1. Let A be an n × n matrix with characteristic polynomial cA(z) =
(z − λ1)m1 · · · (z − λr)mr . Then, there exists a unique decomposition

Ak =

r∑
i=1

λki Pi +

mi−1∑
q=1

Nq
i ϕq,λi(k)

with the following properties

(1) PiNi = NiPi = Ni
(2) PiPj = 0 if i 6= j

PiPi = Pi
(3) Nmi

i = 0
(4) PiNj = NjPi = 0 if i 6= j
(5) A =

∑r
i=1 λiPi +Ni

(6) I =
∑r
i=1 Pi.

Properties (2), (3), and (5) together state that any matrix A can be written in
a simple way as a combination of projections and nilpotents. This leads us to the
following definitions and example of the idea.

Definition 1.2. A projection is any square matrix P such that P 2 = P .

Definition 1.3. A nilpotent matrix is a nonzero square matrix N such that
Nk = 0 for some positive integer k.

Example 1.4. Consider the matrix

A =

[
1 4
−1 −3

]
.
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Notice that we have the following decomposition

A = (−1)

[
1 0
0 1

]
+

[
2 4
−1 −2

]
Here, the first matrix is a projection and the second matrix is nilpotent, as can
easily be checked.

Let us build some of the needed prerequisites.

2. Prerequisites

The Z-transform is a useful operator that often comes up as a method to solve
difference equations, but we will only use some basic properties of it. Here is its
definition.

Definition 2.1. Let y(k) be a sequence of complex numbers. We define the Z-
transform of y to be the function Z{y}(z), where z is a complex variable, by the
following formula:

Z{y}(z) =

∞∑
k=0

y(k)

zk
.

There are some interesting functions which we are most interested in applying
the Z-transform to. These ϕ functions will come up in all that follow. Before we
define them, we need to understand the falling factorial.

Definition 2.2. Let n be a nonnegative integer. The falling factorial is the
sequence kn, with k= 0,1,2,..., given by the following formula

kn = k(k − 1)(k − 2)...(k − n+ 1).

If k were allowed to be a real variable, then kn could be characterized as the unique
monic polynomial of degree n that vanishes at 0, 1, ..., n− 1.

Remark 2.3. We can recover the familiar factorial from the falling factorial. Notice
that kn |k=n= n!.

Let us take a look at an example to illustrate how falling factorials work.

Example 2.4. We will compute 64. Using the definition above, we see that

64 = 6(6− 1)(6− 2)(6− 3) = 6(5)(4)(3) = 360.

Now that we have defined the falling factorial, we can give the definition of the
ϕ functions.

Definition 2.5. Let a be a complex number and n be a nonnegative integer. The
following sequences ϕ functions are sequences defined as such,

ϕn,a(k) =

{
ak−nkn

n! a 6= 0

δn(k) a = 0,

where δn(k) is the sequence which is 0 for all k 6= n and δn(n) = 1.

Since these functions are so important to everything that follows, we will compute
a few examples of them below.
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Example 2.6.
ϕ0,2(k) = 2k = (1, 2, 4, 8, 16, ...)

ϕ1,2(k) = 2k−1k = (0, 1, 4, 12, 32, ...)

ϕ2,0(k) = δ2(k) = (0, 0, 1, 0, 0, 0, 0...)

It turns out that the Z-transform of the ϕ functions is particularly useful for our
purposes. This result is written below (see Proposition 5 of [T12] for the proof).

Proposition 2.7. Let a ∈ C and n ∈ N. Then,

Z{ϕn,a(k)}(z) =
z

(z − a)n+1
.

One of the results that will be particularly useful for us is a canonical decom-
position of the power of a matrix. This decomposition was given in [T12] and is
written below.

Proposition 2.8. Let A be an n × n matrix with complex entries. Let cA(z) =
det(zI − A) be the characteristic polynomial. Assume a1, . . . , aR are distinct roots
with corresponding multiplicities M1, . . . ,MR. Then for each r, 1 ≤ r ≤ R, and m,
0 ≤ m ≤Mr − 1, there are n× n matrices Br,m such that

Ak =

R∑
r=1

Mr−1∑
m=0

Br,mϕm,ar (k)

Proof. We borrow the following proof from [T12].
Our assumptions imply that we can factor cA in the following way:

cA(z) =

R∏
r=1

(z − ar)Mr .

The (i, j) entry of (zI − A)−1 is of the form
pi,j(z)
cA(z) where pi,j(z) is some poly-

nomial with degree less than n. Using partial fractions, we can write

pi,j(z)

cA(z)
=

R∑
r=1

Mr−1∑
m=0

br,m(i, j)

(z − ar)m+1

where br,m ∈ C. It follows then that

z(zI −A)−1 =

R∑
r=1

Mr−1∑
m=0

zBr,m
(z − ar)m+1

where Br,m is the n× n matrix whose (i, j) entry is br,m(i, j) for each pair (r,m).
By Corollary 8 and Proposition 5 of [T12] we get

Ak =

R∑
r=1

Mr−1∑
m=0

Br,mϕm,ar (k).

�
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3. An Example

Given a matrix, it is possible to observe that the matrices in its Jordan Decompo-
sition are projections and nilpotents having the properties in Theorem 1.1 without
actually knowing what the projections and nilpotents themselves are. We will show
an elementary example of this below, and it will be a guiding light towards the
proof of Theorem 1.1.

Example 3.1. Let

A =

[
1 4
−1 −3

]
.

We must first find the characteristic polynomial cA(z) = det(zI −A):

cA(z) = det(zI −A)

=

[
z − 1 −4

1 z + 3

]
= (z − 1)(z + 3)− (−4)

= z2 + 2z + 1

= (z + 1)2

From the characteristic polynomial, we can find the eigenvalues ar and the multi-
plicities Mr and apply Proposition 2.8. In this example there is only one eigenvalue
a1 = −1 and its multiplicity is M1 = 2, so the Ak equation becomes

Ak =

1∑
r=1

1∑
m=0

Br,mϕm,ar (k)

= B1,0ϕ0,−1(k) +B1,1ϕ1,−1(k).

Let us define M = B1,0 and N = B1,1 for simplicity, so the equation then becomes

Ak = Mϕ0,−1(k) +Nϕ1,−1(k).

Similarly,

A` =

1∑
r=1

1∑
m=0

Br,mϕm,ar (`)

= B1,0ϕ0,−1(`) +B1,1ϕ1,−1(`)

= Mϕ0,−1(`) +Nϕ1,−1(`)
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and

Ak+` =

1∑
r=1

1∑
m=0

Br,mϕm,ar (k + `)

= B1,0ϕ0,−1(k + `) +B1,1ϕ1,−1(k + `)

= Mϕ0,−1(k + `) +Nϕ1,−1(k + `).

Now we can substitute these into the equation

AkA` = Ak+`

and use the definition of ϕn,a(k) to get:

(M(−1)k+Nk(−1)k−1)(M(−1)`+N`(−1)`−1) = M(−1)k+`+N(k+`)(−1)k+`−1.

After expanding the left side of the equation we get:

(M(−1)k +Nk(−1)k−1)(M(−1)` +N`(−1)`−1)

= M2(−1)k(−1)` +MN(−1)k`(−1)`−1

+ NMk(−1)k−1(−1)` +N2k(−1)k−1`(−1)`−1.

Therefore
AkA` = Ak+`

implies

M(−1)k+` +NN(k + `)(−1)k+`−1 = M2(−1)k(−1)` +MN(−1)k`(−1)`−1

+ NMk(−1)k−1(−1)` +N2k(−1)k−1`(−1)`−1.

Divide both sides of the equation by (−1)k(−1)` to get

M −N(k + `) = M2 −MN`−NMk +N2kl.

Since this equation must hold for all k and `, we will choose specific ones to show
that M and N have the right properties.
Let k = 0, ` = 0. Then we get that M = M2, so M is a projection.
We can then subtract M from both sides of the equation to get

N(k + `) = MN`+NMk −N2kl.

Let k = 0, ` = 1. Then we get that N = MN . We can make a similar choice to
see that N = NM . Therefore our equation becomes

N(k + `) = Nk +N`−N2k`.
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This shows us that N2 = 0, so we know that:
M2 = M
MN = NM = N
N2 = 0.
Hence, M is a projection and N is nilpotent.

Remark 3.2. Notice that we were able to conclude that M and N had the properties
in Theorem 1.1 without knowing what the matrices are. This will be one of the
ideas in the proof.

4. Linear Independence of the ϕ-functions

Another key idea in the proof of our main theorem (Theorem 1.1) is the linear
independence of the ϕ functions. This is proven below.

Theorem 4.1. Let A ∈Mn(C). Let the characteristic polynomial of A,

cA(s) = (s− λ1)m1(s− λ2)m2 · · · (s− λn)mn

Then the set

B = {ϕ0,λ1
, ϕ1,λ1

, · · · , ϕm1,λ1
, · · · , ϕmn,λn

}
is linearly independent.

Proof. Because the Z transform is an injective linear transformation, it preserves
linear independence.
Therefore, if Z(B) is linearly independent, so is B
By the definition of the Z transform,

Z(B) = { z

z − λ1
,

z

(z − λ1)2
, · · · z

(z − λ1)m1
, · · · , z

(z − λn)mn
}

Let c1, c2, · · · cl be constants, such that

c1z

z − λ1
+

c2z

(z − λ1)2
+ · · ·+ cm1

z

(z − λ1)m1
+ · · ·+ clz

(z − λn)mn
= 0

Rewrite this as
z · p1(z)

(z − λ1)m1
+ · · ·+ z · pn(z)

(z − λn)mn

by making common denominators. Then, take the limit as z approaches λ1
Since the sum above is identically zero, it’s limit must be zero everywhere. This
means, in particular, that

lim
z→λ1

z · p1(z)

(z − λ1)m1

is finite, because the limit as z approaches λ1 is finite for all other terms in the
sum, and must add up to zero.
This implies that p1(z) = 0. Since

p1(z) = c1(z − λ1)mn−1 + c2(z − λ1)mn−2 + · · · cmn

c1 is the only term that has z raised to the mn − 1 power, so c1 = 0.
Reapply this logic to conclude that ci = 0, ∀1 ≤ i ≤ l Therefore, Z(B) is linearly
independent, which implies that B is linearly independent. �
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5. Two More Examples

Now that we have shown that the ϕ-functions are linearly independent, we will
provide two more examples that illustrate the method of proof of Theorem 1.1.
First we will give an example using a 2× 2 matrix.

Example 5.1. Let

A =

[
3 2
−1 0

]
.

We must first find the characteristic polynomial CA(z) = det(zI −A):

CA(z) = det

[
z − 3 −2

1 z

]
= z2 − 3z + 2

= (z − 2)(z − 1) = 0.

From the characteristic polynomial, we can find the eigenvalues ar and the multi-
plicities Mr and apply Proposition 2.8. In this example there are two eigenvalues
a1 = 2 and a2 = 1 with multiplicities M1 = 1 and M2 = 1, so the Ak equation
becomes

Ak =

R∑
r=0

Mr−1∑
m=0

Br,mϕm,ar (k)

=

2∑
r=1

0∑
m=0

B1,0ϕ0,2(k) +B2,0ϕ0,1.

Let us define M = B1,0 and N = B2,0 for simplicity, so the equation now becomes

Ak = Mϕ0,2(k) +Nϕ0,1(k).

Similarly,

A` =

R∑
r=0

Mr−1∑
m=0

Br,mϕm,ar (`)

=

2∑
r=1

0∑
m=0

B1,0ϕ0,2(k) +B2,0ϕ0,1

= Mϕ0,2(l) +Nϕ0,1(`)
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and

Ak+` =

R∑
r=0

Mr−1∑
m=0

Br,mϕm,ar (k + `)

=

2∑
r=1

0∑
m=0

B1,0ϕ0,2(k) +B2,0ϕ0,1

= Mϕ0,2(k + `) +Nϕ0,1(k + `).

Now we can substitute these into the equation

Ak +A` = Ak+`

to get:

Mϕ0,2(k + `) +Nϕ0,1(k + `) = [Mϕ0,2(k) +Nϕ0,1(k)] [Mϕ0,2(`) +Nϕ0,1(`)] .

After expanding the right side, the equation becomes:

Mϕ0,2(k + `) +Nϕ0,1(k + `) = M2ϕ0,2(k + `) +Mϕ0,2(k)Nϕ0,1(`)

+ Nϕ0,1(k)Mϕ0,2(`) +N2ϕ0,1(k + `).

which can be rewritten as

(Mϕ0,2(k))ϕ0,2(l) + (Nϕ0,1(k))ϕ0,1(`) = (M2ϕ0,2(k) +NMϕ0,1(k))ϕ0,2(`)

+ (MNϕ0,2(k) +N2ϕ0,1(k))ϕ0,1(`).

Note that Z-transform is 1-1 (one to one) and linear, and ϕ′s on both sides of the
equation are the same. Thus we can apply Theorem 4.1. The linear independence
of the ϕ-functions implies

Mϕ0,2(k) = M2ϕ0,2(k) +NMϕ0,1(k)

Nϕ0,1(k) = MNϕ0,2(k) +N2ϕ0,1(k).

Linear independence is applied a second time; thus

M2 = M, N2 = N, NM = 0, and MN = 0.

We conclude that M and N are projections.

In the next example, we illustrate our method of proof with an example involving
a 3× 3 matrix.
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Example 5.2. Now let A be the 3× 3 matrix

A =

 5 4 3
−2 −1 −2
0 0 2

 .
Like the previous examples, we must find the characteristic polynomial for A first:

cA(z) = det

z − 5 −4 −3
2 z + 1 2
0 0 z − 2


= (z − 1)(z − 2)(z − 3).

We know

Ak =

R∑
r=1

Mr−1∑
m=0

Br,mϕm,ar (k)

where ar represents the eigenvalues a1 = 1 and a2 = 2 and a3 = 3, all with
multiplicity 1.
So Ak becomes:

Ak = B1,0ϕ0,1(k) +B2,0ϕ0,2(k) +B3,0ϕ0,3(k).

We will say M = B1,0, N = B2,0 and P = B3,0 for simplicity, so the equation
becomes

Ak = Mϕ0,1(k) +Nϕ0,2 + Pϕ0,3(k).

Similarly

A` = B1,0ϕ0,1(`) +B2,0ϕ0,2(`) +B3,0ϕ0,3(`)

= Mϕ0,1(`) +Nϕ0,2(`) + Pϕ0,3(`)

and

Ak+` = B1,0ϕ0,1(k + `) +B2,0ϕ0,2(k + `) +B3,0ϕ0,3(k + `)

= Mϕ0,1(k + `) +Nϕ0,2(k + `) + Pϕ0,3(k + `).

We can now substitute the three equations into the original equation

AkA` = Ak+`

to get:

[Mϕ0,1(k) +Nϕ0,2(k) + Pϕ0,3(k)][Mϕ0,1(`) +Nϕ0,2(`) + Pϕ0,3(`)]

= Mϕ0,1(k + l) +Nϕ0,2(k + l) + Pϕ0,3(k + l).

After expanding the left side of the equation we get:
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Mϕ0,1(k + `) +Nϕ0,2(k + `) + Pϕ0,3(k + `) = M2ϕ0,1(k)ϕ0,1(`) +MNϕ0,1(k)ϕ0,2(`)

+ MPϕ0,1(k)ϕ0,3(`) +NMϕ0,2(k)ϕ0,1(`)

+ N2ϕ0,2(k)ϕ0,2(`) +NPϕ0,2(k)ϕ(0,3)(`)

+ PMϕ0,3(k)ϕ0,1(`) + PNϕ0,3(k)ϕ0,2(`).

+ P 2ϕ0,3(k)ϕ0,3(`).

This equation becomes

Mϕ0,1(k)ϕ0,1(`) +Nϕ0,2(k)ϕ0,1(`) + Pϕ0,3(k)ϕ0,3(`) = M2ϕ0,1(k)ϕ0,1(`) +MNϕ0,1(k)ϕ0,2(`)

+ MPϕ0,1(k)ϕ0,3(`) +NMϕ0,2(k)ϕ0,1(`)

+ N2ϕ0,2(k)ϕ0,2(`) +NPϕ0,2(k)ϕ0,3(`)

+ PMϕ0,3(k)ϕ0,1(`) + PNϕ0,3(k)ϕ0,2(`)

+ P 2ϕ0,3(k)ϕ0,3(`).

You can group the terms on the right side together by which ϕ(`) they are being
multiplied by, and then apply the linear independence of the ϕ functions that we
proved in Theorem 4.1 to get that

Mϕ0,1(k) = M2ϕ0,1(k) +NMϕ0,2(k) + PMϕ0,3(k)

Nϕ0,2(k) = MNϕ0,1(k) +N2ϕ0,2(k) + PNϕ0,3(k)

Pϕ0,3(k) = MPϕ0,1(k) +NPϕ0,2(k) + P 2ϕ0,1(k).

Apply linear independence one more time to get that:
M2 = M
P 2 = P
N2 = N
MP = PM = 0
MN = NM = 0
PN = NP = 0.
Therefore, M , N , and P are all projections, and the properties we are trying to
show hold.

6. Main Results - The Jordan Decomposition

Before we begin the proof of the Jordan Decomposition, we prove a lemma
involving falling factorials, which mimics the standard binomial theorem.

Lemma 6.1. Let x, y ∈ Z, n ∈ N. Then

(6.1) (x+ y)n =

n∑
k=0

(
n

k

)
xk yn−k
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Proof. This proof relies on the fact that xk+1 = x · (x− 1)k

We will do an inductive argument on n.
When n = 0, this equation reduces to 1 = 1, which is true.
Therefore, assume there exists an n ∈ N such that (6.1) holds, and show that this
implies (6.1) holds for n+ 1.

(6.2)

n+1∑
k=0

(
n+ 1

k

)
xk yn+1−k =

n∑
k=0

(
n+ 1

k

)
xk yn+1−k + xn+1

Because we can just take out the last term of the sum.
Next, we will use Pascal’s Rule (which can be found in [KP01] or most any treatise
on combinatorics), which states that(

n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
Apply this to the right hand side of (6.2), to get

(6.3)

n+1∑
k=0

(
n+ 1

k

)
xk yn+1−k =

n∑
k=0

((
n

k − 1

)
+

(
n

k

))
xk yn+1−k + xn+1

This is the same as writing

(6.4)

n+1∑
k=0

(
n+ 1

k

)
xk yn+1−k =

n∑
k=0

(
n

k − 1

)
xk yn+1−k+

n∑
k=0

(
n

k

)
xk yn+1−k+xn+1

But the first term on the right hand side of (6.4) is zero, so we can shift our index
and keep the same answer. This gives us

(6.5)

n+1∑
k=0

(
n+ 1

k

)
xk yn−k =

n−1∑
k=0

(
n

k

)
xk+1 yn+1−k +

n∑
k=0

(
n

k

)
xk yn+1−k + xn+1

Add the term that was split off back in to get

(6.6)

n+1∑
k=0

(
n+ 1

k

)
xk yn−k =

n∑
k=0

(
n

k

)
xk+1 yn+1−k +

n∑
k=0

(
n

k

)
xk yn+1−k

Now we can use the fact that was mentioned at the start of the proof, namely that
xk+1 = x · (x− 1)k.
Apply this to the right hand side of (6.6) to get

(6.7)

n+1∑
k=0

(
n+ 1

k

)
xk yn−k = x ·

n∑
k=0

(
n

k

)
(x− 1)k yn+1−k + y ·

n∑
k=0

(
n

k

)
xk yn−k

Now we can invoke our inductive hypothesis, and get that

(6.8)

n+1∑
k=0

(
n+ 1

k

)
xk yn−k = x · (x+ y − 1)n + y · (x+ y − 1)n

The right hand side of (6.8) is the same as (x + y)(x + y − 1)n, so using the fact
mentioned at the start of the proof again, we get that

(6.9)

n+1∑
k=0

(
n+ 1

k

)
xk yn−k = (x+ y)n+1
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This is what we were trying to show, so by the principle of mathematical induc-
tion, (6.1) is true. �

Now we present our main result.

Theorem 6.2. Let A be an n × n matrix with characteristic polynomial cA(z) =
(z − λ1)m1 · · · (z − λr)mr . Then, there exists a decomposition

Ak =

r∑
i=1

λki Pi +

mi−1∑
q=1

Nq
i ϕq,λi

(k)

with the following properties

(1) PiNi = NiPi = Ni
(2) PiPj = 0 if i 6= j

PiPi = Pi
(3) Nmi

i = 0
(4) PiNj = NjPi = 0 if i 6= j
(5) A =

∑r
i=1 λiPi +Ni

(6) I =
∑r
i=1 Pi.

Proof. This proof is essentially a careful study of the equation Ak+l = AlAk. From
Proposition 9 of [T12], we have a canonical decomposition of the matrix power

Ak+l =

r∑
i=1

Mi−1∑
j=0

Mi,jϕj,λi(k + l).

Substituting the definition ϕj,λi(k+ l) =
∑j
a=0

(
j
a

)λk−j+l
i kj−ala

j! , the right-hand side

becomes
r∑
i=1

∞∑
j=0

j∑
a=0

Mi,j

(
j

a

)
λk−j+li kj−ala

j!
.

Swapping the inner two sums and making the appropriate changes to their limits,
we have

r∑
i=1

∞∑
a=0

∞∑
j=a

Mi,j

(
j

a

)
λk−j+li kj−ala

j!
.

Letting j = j + a, rearranging, and simplifying, we get

r∑
i=1

∞∑
a=0

∞∑
j=0

Mi,j+a
λk−ji kjλl−ai la

j!a!
.

Now, let λk−ji =
∑r
b=1 λ

k−j
b δi(b). Substituting into the above, our expression for

Ak+l becomes
r∑
i=1

∞∑
a=0

r∑
b=1

∞∑
j=0

Mi,j+aδi(b)
λk−jb kjλl−ai la

j!a!
.

Using the definition of the ϕ functions, we can rewrite this as

r∑
i=1

∞∑
a=0

r∑
b=1

∞∑
j=0

Mi,j+aδi(b)ϕj,λb
(k)ϕa,λi

(l).
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Now we turn our attention to AlAk. Using Proposition 9 of [T12], we have

AlAk =

r∑
i=1

∞∑
a=0

Mi,aϕa,λi(l) ·
r∑
b=1

∞∑
j=0

Mb,jϕj,λb
(k)

=

r∑
i=1

∞∑
a=0

r∑
b=1

∞∑
j=0

Mi,aMb,jϕj,λb
(k)ϕa,λi(l).

Now, we set equal our expressions for Ak+l and AlAk:
r∑
i=1

∞∑
a=0

r∑
b=1

∞∑
j=0

Mi,j+aδi(b)ϕj,λb
(k)ϕa,λi(l) =

r∑
i=1

∞∑
a=0

r∑
b=1

∞∑
j=0

Mi,aMb,jϕj,λb
(k)ϕa,λi(l)

Invoking the linear independence of the ϕ functions given in Theorem 4.1, we have
a collection of equations

r∑
b=1

∞∑
j=0

Mi,j+aδi(b)ϕj,λb
(k) =

r∑
b=1

∞∑
j=0

Mi,aMb,jϕj,λb
(k),

one for each i and a. Using Theorem 4.1 once again on each of these equations, we
conclude that

Mi,j+aδi(b) = Mi,aMb,j .

The six properties in the statement of the theorem come from a careful analysis
of this equation. Set Pi = Mi,0 and Ni = Mi,1. Notice that

PiNi = Mi,0Mi,1 = Mi,1δi(i) = Ni and NiPi = Mi,1Mi,0 = Mi,1δi(i) = Ni,

proving (1). To prove (2), note that if i 6= j

PiPj = Mi,0Mj,0 = Mi,0δi(j) = 0

and if i = j
PiPj = Mi,0Mi,0 = Mi,0δi(i) = Pi

To prove (3), first use induction to show that Nm
i = Mi,m.

From there, we can use the fact that if m > mi − 1, then Mi,m = 0.
Therefore, Nmi

i = Mi,mi
= 0

For (4), if i 6= j,

PiNj = Mi,0Mj,1 = Mi,1δi(j) = Mj,1Mi,0 = NjPi = 0

(5) and (6) follow by setting k = 1 and k = 0, respectively.
�

7. Conclusion

Every matrix has a Jordan decomposition, which happens to consist of projec-
tions and nilpotents. These matrix components have many properties. Using the
Z-transform, we notice that the ϕ functions are linearly independent. It is the
linear independence that allows us to make the conclusion that we do. Observing
the fact that Ak+` = AkA`, we can rewrite the equation as linear combinations of
the ϕ functions and arrive at the properties of the matrix decomposition.
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