Jordan Decomposition via the *Z*-transform

Asia Age¹ Thomas Credeur ² Travis Dirle ³ Lafanique Reed ⁴

¹Xavier University of Louisiana

²University of Louisiana at Lafayette

³University of Mississippi

⁴Mississippi State University

SMILE@LSU, July, 2013

▼∃ > ¬
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P<

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

- Motivation and Background
- Projections and Nilpotents
- Examples and Basic Result
- Jordan Decomposition
- History

Prerequisites

- The Z-transform
- The Falling Factorial
- The φ function
- 3 Jordan Decomposition
 - Main Theorem
 - Sketch of the Proof of the Main Theorem
 - Example of the Method of Proof
 - Summary and Closing

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝒫 𝔅 𝔅

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

In mathematics, one often tries to take a complicated object, and break it down into simpler pieces.

In our paper, we look at complex-valued matrices, and try to write them as a sum of matrices that are simple to work with, and have nice properties.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example

$$\boldsymbol{A} = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$$
$$\boldsymbol{A} = (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$

Age, Credeur, Dirle, Reed Jordan Decomposition via the Z-transform

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example

$$A = \begin{bmatrix} 1 & 4 \\ -1 & -3 \end{bmatrix}$$
$$A = (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$

Age, Credeur, Dirle, Reed Jordan Decomposition via the \mathcal{Z} -transform

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Definition

Definition

A projection is any matrix *P* such that $P^2 = P$.

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Age, Credeur, Dirle, Reed Jordan Decomposition via the Z-transform

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Projections and Nilpotents

Prerequisites Jordan Decomposition Summary and Closing

Definition

Definition

A projection is any matrix *P* such that $P^2 = P$.

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Age, Credeur, Dirle, Reed Jordan Decomposition via the Z-transform

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A projection is any matrix *P* such that $P^2 = P$.

Example

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = P$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A projection is any matrix *P* such that $P^2 = P$.

Example

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = P$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A projection is any matrix *P* such that $P^2 = P$.

Example

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = P$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A projection is any matrix *P* such that $P^2 = P$.

Example

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$P^{2} = P$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Example

$$N = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$
$$N^{2} = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$N^{2} = 0$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Example

$$N = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$
$$l^{2} = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Example

$$N = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$
$$N^{2} = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$N^{2} = 0$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

Example: Projections and Nilpotent

Definition

A nilpotent matrix is a nonzero square matrix N such that $N^k = 0$ for some positive integer k.

Example

$$N = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$$
$$N^{2} = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$N^{2} = 0$$

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

In general:

$$\boldsymbol{A} = \sum_{i=1}^{r} \lambda_i \boldsymbol{P}_i + \boldsymbol{N}_i$$

- λ_i eigenvalues
- P_i projections
- N_i nilpotents

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

In general:

$$\boldsymbol{A} = \sum_{i=1}^{r} \lambda_i \boldsymbol{P}_i + \boldsymbol{N}_i$$

- λ_i eigenvalues
- P_i projections
- N_i nilpotents

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

In general:

$$\boldsymbol{A} = \sum_{i=1}^{r} \lambda_i \boldsymbol{P}_i + \boldsymbol{N}_i$$

- λ_i eigenvalues
- P_i projections
- N_i nilpotents

Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

In general:

$$\boldsymbol{A} = \sum_{i=1}^r \lambda_i \boldsymbol{P}_i + \boldsymbol{N}_i$$

- λ_i eigenvalues
- P_i projections
- *N_i* nilpotents

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

• 1986 - E. J. P. Georg Schmidt

• Proved Jordan Decomposition using *L*-transform

Age, Credeur, Dirle, Reed Jordan Decomposition via the Z-transform

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Prerequisites Jordan Decomposition Summary and Closing Motivation and Background Projections and Nilpotents Examples and Basic Result Jordan Decomposition History

- 1986 E. J. P. Georg Schmidt
- Proved Jordan Decomposition using *L*-transform

The Z-transform

\mathcal{Z} -transform

Definition

Let y(k) be a sequence of complex numbers. We define the \mathcal{Z} -transform of y to be the function $\mathcal{Z}{y}(z)$, where z is a complex variable, by the following formula: $\mathcal{Z}{y}(z) = \sum_{k=0}^{\infty} \frac{y(k)}{z^k}$

The \mathcal{Z} -transform The Falling Factorial The φ function

.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Example of the \mathcal{Z} – transform

Suppose *a* is a non-zero complex number, and $y(k) = a^k$. We will calculate $\mathcal{Z}{y}(z)$

$$\mathcal{Z}{y}(z) = \sum_{k=0}^{\infty} \frac{a^k}{z^k}$$
$$= \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^k$$

This is a geometric series, so the sum is

$$\frac{1}{1-\frac{a}{z}}=\frac{z}{z-a}$$

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Definition

Let $k, n \in \mathbb{N}$. Then we define

$$k^{\underline{n}} = k(k-1)(k-2)\cdots(k-n+1).$$

This is called the falling factorial function.

Let us take a look at an example to illustrate how falling factorials work.

Example

We will compute 6^{4} . Using the definition above, we see that

$$6^4 = 6(6-1)(6-2)(6-3) = 6(5)(4)(3) = 360.$$

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Definition

Let $k, n \in \mathbb{N}$. Then we define

$$k^{\underline{n}} = k(k-1)(k-2)\cdots(k-n+1).$$

This is called the falling factorial function.

Let us take a look at an example to illustrate how falling factorials work.

Example

We will compute 6^{4} . Using the definition above, we see that

$$6^{4} = 6(6-1)(6-2)(6-3) = 6(5)(4)(3) = 360.$$

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Definition

Let $k, n \in \mathbb{N}$. Then we define

$$k^{\underline{n}} = k(k-1)(k-2)\cdots(k-n+1).$$

This is called the falling factorial function.

Let us take a look at an example to illustrate how falling factorials work.

Example

We will compute 6^{4} . Using the definition above, we see that

$$6^{\underline{4}} = 6(6-1)(6-2)(6-3) = 6(5)(4)(3) = 360.$$

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Definition

Let $a \in \mathbb{C}$ and let $n, k \in \mathbb{N}$. Then we define

$$arphi_{n,a}(k) = egin{cases} rac{a^{k-n}k^n}{n!} & a
eq 0 \ \delta_n(k) & a = 0, \end{cases}$$

where $\delta_n(k)$ is the sequence which is 0 for all $k \neq n$ and $\delta_n(n) = 1$.

With this definition, we get that $\mathcal{Z}\{\varphi_{n,a}(k)\}(z) = \frac{z}{(z-a)^{n+1}}$. These functions are very important for the Jordan Decomposition. Note that the set $\{\varphi_{n,a}(k)\}$ is a linearly independent set of functions.

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Definition

Let $a \in \mathbb{C}$ and let $n, k \in \mathbb{N}$. Then we define

$$arphi_{n,a}(k) = egin{cases} rac{a^{k-n}k^n}{n!} & a
eq 0 \ \delta_n(k) & a = 0, \end{cases}$$

where $\delta_n(k)$ is the sequence which is 0 for all $k \neq n$ and $\delta_n(n) = 1$.

With this definition, we get that $\mathcal{Z}\{\varphi_{n,a}(k)\}(z) = \frac{z}{(z-a)^{n+1}}$. These functions are very important for the Jordan Decomposition. Note that the set $\{\varphi_{n,a}(k)\}$ is a linearly independent set of functions.

The \mathcal{Z} -transform The Falling Factorial The φ function

An Important Class of Functions

Since these $\varphi_{n,a}(k)$ functions are so important to everything that follows, we will compute a few examples of them below.

Example

$$\begin{aligned} \varphi_{0,2}(k) &= 2^{k} = (1, 2, 4, 8, 16, \dots) \\ \varphi_{1,2}(k) &= 2^{k-1}k = (0, 1, 4, 12, 32, \dots) \\ \varphi_{2,0}(k) &= \delta_{2}(k) = (0, 0, 1, 0, 0, 0, 0, \dots) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

Let *A* be an $n \times n$ matrix over the complex numbers with characteristic polynomial $c_A(z) = (z - \lambda_1)^{m_1} \cdots (z - \lambda_r)^{m_r}$. Then, there exists a decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k).$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

Let *A* be an $n \times n$ matrix over the complex numbers with characteristic polynomial $c_A(z) = (z - \lambda_1)^{m_1} \cdots (z - \lambda_r)^{m_r}$. Then, there exists a decomposition

$$\mathcal{A}^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} \mathcal{P}_{i} + \sum_{q=1}^{m_{i}-1} \mathcal{N}_{i}^{q} \varphi_{q,\lambda_{i}}(k).$$

Age, Credeur, Dirle, Reed Jordan Decomposition via the Z-transform

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{j}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

 $\bigcirc P_i \text{ is a projection}$

N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$\mathbf{A}^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} \mathbf{P}_{i} + \sum_{q=1}^{m_{i}-1} \mathbf{N}_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

 $\bigcirc P_i \text{ is a projection}$

N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

1
$$P_i$$
 is a projection

N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

• P_i is a projection

 N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

- P_i is a projection
- N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

- P_i is a projection
- N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

▲□ → ▲ 三 → ▲ 三 → 三 三 → の へ ()

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

The decomposition

$$A^{k} = \sum_{i=1}^{r} \lambda_{i}^{k} P_{i} + \sum_{q=1}^{m_{i}-1} N_{i}^{q} \varphi_{q,\lambda_{i}}(k)$$

has many nice properties, such as:

- P_i is a projection
- N_i is a nilpotent matrix

$$P_i N_j = N_j P_i = \begin{cases} N_i & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

▲□ → ▲ 三 → ▲ 三 → 三 三 → の へ ()

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

This decomposition is called the Jordan Decomposition of the matrix.

In this paper, our goal was to show that every complex-valued matrix can be written in this way.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Matrix Decomposition

It is important that the matrix we work with be over the complex numbers, because the complex numbers are algebraically closed.

If we chose a real-valued matrix, then our characteristic polynomial won't necessarily have a root.

We need for our matrix to have an eigenvalue to do our work, which always happens over the complex numbers.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● ● ●

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Main Results

There is an interesting result when closely studying the equation

$$A^{k+l} = A^k A^l.$$

In Tsai's paper [T12], one result is that you can write the matrix power A^k as

$$A^{k} = \sum_{r=1}^{R} \sum_{m=0}^{M_{r}-1} B_{r,m}\varphi_{m,a_{r}}(k).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Main Results

By writing both sides as Tsai's summation decomposition, as well as identical sums we arrive at

$$A^{k+l} = \sum_{i=1}^{r} \sum_{a=0}^{\infty} \sum_{b=1}^{r} \sum_{j=0}^{\infty} M_{i,j+a} \delta_i(b) \varphi_{j,\lambda_b}(k) \varphi_{a,\lambda_i}(l)$$

$$=\sum_{i=1}^{r}\sum_{a=0}^{\infty}\sum_{b=1}^{r}\sum_{j=0}^{\infty}M_{i,a}M_{b,j}\varphi_{j,\lambda_{b}}(k)\varphi_{a,\lambda_{i}}(l)=A^{k}A^{l}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Main Results

Invoking the linear independence of the φ functions, we have a collection of equations, one for each *i* and *a*. Therefore,

$$\sum_{b=1}^{r}\sum_{j=0}^{\infty}M_{i,j+a}\delta_{i}(b)\varphi_{j,\lambda_{b}}(k)=\sum_{b=1}^{r}\sum_{j=0}^{\infty}M_{i,a}M_{b,j}\varphi_{j,\lambda_{b}}(k),$$

and both sides still have a $\varphi_{j,\lambda_b}(k)$ in common.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Main Results

Again, using the linear independence of the φ functions, we know that the coefficients (matrices) are equal, thus

$$M_{i,j+a}\delta_i(b) = M_{i,a}M_{b,j}$$

If we let $P_i = M_{i,0}$, we can see that $P_i^2 = P_i$, so P_i is a projection.

This is one of the properties we set out to show, and the others can be shown in a similar way.

◆□ > ◆□ > ◆臣 > ◆臣 > 臣目目 のへで

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Let the matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{4} \\ -\mathbf{1} & -\mathbf{3} \end{bmatrix},$$

where A^k can be represented as

$$A^{k} = \sum_{r=1}^{R} \sum_{m=0}^{M_{r}-1} B_{r,m} \varphi_{m,a_{r}}(k).$$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Example

We must first find the characteristic polynomial:

$$c_A(z) = \det(zI - A)$$

$$= \begin{bmatrix} z - 1 & -4 \\ 1 & z + 3 \end{bmatrix}$$
$$= (z - 1)(z + 3) - (-4)$$

$$= z^2 + 2z + 1$$

 $= (z+1)^2.$

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Example

From the characteristic polynomial, we can find the eigenvalues a_r and the multiplicities M_r . In this example there is only one eigenvalue $a_1 = -1$ and its multiplicity is $M_1 = 2$, so the A^k equation becomes

$$A^{k} = \sum_{r=1}^{1} \sum_{m=0}^{1} B_{r,m} \varphi_{m,a_r}(k)$$

$$= B_{1,0}\varphi_{0,-1}(k) + B_{1,1}\varphi_{1,-1}(k).$$

★ E ► ★ E ► E E < 2000</p>

< 🗇 🕨

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Example

Let us define $M = B_{1,0}$ and $N = B_{1,1}$ for simplicity, so A^k and A^ℓ become

$$A^{k} = M\varphi_{0,-1}(k) + N\varphi_{1,-1}(k)$$

$$A^{\ell} = M\varphi_{0,-1}(\ell) + N\varphi_{1,-1}(\ell).$$

Similarly,

$$A^{k+\ell} = M\varphi_{0,-1}(k+\ell) + N\varphi_{1,-1}(k+\ell).$$

・ロト < 同ト < 目ト < 目ト < 目と のQQ

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Example

Now we can substitute these into the equation

$$A^k A^\ell = A^{k+\ell}$$

to get:

$$[M\varphi_{0,-1}(k) + N\varphi_{1,-1}(k)][M\varphi_{0,-1}(\ell) + N\varphi_{1,-1}(\ell)]$$

= $M\varphi_{0,-1}(k+\ell) + N\varphi_{1,-1}(k+\ell).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

After expanding and simplifying, the equation can be written as

$$M(-1)^{k+\ell} + NN(k+\ell)(-1)^{k+\ell-1}$$

$$= M^{2}(-1)^{k+\ell} + MN\ell(-1)^{k+\ell-1} + NMk(-1)^{k+\ell-1} + N^{2}k\ell(-1)^{k+\ell-2}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

Divide both sides of the equation by $(-1)^{k+\ell}$ to get

$$M - N(k + \ell) = M^2 - MN\ell - NMk + N^2kI.$$

Let $k = 0, \ell = 0$. Then we get that $M = M^2$, so M is a projection.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

We can then subtract *M* from both sides of the equation to get

$$N(k+\ell) = MN\ell + NMk - N^2kI.$$

Let $k = 0, \ell = 1$. Then we get that N = MN. We can make a similar choice to see that N = NM. Therefore our equation becomes

$$N(k+\ell) = Nk + N\ell - N^2k\ell.$$

This shows us that $N^2 = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Main Theorem Sketch of the Proof of the Main Theorem Example of the Method of Proof

Example

From this example, we have verified the following properties: $M^2 = M$ MN = NM = N $N^2 = 0$. Hence, *M* is a projection and *N* is nilpotent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

- Every matrix has a Jordan decomposition, made up of projections and nilpotents.
- Projections and nilpotents have many properties.
- Using the \mathcal{Z} transform, we build the φ function.
- Using the lin. independance of the φ functions, and the fact that A^{k+ℓ} = A^kA^ℓ, we arrive at these properties.
- For a matrix to any power, we can easily express it as a sum of projections and nilpotents.

We would like to thank:

- The SMILE Program
- Louisiana State University
- Dr. Davidson
- Jacob Matherne
- National Science Foundation

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

For Further Reading I

Walter G. Kelley and Allan C. Peterson, *Difference* Equations: An Introduction with Applications, Academic Press, San Diego, 2001.

- E. J. P. Georg Schmidt, An Alternative Approach to Canonical Forms of Matrices, American Mathematical Monthly 93 (1986), no. 3, 176-184.
- Casey Tsai, The Cayley-Hamilton Theorem via the 2-Transform, Rose-Hulman Undergraduate Mathematics Journal 13 (2012), no. 2, 44-52.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの