
APPLICATIONS OF THE UMBRAL CALCULUS

Abstract. The umbral calculus formalized by Roman and Rota
has proven to be a fruitful mathematical method. Here we examine
the sequence of telephone numbers and the sequence of Hermite
polynomials, applying umbral methods to each. In particular, we
offer a detailed proof of an interesting theorem by Gessel regarding
the Hermite polynomials.

1. Umbrae

Given a sequence an, the exponential generating function (EGF) of
an is

A(x) =
∞∑
n=0

an
n!
xn.

If an = αn for some real number α, then

A(x) =
∞∑
n=0

(αx)n

n!
= eαx.

Many formulas in combinatorics become easy to derive using EGFs if
we substitute an to An for a variable A, manipulate the EGF, then
substitute An back to an. The variable A is called the umbra, which
is Latin for shadow. This process involves the application of a linear
functional L whose domain is the vector space of polynomials in A
with real coefficients and whose codomain is the real numbers. Hence,
L(An) = an Because L is linear, we have for any polynomials in A p
and q and for any real-valued function t,

L(p(A) + q(A)) = L(p(A)) + L(q(A)), and

L(tp(A)) = tL(p(A))
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2. Hermite Polynomials

The Hermite polynomials are a sequence of polynomials with ap-
plications in combinatorics, probability, and physics. They were first
studied by Laplace in 1810 and then by Chebyshev in 1859. They were
named after the French mathematician Charles Hermite, who made
a substantial contribution to their study in 1864. Two types of Her-
mite polynomials exist, the probabilists’ Hermite polynomials, Hen(u),
and the physicists’ Hermite polynomials, Hn(u), but each are merely
a rescaling of the other according to Hn(u) = 2n/2Hen(u

√
2). In this

paper, we refer solely to the physicists’ Hermite polynomials Hn(u),
which can be defined using an umbra we shall call M . For any positive
integer n, define the umbra M to be

L(M2n+1) = 0,

L(M2n) =
(−1)n(2n)!

n!
.

Then the Hermite polynomials, Hn(u) are defined by

Hn(u) = L
(
(M + 2u)n

)
.

Example 2.1. Here we show the derivation of the first three Hermite
polynomials, H0, H1, and H2 using the given umbral definition:

H0(u) = L
(
(M + 2u)0

)
= L(M0) = 1.

H1(u) = L(M + 2u)

= L(M1) + 2u

= 0 + 2u

= 2u.

H2(u) = L
(
(M + 2u)2

)
= L(M2 + 4uM + 4u2)

= L(M2) + 4uL(M1) + 4u2

= −2 + 0 + 4u2

= 4u2 − 2.

Next we wish to find an expression for the EGF of Hn(u), denoted
F (u, x). The following lemmas are useful in finding this expression.
The proof for Lemma 2.3 is given by DeAngelis [2].
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Lemma 2.2. For any positive integer α,
∞∑
n=0

Hαn(u)
xn

n!
= L

(
e(M+2u)αx

)
Proof.

∞∑
n=0

Hαn(u)
xn

n!
=
∞∑
n=0

L
(
(M + 2u)αn

) xn
n!

= L

( ∞∑
n=0

(
(M + 2u)αx

)n
n!

)
= L

(
e(M+2u)αx

)
�

Lemma 2.3.
L(eMx) = e−x

2

Theorem 2.4. (Exponential Generating Function of Hn(u))

F (u, x) ≡
∞∑
n=0

Hn(u)

n!
xn = e2ux−x

2

Proof.
∞∑
n=0

Hn(u)

n!
xn = L(e(M+2u)x)

= e2uxL(eMx)

= e2uxe−x
2

= e2ux−x
2

�
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3. Telephone Numbers

The nth telephone number gives the number of possible configura-
tions of an n-person telephone network in which only two-person phone
calls are possible. The sequence of all telephone numbers is denoted tn.
This sequence can be expressed by the following recurrence relation:

tn = tn−1 + (n− 1)tn−2,

t0 = 1, t1 = 1.

Proof. Consider a network of n telephone users. Suppose user 1 is not
calling anyone. Then there are tn−1 configurations of phone conversa-
tions possible among the remaining users. Now suppose that user 1 is
talking to someone. Then there are n− 1 users who can talk to user 1.
Since these two users cannot converse with any other users, there are
tn−2 configurations possible for the remaining users. �

We wish to know more about the telephone numbers. In doing so, we
would like to look at the EGF for tn. We will translate the recurrence
relation for tn into an EGF, T (x), in the following lemma.

Lemma 3.1.

T (x) =
∞∑
n=0

tn
n!
xn = ex+x

2/2

Proof. Since tn+1 = tn + ntn−1,

∞∑
n=1

tn+1

n!
xn =

∞∑
n=1

tn
n!
xn +

∞∑
n=1

ntn−1
n!

xn. (†)

Note:
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∞∑
n=1

tn+1

n!
xn =

∞∑
n=2

tn
(n− 1)!

xn−1

=

( ∞∑
n=1

tn
(n− 1)!

xn−1 − 1

)
= T ′(x)− 1.

∞∑
n=1

tn
n!
xn =

∞∑
n=0

tn
n!
xn − 1

= T (x)− 1.

∞∑
n=1

ntn−1
n!

xn =
∞∑
n=1

tn−1
(n− 1)!

xn

= x
∞∑
n=1

tn−1
(n− 1)!

xn−1

= x
∞∑
n=0

tn
n!
xn

= xT (x).

From these observations and (†), we have

T ′(x)− 1 = T (x)− 1 + xT (x)

which gives us the seperable differential equation

T ′(x) = (1 + x)T (x).

Solving for T (x) with the initial condition T (0) = 1, we find

T (x) = ex+x
2/2

�
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4. Relating Hermite Polynomials to Telephone Numbers

In Theorem 2.4, we used umbral methods to derive the exponential
generating function of the Hermite polynomials, so, we can now dis-
cuss potential applications of exponential generating functions. One
application of exponential generating functions would be to discover
the relationship between Hermite polynomials and the telephone num-
bers. First, we show the relationship between them using their standard
power series representations which are given and proven below.

Lemma 4.1.

Hn(u) = n!

bn/2c∑
k=0

(−1)k

k! (n− 2k)!
(2u)n−2k

Proof.

Hn(u) = L
(
(M + 2u)n

)
=

n∑
k=0

(
n

k

)
L(Mk) (2u)n−k

=

bn/2c∑
k=0

(
n

2k

)
L(M2k) (2u)n−2k

=

bn/2c∑
k=0

n!

(2k)! (n− 2k)!

(−1)k(2k)!

k!
(2u)n−2k

= n!

bn/2c∑
k=0

(−1)k

k! (n− 2k)!
(2u)n−2k

�
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Lemma 4.2.

tn =

bn/2c∑
k=0

n!

2kk!(n− 2k)!

Proof. First,

bn/2c∑
k=0

n!

2kk!(n− 2k)!
=

bn/2c∑
k=0

(
n!

2kk!(n− 2k)!

)(
2k!

2k!

)

=

bn/2c∑
k=0

(
n!

2k!(n− 2k)!

)(
2k!

2kk!

)

=

bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!

Now, we let k denote the number of phone calls an n-user network.
Each phone call involves a single pair of people. We may have at most
bn/2c pairs. So k ranges from 0 to bn/2c. Supoose k is some particular
integer in [0, bn/2c]. There are

(
n
k

)
ways to select 2k users to be calling.

Labeling each person p1, p2, . . . , pn, we then have the first person, p1,
able to call (2k − 1) people. Similarly, p2, can call (2k − 3) people,
p3 can call (2k − 5) people, until p(2k−1) can only call one other user.
Hence, we have (2k − 1)!! ways of choosing these pairs. �

Using lemmas 4.1 and 4.2, we can now prove the following relation
between Hn(u) and and tn.

Theorem 4.3 (Relating Hn(u) to tn).

(
i√
2

)n
Hn

(
−i√

2

)
= tn
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Proof.(
i√
2

)n
Hn

(
−i√

2

)
=

in

(
√

2)n
n!

bn/2c∑
k=0

(−1)k

k!(n− 2k)!

(
2

(
−i√

2

))n−2k

=

bn/2c∑
k=0

inn!(−1)k2n−2k(−1)n−2kin−2k

(
√

2)2n−2kk!(n− 2k)!

=

bn/2c∑
k=0

i2n−2k2n−k(−1)n−kn!

2n−kk!(n− 2k)!

=

bn/2c∑
k=0

(−1)n−k(−1)n−kn!

2kk!(n− 2k)!

=

bn/2c∑
k=0

n!

2kk!(n− 2k)!

= tn

�

While this proof is straightforward, having the insight to choose ap-
propriate values for u and x may have proven to be a bit more challeng-
ing. Instead, one might wish to take a closer look at the exponential
generating functions for both the Hermite polynomials and the tele-
phone numbers in search of a relationship between their exponential
generating functions. Intuitively, there seems to be a relationship be-
tween these two EGFs. In fact, we see that if we pick u′ and x′ (for
F (u′, x′)) such that we have 2u′x′ = x and −(x′)2 = x2/2, the rela-
tionship becomes clear. The appropriate choices are u′ = −i/

√
2 and

x′ = ix/
√

2, and we obtain the following theorem:

Theorem 4.4.

F

(
−i√

2
,
ix√

2

)
= T (x)

Proof.

F

(
−i√

2
,
ix√

2

)
= e2(−i/

√
2)(ix/

√
2)−(ix/

√
2)2 = ex+x

2/2 = T (x)

�
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Having just shown the relationship between their exponential gener-
ating functions, we can write the exponential generating functions in
their power series representations, with 2ux = x and −x2 = x2

2
. So, we

have

Proof.
∞∑
n=0

Hn

( −i√
2

)
n!

( ix√
2

)n
=
∞∑
n=0

tn
n!
xn.

Hence for an positive integer n,

Hn

( −i√
2

)
n!

( ix√
2

)n
=
tn
n!
xn.

Therefore, (
i√
2

)n
Hn

(
−i√

2

)
= tn.

�

We have arrived at our previous statement. Using this method in-
stead we have a much simpler task in finding u and x that make this
true. While employing our first method requires significantly more
manipulation within a power series to arrive to the same conclusion,
comparing the exponential generating functions instead allowed us to
quickly obtain the same result.

Theorem 4.5. (
i√
2

)n
Hn

(
−i√

2

)
= tn

There is also a rather interesting relationship between tn and the
probabilists’ Hermite polynomials, Hen(u). In the proof of the fol-
lowing theorem, we use the closed formula for Hen(u), which is easily
derived given that Hn(u) = 2n/2Hen(u

√
2).
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Theorem 4.6. The sum of absolute values of the coefficients of the
nth (probabilist) Hermite polynomial is the nth telephone number.

Proof. Since

Hen(u) = n!

bn/2c∑
k=0

(−1)k

k! (n− 2k)!
· u

n−2k

2k
,

we have that the sum of absolute values of the coefficients of Hn(u) is

bn/2c∑
k=0

∣∣∣∣ n! (−1)k

2k k! (n− 2k)!

∣∣∣∣ =

bn/2c∑
k=0

n!

2k k! (n− 2k)!
= tn.

�

The following lemmas will be useful in proving theorem (4.9). Proofs
are given by De Angelis [2].

Lemma 4.7. If f(M) is a power series, then

L
(
eM

2γf(M)
)

=
1√

1 + 4γ
L

(
f
( M√

1 + 4γ

))

Lemma 4.8.

L(eM
3α+Mβ) =

e−(β+z)
2+φ√

1− 24α(β + z)
L
(
eM

3α/(1−24α(β+z))3/2),
where φ = 2βz − 8αβ3 − 24αβ2z + +2z2 − 24αβz2 − 8αz3,
and z is a solution of 12αz2 + (24αβ − 1)z + 12αβ2 = 0.
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Theorem 4.9.
∞∑
n=0

H3n(u)
xn

n!
=

e8v
3x+144v4x2

(1 + 48ux)1/4

∞∑
n=0

(−1)n (6n)!

(3n)! (1 + 48ux)3n/2
x2n

(2n)!
,

where v = (
√

1 + 48ux− 1)/(24x).

Proof. By lemma (2.2),
∞∑
n=0

H3n(u)
xn

n!
= L

(
e(2u+M)3x

)
= e8u

3xL(e6uxM
2

exM
3+12u2xM).

By lemma (4.7), with γ = 6ux and f(M) = exM
3+12xu2M , we get

e8u
3xL(e6uxM

2

exM
3+12xu2M) =

e8xu
3

√
1 + 24ux

L
(
e(x/(1+24ux)3/2)M3+((12u2x)/

√
1+24ux)M

)
.

Now by lemma (4.8), with α = x
(1+24xu)3/2

, β = 12xu2√
1+24xu

, z = 1−24αβ−
√
1−48αβ

24α
,

and φ = 2βz − 8αβ3 − 24αβ2z + +2z2 − 24αβz2 − 8αz3, we have
∞∑
n=0

H3n(u)
xn

n!
=

e8u
3x−(β+z)2+φ

√
1 + 24ux

√
1− 24α(β + z)

L
(
e(M

3α)/(1−24α(β+z))3/2
)

Since z = 1−24αβ−
√
1−48αβ

24α
, we have 1− 24α(β + z) =

√
1− 48αβ. So,

∞∑
n=0

H3n(u)
xn

n!
=

e8u
3x−(β+z)2+φ√

(1 + 24ux)
√

1− 48αβ
L
(
eM

3α/(1−48αβ)3/4
)
.

Since α = x
(1+24xu)3/2

and β = 12xu2√
1+24xu

, we obtain
√

(1 + 24xu)
√

1− 48αβ =

(1 + 48xu)1/4 through simplification. Hence,

∞∑
n=0

H3n(u)
xn

n!
=
e8u

3x−(β+z)2+φ

(1 + 48xu)
1
4

L
(
e(M

3α)/(1−48αβ)3/4
)
.

By the definition of ex, we have

L
(
e(M

3α)/(1−48αβ)3/4
)

= L

( ∞∑
n=0

1

n!
·
( M3α

(1− 48αβ)3/4

)n)

= L

( ∞∑
n=0

M3n αn

n! (1− 48αβ)3n/4

)
,
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and because L is linear over umbrae, we get

L

( ∞∑
n=0

M3n αn

n! (1− 48αβ)3n/4

)
=
∞∑
n=0

L
(
M3n

) αn

n! (1− 48αβ)3n/4
.

Since L
(
M2n+1

)
= 0 and L

(
M2n

)
= (−1)n(2n)!

n!
,

∞∑
n=0

L
(
M3n

) αn

n! (1− 48αβ)3n/4
=

∞∑
n=0

L
(
M6n

) α2n

(2n)! (1− 48αβ)3n/2

=
∞∑
n=0

(−1)3n(6n)!

(3n)!
· α2n

(2n)!(1− 48αβ)3n/2
.

Now, since α = x
(1+24xu)3/2

and β = 12xu2√
1+24xu

, we have

∞∑
n=0

(−1)3n(6n)!

(3n)!
· α2n

(2n)!(1− 48αβ)3n/2
=
∞∑
n=0

(−1)n (6n)!

(3n)! (1 + 48ux)3n/2
x2n

(2n)!
.

Thus,
∞∑
n=0

H3n(u)
xn

n!
=
e8u

3x−(β+z)2+φ

(1 + 48xu)
1
4

∞∑
n=0

(−1)n (6n)!

(3n)! (1 + 48ux)3n/2
x2n

(2n)!

Since β = 12xu2√
1+24xu

, z = 1−24αβ−
√
1−48αβ

24α
, and

φ = 2βz − 8αβ3 − 24αβ2z + +2z2 − 24αβz2 − 8αz3, through algebraic
manipulation in Mathematica we have

8xu3 − (β + z)2 + φ =
1 + 72xu+ 864x2u2 −

( (1152x2+72xu+1)
√
1+48xu

1+24xu

)
864x2

=
1 + 72xu+ 864x2u2 −

( (1+24xu)(1+48xu)
√
1+48xu

1+24xu

)
864x2

=
1 + 72xu+ 864x2u2 − (1 + 48xu)

3
2

864x2

= 8v3x+ 144v4x2,

where v = (
√

1 + 48ux− 1)/(24x).
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Therefore,
∞∑
n=0

H3n(u)
xn

n!
=

e8v
3x+144v4x2

(1 + 48ux)1/4

∞∑
n=0

(−1)n (6n)!

(3n)! (1 + 48ux)3n/2
x2n

(2n)!
,

where v = (
√

1 + 48ux− 1)/(24x). �

Given theorems 4.5 and 4.9, we are brought to the following corollary.

Corollary 4.10.
∞∑
n=0

t3n
xn

n!
=
e−4w

3x
√
2−72w4x2

(1 + 24x)1/4

∞∑
n=0

(6n)!

(3n)! (1 + 24x)3n/2
x2n

(2n)! 2n
,

where

w =

√
2(
√

1 + 24x− 1)

24x
.

Proof. From theorem 4.5, we have

∞∑
n=0

t3n
xn

n!
=

∞∑
n=0

H3n

(
−i√

2

) ( ix√
2

)n
n!

=
e8v

3(ix/
√
2)+144v4(ix/

√
2)2

(1 + 48( −i√
2
)( ix√

2
))1/4

∞∑
n=0

(−1)n (6n)!

(3n)! (1 + 48( −i√
2
)( ix√

2
))3n/2

( ix√
2
)2n

(2n)!

=
e4v

3ix
√
2−72v4x2

(1 + 24x)1/4

∞∑
n=0

(6n)!

(3n)! (1 + 24x)3n/2
x2n

(2n)! 2n
,

where

v =

√
1 + 48

(
−i√
2

)(
ix√
2

)
− 1

24
(
ix√
2

)
=

√
2(
√

1 + 24x− 1)

24ix
.

Letting w = iv, we have
∞∑
n=0

t3n
xn

n!
=
e−4w

3x
√
2−72w4x2

(1 + 24x)1/4

∞∑
n=0

(6n)!

(3n)! (1 + 24x)3n/2
x2n

(2n)! 2n
,

where

w =

√
2(
√

1 + 24x− 1)

24x
.

�
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