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Abstract. In [4], Ak is computed using partial fraction decom-
position, which can be computationally intense. In this paper we
developed a simpler method for any n×n matrix. A argument will
be made showing that Fulmer’s Method can be used to compute
Ak, and extended to our results to compute eAt. Lastly, we will
formulate a formula to compute the matrix exponential.

1. Introduction

In real life, one may find that representing data in matrix form is a
compact and easy way to visualize data. Matrices may also be used to
solve difference equations, where the answer is dependent on a square
matrix raised to a power. Matrices are also used to represent sys-
tem of differential equations in a compact way, using capital letters to
represent the matrices. Bearing the structure on a first order linear
differential equation, one may question whether or not we may use the
same method to solve a matrix first order linear differential equation.
The answer to that question is that we can, provided that we may cal-
culate the matrix exponential. From Calculus, we find that using the
power series for ex, we may define the matrix exponential as

eAt =
∞∑
k=0

tkAk

k!

where A is a n× n matrix. Although this formula is correct and valid,
one can also wonder if there is an easier way to calculate eAt instead
of adding up an infinite amount of terms, which includes a matrix to a
potential high power.

2. Preliminaries

Before we start to calculate a formula for raising a square matrix
to a power, we must review some linear algebra terms and define an
operator. These theorems and definitions will come from [2] and [1].
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Definition 2.1. Let V be a vector space and S be a nonempty subset
of V . A vector v ∈ V is called a linear combination of vectors of S
if there exists a finite number of vectors u1, u2, · · · , un in S and scalars
a1, a2, · · · , an in F such that v = a1u1 + a2u2 + · · · + anun. In this
case we say that v is a linear combination of u1, u2, · · · , un and call
a1, a2, · · · , an the coefficients of the linear combination.

Definition 2.2. A set of vectors v1, v2, .., vn are linearly indepen-
dent if whenever a1v1 + a2v2 + ... + anvn = 0, then a1 = a2 = ... =
an = 0.

Definition 2.3. A basis β for a vector space V is a linearly indepen-
dent subset of V that generates V . If β is a basis for V , we also say
that the vectors of β for a basis for V .

Theorem 2.4. Let V be a vector space and β = {u1, u2, · · · , un} be a
subset of V . Then β is a basis for V if and only if each v ∈ V can be
uniquely expressed as a linear combination of vectors of β, that is, can
be expressed

v = a1u1 + a2u2 + · · · + anun

for unique scalars a1, a2, · · · , an.

Definition 2.5. Let a(k) be a sequence of complex numbers and n is
an integer. We define E{a(k)} as a shift operator for sequences where

En{a(k)} = a(k + n)

Lemma 2.6. The E shift operator is a linear operator.

Proof. Let a(k) and b(k) be sequences with complex terms and c be a
complex constant.

(1)

En{a(k) + b(k)} = a(k + n) + b(k + n)

= En{a(k)}+ En{b(k)}
(2)

En{ca(k)} = ca(k + n)

= cEn{a(k)}
�

Definition 2.7. Let n be a non-negative integer. The falling fac-
torial is the sequence kn, with k = 0, 1, 2, . . . given by the following
formula.

kn = k(k − 1)(k − 2) · · · (k − n+ 1).
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If k were allowed to be a real variable then kn could be characterized as
the unique monic polynomial of degree n that vanishes at 0, 1, . . . , n−1.
Observe also that knjk=n = n!.

Definition 2.8. Let n be a non-negative integer and a be a complex
number. We define a sequence ϕn,a(k) as

ϕn,a(k) =

{
ak−nkn

n!
a 6= 0,

δn(k) a = 0.

where

δn(k) =

{
0 k 6= n

1 k = n

Example 2.9. With ϕ0,0(k), ϕ1,4(k), and ϕ2,5(k), we have

ϕ0,0(k) = δ0(k) = (1, 0, 0, 0, 0, . . .)

ϕ1,4(k) = 4k−1k = (0, 1, 8, 48, 256, . . .)

ϕ2,5(k) = 5k−2k(k−1)
2

= (0, 0, 1, 15, 150, . . .)

Although seemingly different, these two cases are related to one an-
other. We cannot allow a = 0 in the case that we may have negative
powers (k < n). However, if k < n, then kn is zero. Therefore, we see
that

lim
a→0

ak−nkn

n!
= δn(k)

where the limit is understood in a point-wise sense.

Lemma 2.10. Let D denote the ordinary derivative operator. Let n
be a non-negative integer and a ∈ C. We then have

ϕn,a(k) =
Dnxk

n!

∣∣∣∣
x=a

where the notation |x=a, is to be understood in the limit sense.

Proof.

Dn(xk)

n!
=
k(k − 1)(k − 2)(k − 3)...(k − n+ 1)xk−n

n!

=
knxk−n

n!

Evaluating at x = a in the case a 6= 0 gives ϕn,0(k). If a = 0 then as
explained above, we get

lim
x→0

knxk−n

n!
= ϕn(k) = ϕn,0(k)
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�

3. The Z-transform

With our previous definition, we may now define the Z-transform
and its various properties which are essential to calculating Ak. The
following definitions and theorems were obtain from [4].

Definition 3.1. Let y(k) be a sequence of complex numbers. We define
the Z-transform of y(k) to be the function Z{y(k)}(z), where z is a
complex variable, by the following formula:

Z{y(k)}(z) =
∞∑
k=0

y(k)

zk

With this definition of the Z-transform, we find a set of properties
that arises from it.

Proposition 3.2. Suppose a is a nonzero complex number, n ∈ C and
n ∈ N = 0,1,2,..., and y(k) is a sequence for which the Z -transform
exists.
Then

(1) Z{ak}(z) = z
z−a

(2) Z{aky(k)}(z) = Y ( z
a
)

(3) Z{y(k + n)}(z) = znY (z)−
∑n−1

m=0 y(m)zn−m

(4) Z{(k + n− 1)ny(k)}(z) = (−1)nznDnY (z)
(5) Z{kn}(z) = n!z

(z−1)n+1

Proof.

(1) Z{ak}(z) =
∑∞

k=0
ak

zk
=
∑∞

k=0(
a
z
)k = 1

1−a
z

= z
z−a

(2) Z{aky(k)}(z) =
∑∞

k=1
aky(k)
zk

=
∑∞

k=1
y(k)

z/ak
= Y ( z

a
)

(3)

Z{y(k + n)}(z) =
∞∑
k=0

y(k + n)

zk
= zn

∞∑
k=n

y(k)

zk

= zn(
∞∑
k=0

y(k)

zk
−

n−1∑
m=0

y(m)

zm
)

= znY (z)−
n−1∑
m=0

y(m)zn−m
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(4)

dnY (z)

dzn
= (−1)n

∞∑
k=0

k(k + 1)...(k + n− 1)y(k)z−k−n

=
(−1)n

zn

∞∑
k=0

(k + n− 1)ny(k)

zk

=
(−1)n

zn
Z{(k + n− 1)ny(k)}(z)

(5) Let y(k) = 1k = 1. Then Y(z) = Z{1} (z) =

(−1)nn!

(z − 1)n+1
=

(−1)n

zn
Z{(k + n+−1)n}

=
(−1)n

zn
(zn−1Z{kn}(z)−

n−2∑
m=0

mnzn−m−1)

=
(−1)n

z
Z{kn}(z)

�

From these 5 Z-transforms, we may prove the more complex Z-
transform that will lead to a formula for raising a matrix to a power.

Proposition 3.3. Let a ∈ C and n ∈ N. With ϕn,a given in Definition
we have

Z{ϕn,a(k)}(z) =
z

(z − a)n+1

Proof. First assume a 6= 0. Then ϕn,a(k) = ak−nkn

n!
= a−n

n!
akkn. We use

formula (2) and (5) in the previous proposition to get

Z{ϕn,a(k)}(z) =
a−n

n!
Z{akkn}(z)

=
a−n

n!
Z{kn}(z/a)

=
a−n

n!

n!(z/a)

( z
a
− 1)n+1

=
z

(z − a)n+1

Now Suppose a = 0. Then ϕn,0(k) = δn(k). From the definition of the
Z-transform we get
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Z{ϕn,0(k)}(z) =
∞∑
k=0

δn(k)

zk

However, since every single term except the nth term is 0, we only
have

Z{ϕn,0(k)}(z) =
∞∑
k=0

δn(k)

zk

=
1

zn

=
z

(z − 0)n+1

No matter what value of a we use, we will end up with the same
formula. �

Suppose y(k) is a sequence of n×n matrices over C. We can extend
the Z-transform to y(k) by applying it to each entry. Equation 3 of
Proposition 3.2 extends to this matrix valued case; the proof is verbatim
the same.

Let A be a n × n matrix. Our next proposition in a description of
the Z-Transform of the sequence of the matrices Ak.

Proposition 3.4. Let A be an n×n matrix with entries in the complex
plane. Then

Z{Ak}(z) = z(zI − A)−1

where I is the n× n identity matrix.

Proof. Let y(k) = Ak, letting y(0) = I. Then by induction, y(k + 1) =
Ay(k). Applying the Z-Transform to both sides and using Proposition
3.2 yields

zZ{Ak}(z)− zI = AZ{Ak}(z)

Solving for Z{Ak}(z) will yield the above proposition. �

With this proposition, we would finally have a formula for Ak should
the Z-Transform have an inverse and as it turns out, it does.

Proposition 3.5. The Z-Transform is linear and one-to-one on the
set of sequences for which the Z-Transform exists.
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Proof. Let a(k) and b(k) be both sequences and c be a complex number.
Then we have

Z{a(k) + b(k)}(z) =
∞∑
k=0

a(k) + b(k)

zk

=
∞∑
k=0

a(k)

zk
+
∞∑
k=0

b(k)

zk

= Z{a(k)}(z) + Z{b(k)}(z)

Z{ca(k)}(z) =
∞∑
k=0

ca(k)

zk

= c
∞∑
k=0

a(k)

zk

= cZ{a(k)}(z)

Therefore, the Z-Transform is a linear transformation. Now suppose
that the Z-Transform for a(k) and b(k) exists and that they equal each
other. Letting w = z−1, we have

∞∑
k=0

a(k)wk =
∞∑
k=0

b(k)wk

Taking the nth derivative of both sides and evaluating at w = 0, we
have that

n!a(n) = n!b(n)

Since n! is a constant, we can divide it out and come to the conclusion
that a(k) = b(k) for all k. Therefore, the Z-Transform is one-to-
one. �

Because that the Z-Transform is one-to-one, we may also define the
inverse Z-Transform as

Z−1{A(z)}(k) = a(k)

where A(z) is
∞∑
k=0

a(k)

zk

4. Results

Because of Proposition 3.5, we finally have a formula for Ak. Taking
the inverse Z-Transform of both sides, we find that

Ak = Z−1{z(zI − A)−1}
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However, we will see that directly calculating it might be a bit cum-
bersome.

Example 4.1. Find Ak if

A =

[
2 −1
1 0

]
First, we would compute zI − A.

zI − A =

[
z − 2 1
−1 z

]
Next, compute the inverse of zI − A.

(zI − A)−1 =
1

z2 − 2z + 1

[
z −1
1 z − 2

]
=

1

(z − 1)2

[
z −1
1 z − 2

]
=

[
z

(z−1)2
−1

(z−1)2
1

(z−1)2
z−2

(z−1)2

]
However, even when we multiply z into the matrix, we find that we

cannot take the inverse Z-transform of the matrix. So we must perform
partial fraction decomposition to obtain

z

(z − 1)2
=

A

(z − 1)
+

B

(z − 1)2

z = A(z − 1) +B

if z = 1

1 = A(1− 1) +B

1 = A(0) +B

1 = 0 +B

B = 1

if z = 0

0 = A(0− 1) +B

0 = A(−1) +B

0 = −A+B

A = B

A = 1
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Plug in results:

z

(z − 1)2
=

1

(z − 1)
+

1

(z − 1)2

z − 2

(z − 1)2
=

A

(z − 1)
+

B

(z − 1)2

z − 2 = A(z − 1) +B

if z = 1

1− 2 = A(1− 1) +B

−1 = A(0) +B

−1 = 0 +B

B = −1

if z = 0

0− 2 = A(0− 1) +B

−2 = A(−1) +B

−2 = −A+B

−2 = −A+B

2 +B = A

2 + (−1) = A

1 = A

Plug in results:

z − 2

(z − 1)2
=

1

(z − 1)
+

−1

(z − 1)2

(zI − A)−1 =

[
1

(z−1) + 1
(z−1)2

−1
(z−1)2

1
(z−1)2

1
(z−1) + −1

(z−1)2

]

(zI − A)−1 =
1

z − 1

[
1 0
0 1

]
+

1

(z − 1)2

[
1 −1
1 −1

]
separating the original matrix into two matrices that have a common
denominator for each entry.

Multiplying z into the equation, we obtain

z(zI − A)−1 =
z

z − 1

[
1 0
0 1

]
+

z

(z − 1)2

[
1 −1
1 −1

]
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From Proposition 3.3 and taking the inverse Z-transform, we find
that

ϕn,a(k) = Z−1
{

z

(z − a)n+1

}
and since we have fractions that are of this form, we may apply the
inverse Z-transform to obtain

Ak = Z−1
{

z

z − 1

[
1 0
0 1

]
+

z

(z − 1)2

[
1 −1
1 −1

]}
= ϕ0,1(k)

[
1 0
0 1

]
+ ϕ1,1(k)

[
1 −1
1 −1

]
=

1k−0k 0

0!

[
1 0
0 1

]
+

1k−1k 1

1!

[
1 −1
1 −1

]
=

[
1 0
0 1

]
+ k

[
1 −1
1 −1

]
Therefore, we obtain that

Ak =

[
1 0
0 1

]
+ k

[
1 −1
1 −1

]
For calculating Ak, it seems that we may have to

(1) Compute (zI − A)−1

(2) Perform partial fraction decomposition to be able perform the
inverse Z-transform.

(3) Apply the inverse Z-transform.

However, we may obtain a variation of Fulmer’s method to ease the
computations and obtaining an alternate formula for Ak. From [4], we
see that powers of a matrix A are calculated by

Ak =
r∑

a=1

ma−1∑
n=0

Mna ϕn,ar(k)

where ar is a distinct eigenvalue of matrix A, ma is the multiplicity
of ar and Mna the coefficient matrix associated to the phi sequence.
We can easily find the phi sequences but is it always a guarantee that
we may find the constant matrices that are associated with those phi
sequences? The next two theorems will answer this question and will
also form the basis for the variation of Fulmer’s method.

Theorem 4.2. The standard basis Bq = {ϕ1λ1 , ϕ1λ2 , · · · , ϕ2λ1 , ϕ2λ2 , · · ·ϕrλm}
is linearly independent.
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Proof. Write Bq as a linear combination.

a11ϕ1λ1 + a12ϕ1λ2 + · · ·+ a1mϕ1λm+

a21ϕ2λ1 + a22ϕ2λ2 + · · ·+ a2mϕ2λm+

...

ar1ϕrλ1 + ar2ϕrλ2 + · · ·+ armϕrλm = 0

Apply the Z-Transform and using Proposition 3.5 and Proposition 3.3,
we find that

a11
z

(z − λ1)2
+ a12

z

(z − λ2)2
+ · · ·+ a1m

z

(z − λm)2
+

a21
z

(z − λ1)3
+ a22

z

(z − λ2)3
+ · · ·+ a2m

z

(z − λm)3
+

...

ar1
z

(z − λ1)r+1
+ ar2

z

(z − λ2)r+1
+ · · ·+ arm

z

(z − λm)r+1
= 0

Regroup to form like denominators.

a11
z

(z − λ1)2
+ a21

z

(z − λ1)3
+ · · ·+ ar1

z

(z − 1)r+λ1
+

a12
z

(z − λ2)2
+ a22

z

(z − λ2)3
+ · · ·+ ar2

z

(z − λ2)r+1
+

...

a1m
z

(z − λm)2
+ a2m

z

(z − λm)3
+ · · ·+ arm

z

(z − λm)r+1
= 0

Multiply the top and the bottom to get polynomials.

a11
z(z − λ1)r−1

(z − λ1)r+1
+ a21

z(z − λ1)r−2

(z − λ1)r+1
+ · · ·+ ar1

z

(z − λ1)r+1
+

a12
z(z − λ2)r−1

(z − λ2)r+1
+ a22

z(z − λ2)r−2

(z − λ2)r+1
+ · · ·+ ar2

z

(z − λ2)r+1
+

...

a1m
z(z − λm)r−1

(z − λm)r+1
+ a2m

z(z − λm)r−2

(z − λm)r+1
+ · · ·+ arm

z

(z − λm)r+1
= 0

Simplify
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a11(z(z − λ1)r−1) + a21(z(z − λ1)r−2) + · · ·+ ar1(z)

(z − λ1)r+1
+

a12(z(z − λ2)r−1) + a22(z(z − λ2)r−2) + · · ·+ ar2(z)

(z − λ2)r+1
+

...

a1m(z(z − λm)r−1) + a2m(z(z − λm)r−2) + · · ·+ arm(z)

(z − λm)r+1
= 0

Let nb(z − λb) be a polynomial. So we get

n1(z − λ1)
(z − 1)r+1

+
n2(z − λ2)
(z − λ2)r+1

+ · · ·+ nm(z − λm)

(z − λm)r+1
= 0

If n1(z − λ1) 6= 0, then

lim
z→λ1

[
n1(z − λ1)
(z − λ1)r+1

+
n2(z − λ2)
(z − λ2)r+1

+ · · ·+ nm(z − λm)

(z − λm)r+1

]
=∞+ C = 0

where C is a constant. Thus, we get a contradiction. Therefore,
n1(z − λ1) = 0 which implies that n1(z) = 0 and a11, a12, · · · , a1m = 0.
You can continue this argument by induction to obtain ∀a′s = 0 �

With Theorem 4.2, we may now show that we may apply Fulmer’s
method to any n× n matrix.

Theorem 4.3. When calculating Ak, we find that the set of coefficient
matrices are unique to a square matrix A

Proof. We know that

Ak =
r∑

a=1

ma−1∑
n=0

Mna ϕn,ar(k)

where ar is a distinct eigenvalue, and ma is the multiplicity of ar.
However, since there are a finite number of terms, we may drop the
double subscript in favor of a single subscript.

Ak =
R∑

n=1

Mn ϕn(k)

If we know all of the ϕn(k) sequences and the coefficient matrices are the
unknown, we may create R system of equations using the E operator.
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Setting k = 0, we have

Ak = I = M1ϕ1(0) +M2ϕ2(0) +M3ϕ3(0) + . . .

E{Ak} = A = M1ϕ1(1) +M2ϕ2(1) +M3ϕ3(1) + . . .

E2{Ak} = A2 = M1ϕ1(2) +M2ϕ2(2) +M3ϕ3(2) + . . .
... =

... =
...

ER−1{Ak} = AR−1 = M1ϕ1(R− 1) +M2ϕ2(R− 1) +M3ϕ3(R− 1) + . . .

We may also represent this system of equations as a matrix equation.
I
A
A2

...
AR−1

 =


ϕ1(0) ϕ2(0) ϕ3(0) . . . ϕR(0)
ϕ1(1) ϕ2(1) ϕ3(1) . . . ϕR(1)
ϕ1(2) ϕ2(2) ϕ3(2) . . . ϕR(2)

...
...

...
...

...
ϕ1(R− 1) ϕ2(R− 1) ϕ3(3) . . . ϕR(R− 1)



M1

M2

M3
...
MR


We will let B be equal to

ϕ1(k) ϕ2(k) ϕ3(k) . . . ϕR(k)
ϕ1(k + 1) ϕ2(k + 1) ϕ3(k + 1) . . . ϕR(k + 1)
ϕ1(k + 2) ϕ2(k + 2) ϕ3(k + 2) . . . ϕR(k + 2)

...
...

...
...

...
ϕ1(k +R− 1) ϕ2(k +R− 1) ϕ3(k + 3) . . . ϕR(k +R− 1)


The following results can be found in [3]. The matrix equation has
a unique solution if and only if B has nonzero determinant. B is ac-
tually a matrix called the matrix of Casorati and its determinant
is called the Casoratian. A particular theorem that arises from The
Difference equation states that if the set of functions is linear inde-
pendent, then their Casoratian is nonzero. Because the functions that
we have obtained are linearly independent from Theorem 4.2, then the
determinant is nonzero. Therefore, the solution obtained is a unique
solution and we may apply this to any number of system of equations.
Therefore, we may write powers of any square matrix and calculate the
coefficient matrices. �

So with Theorem 4.2 and Theorem 4.3 we may create a variation of
Fulmer’s method to calculate Ak where we would have to

(1) Calculate the eigenvalues of A, taking note of the multiplicities
of each eigenvalue.

(2) Associate the correct phi sequences, accounting for all eigenval-
ues and their respective multiplicities.
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(3) Create a system of equations from using the E shift operator
n− 1 times and evaluate at k = 0.

(4) Finally, we solve for the coefficient matrices.

Using this method, we circumvent the need to calculate the inverse of
(zI−A) and the usage of partial fraction decomposition for the inverse
Z-Transform in favor of solving a system of equations.

Example 4.4. Find Ak by using the Fulmer’s Method if

A =

[
2 −1
1 0

]
Recall Ak = Z−1{z(zI − A)−1}. We first want to compute the deter-
minant of z(zI − A)−1. We start by computing zI − A,

zI − A =

[
z − 2 1
−1 z

]
.

Next,

det(zI − A) = (z − 1)2

this implies

det((zI − A)−1) =
1

(z − 1)2
.

Lastly, we must multiply both sides by z

z det((zI − A)−1) =
z

(z − 1)2
.

Since z det((zI−A)−1) = z
(z−1)2 we apply the inverse Z-transform, and

we obtain that Ak can be written as a linear combination of {ϕ0,1, ϕ1,1}.
We can write Ak in the following way:

Ak = ϕ0,1(k)M + ϕ1,1(k)N,

where M and N are our unknown matrices. By the way we defined the
φ function we obtain

Ak =
1k−0k0

0!
M +

1k−1k1

1!
N

= M + kN.

Let k = 0

I = M

let k = 1

A = M +N.
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Solving for N and N . From the first equation we get

M =

[
1 0
0 1

]
.

From the second equation we obtain

N = A−M

=

[
2 −1
1 0

]
−
[
1 0
0 1

]
=

[
1 −1
1 −1

]
.

Finally,

Ak =

[
1 0
0 1

]
+ k

[
1 −1
1 −1

]
.

5. Computing eAt from Ak

Now that we have an explicit formula for Ak, we may now use it
to create a compact formula of the matrix exponential. In lecture, we
learned that

Ak =
R∑
r=1

Mr−1∑
m=0

Br,mϕm,ar(k),

which will be used to find eAt.

Lemma 5.1. Let l be a natural number and a and t be real numbers.
Show Dl(yeat) = ((D + a)ly)eat.

Proof.

Dl(yeat) =
l∑

k=0

(
l

k

)
(Dl−ky)Dkeat

Knowing that Dkeat = akeat

Dl(yeat) =
l∑

k=0

(
l

k

)
(Dl−ky)(akeat)

= ((D + a)ly)eat

�

Remark 5.2. By letting y = tj we can prove the next proposition.

Proposition 5.3.[
((D + a)ltj)eat

]∣∣∣∣
t=0

= ((D + a)ltj)

∣∣∣∣
t=a
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Proof. Working with the Left Hand Side first we can derive the follow-
ing: [

((D + a)ltj)eat
]∣∣∣∣
t=0

=
l∑

k=0

(
l

k

)
Dktjal−k

∣∣∣∣
t=0

=
l∑

k=0

(
l

k

)
al−k(Dktj)

∣∣∣∣
t=0

=


0 if 6= j or l< j(
l
k

)
al−jj! if k = j

al−j l!
(l−j)! if l = j

Working with the Right Hand Side we can derive the following:

((D + a)ltj)

∣∣∣∣
t=0

= Djtl
∣∣∣∣
t=a

=


ltl−1 if j = 1
l(l − 1)tl−2 if j =2
...

...
l!

(l−j)!a
l−j for any j

�

Proposition 5.4. Using Ak, we define

eAt =
R∑
r=1

Mr−1∑
m=0

Mr,m(tmeart)

where R is the number of distinct eigenvalues, Mr is the multiplicity
associated to the eigenvalue ar, and Mr,m is the associated coefficient
matrix.

Proof. Knowing that

Ak =
R∑
r=1

Mr−1∑
m=0

Br,mϕm,ar(k),

we will then manipulate the equation by adding a summation, multi-
plying by tk, and dividing by k! to both sides.

∞∑
k=0

tkAk

k!
=

R∑
r=1

Mr−1∑
m=0

Br,m

∞∑
k=0

tkϕm,ar(k)

k!
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From calculus, we know we can rewrite this as:

eAt =
∞∑
k=0

tkAk

k!
=

R∑
r=1

Mr−1∑
m=0

Br,m

∞∑
k=0

tkϕm,ar(k)

k!

By Lemma 2.10, we can rewrite this as:

eAt =
R∑
r=1

Mr−1∑
m=0

Br,m

∞∑
k=0

tkDmtk

m!

k!

∣∣∣∣
t=ar

=
R∑
r=1

Mr−1∑
m=0

Br,m

m!

∞∑
k=0

tkDmtk

k!

∣∣∣∣
t=ar

where
Br,m

m!
= Mr,m

eAt =
R∑
r=1

Mr−1∑
m=0

Mr,m

∞∑
k=0

tkDmtk

k!

∣∣∣∣
t=ar

By Proposition 5.3, we know

eAt =
R∑
r=1

Mr−1∑
m=0

Mr,m

∞∑
k=0

tkDk(tmeart)

k!

∣∣∣∣
k=0

=
R∑
r=1

Mr−1∑
m=0

Mr,m(tmeart)

In the following example we will solve for eAt by the Laplace Trans-
form using Fulmer’s Method, which we learned in class.

Example 5.5. Find eAt if

A =

[
2 −1
1 0

]
First, we will compute sI − A.

sI − A =

[
s− 2 1
−1 s

]
Next, we will find the characteristic polynomial by computing the

determinant and evaluating it at 0 to find the eigenvalues,s.
CA = det(sI − A) = (s− 1)2 = 0.

therefore s = 1, 1
From class, we also know that the following is the basis for this

particular matrix.
BCA

= {et, tet}
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Now, we can write an equation for eAt, where M and N are some ma-
trices, as followed:

eAt = etM + tetN

Next we need to find these particular matrices. So, we will set up of a
system of equations by taking the derivative.

eAt = etM + tetN

AeAt = etM + (et + tet)N

When t = 0, we get the following:

I = M + 0

A = M +N

So,

M =

[
1 0
0 1

]
and N =

[
1 −1
1 −1

]
Finally, we see that

eAt = et
[
1 0
0 1

]
+ tet

[
1 −1
1 −1

]
Now, we will show a quicker way to find eAt by knowing Ak from the
Z-Transform.

Example 5.6. Find eAt if

A =

[
2 −1
1 0

]
From a previous example, we found that

Ak =

[
1 0
0 1

]
+ k

[
1 −1
1 −1

]
Next, we can manipulate this equation by adding a summation, multi-
plying by tk, and dividing by k! to both sides. We get the following:

∞∑
k=0

tkAk

k!
=
∞∑
k=0

tk
[
1 0
0 1

]
k!

+
∞∑
k=0

ktk
[
1 −1
1 −1

]
k!

From calculus, we know we can rewrite this as:

eAt =
∞∑
k=0

tkAk

k!
=
∞∑
k=0

tk
[
1 0
0 1

]
k!

+
∞∑
k=0

ktk
[
1 −1
1 −1

]
k!
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Since the matrices are not dependent on k we can move them out of
the summation.

eAt =

[
1 0
0 1

] ∞∑
k=0

tk

k!
+

[
1 −1
1 −1

] ∞∑
k=0

ktk

k!

=

[
1 0
0 1

] ∞∑
k=0

tk

k!
+

[
1 −1
1 −1

] ∞∑
k=1

tk

(k − 1)!

Again, from calculus we know we can rewrite the summations as a
Taylor Series, giving us the following equation:

eAt = et
[
1 0
0 1

]
+ tet

[
1 −1
1 −1

]
.

�
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