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Abstract. We will examine the parallel transport of tangent vec-
tors along a hyperbolic triangle containing sides of only geodesics
in the upper half plane R2

+. We will also verify that the directed
angle from the initial vector to the final vector is the negative area
of the hyperbolic triangle.

1. Introduction

Geometry can be broken down into two types: Euclidean geome-
try and non-Euclidean geometry. Our paper is focusing on the paral-
lel transport in hyperbolic geometry. Hyperbolic geometry is a non-
Euclidean geometry, but before we can get into the characteristics of
hyperbolic geometry, we must show the basics of Euclidean geometry
so that the differences between the two will be apparent. The concept
of Euclidean geometry can be satisfied using Euclid’s five postulates
which are listed and shown in the figures below:

(1) Any two points can be joined by a straight line.

A

B

(2) Any straight line segment can be extended indefinitely into a
straight line.

A B C
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(3) Given any straight line segment, a circle can be drawn having
the segment as a radius and one endpoint as center.

A B

(4) All right angles are congruent.

A B

C

D

(5) Parallel Postulate : Through any given point not on a line there
passes exactly one line that is parallel to that line in the same
plane.

A

B

C

The difference between Euclidean and non-Euclidean geometry is
that the parallel postulate does not hold in non-Euclidean geometry.
From this, we can now introduce what hyperbolic geometry is. Before
we can define hyperbolic geometry, we need to lay out some background
of hyperbolic geometry.

2. Background of Hyperbolic Geometry

Much of the history and development of Hyperbolic Geometry can
be attributed to the mathematicians Gauss, Bolyai, and Lobachevsky.
From its inception to now many mathematicians and physicists have
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found applications for hyperbolic geometry in complex variables, topol-
ogy of two and three dimensional manifolds, finitely presented infinite
groups, as well as physics and computer science.

2.1. The Upper Half Plane. One model of hyperbolic geometry is
the upper-half plane which is defined by: R2

+ = {(x, y) ∈ R2 : y > 0}.
This can also be interpreted in terms of complex numbers where
i =
√
−1 : H2 = {x+ iy : x, y ∈ R, y > 0}.

2.2. The Hyperbolic Metric. The Hyperbolic metric is considered
a Riemmanian metric.

Definition 2.1. The assignment of an inner-product to each tangent
space Tp i.e., p ∈ R2

+ 7→ 〈 , 〉p is a Riemannian metric, which can be
represented by the matrix:

g(p) =
1

y2p

(
1 0
0 1

)
where p = (xp, yp).

2.3. Geodesics.

Definition 2.2. On a surface S, special curves called geodesics have
the property that for any two points p and q sufficiently close, the
length of a curve is less than or equal to any other curve joining p and
q.

In hyperbolic geometry, a geodesic is either a vertical line or the arc
of a semi-circle whose center is on the x-axis. Also, it can be referred to
as a curve with an acceleration of zero. This differs from a geodesic in
Euclidean geometry, in that the shortest distance between two points
p and q is a straight line.

2.4. Isometries.

Definition 2.3. For Riemannian manifolds M and N , a function
f : M → N is called an isometry if: 〈u, v〉p = 〈dfp(u), dfp(v)〉f(p), for
all p ∈M, u, v ∈ TpM .

Remark 2.4. A manifold is a space that locally looks like Euclidean
space. A Riemannian manifold is a manifold with a Riemannian metric.

In other words, the distance between two points is preserved under
f if f is an isometry.
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2.5. Affine Connections and Covariant Derivatives.

Definition 2.5. Let R denote the set of vector fields of C∞ on R2
+.

An affine connection is a function where ∇ : R × R → R, denoted by
(X,Y) 7→ ∇XY satisfying:

(1) ∇f1X1+f2X2Z = f1∇X1Z + f2∇X2 .
(2) ∇X(Y1 + Y2) = ∇XY1 +∇XY2.
(3) ∇X(fY ) = X(f)Y + f∇XY .

where f, f1, f2 ∈ C∞(R2
+).

Remark 2.6. C∞(R2
+) denotes the smooth functions in R2

+, so all partial
derivatives exist.

Theorem 2.7. Let V be a vector field along the differentiable curve c
and let DV

dt
be the covariant derivative of V along c, then the function

V 7→ DV
dt

is unique provided

(1) D(V1+V2)
dt

= DV1
dt

+ DV2
dt

, where V1, V2 are vector fields along the
curve γ,

(2) D(fV )
dt

= f ′(t)V + f DV
dt

, whenever t 7→ f(t) ∈ R is C∞, and

(3) If V (t) = Y (γ(t)) for some vector field Y ∈ D, then DV
dt
∇γ̇(t)(Y ).

Definition 2.8. The coefficients Γmi,j are called Christoffel symbols. In

R2
+, the Christoffel symbols satisfy:

−Γ2
1,1 = Γ1

1,2 = Γ1
2,1 = Γ2

2,2 = −1

y

The covariant derivative will be helpful in allowing us to take the
derivative of vector fields instead of just functions.

Lemma 2.9. The affine connection ∇ on R2
+ satisfies

(1) ∇∂x(
∂
∂x

) = 1
y
∂
∂y

(2) ∇∂x(
∂
∂y

) = − 1
y
∂
∂x

(3) ∇∂y(
∂
∂x

) = − 1
y
∂
∂x

(4) ∇∂y(
∂
∂y

) = − 1
y
∂
∂y
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3. Parallel Transport

To connect the concepts of parallel lines and interior angles of a
triangle, we introduce the notion of a parallel transport.

Definition 3.1. Let v and w be two vectors in R2. Let p and q be two
points on curve L. The initial points of v and w are p and q, respec-
tively. We say the parallel transport of vector v is vector w provided v
and w form the same angles with curve L, and v and w have the same
lengths. Below in figure 1 is a picture of a parallel transport:

w

v

Figure 1. Parallel Transport

We will now show the derivation of a system of differential equations
that can be used to find the parallel vector fields with respect to curves.

Proof. Given V = (f(t), g(t)) on the vector field γ(t) = (γ1(t), γ2(t)).
Find when DV

dt
= 0.

DV

dt
=

D

(
f(t) d

dx
+ g(t) d

dy

)
dt

=
d

dt
(f(t))

d

dx
+ f(t)

D

dt

d

dx
+
d

dt
(g(t))

d

dy
+ g(t)

D

dt

d

dy

= f ′(t)
d

dx
+ f(t)∇γ′(t)

d

dx
+ g′(t)

d

dy
+ g(t)∇γ′(t)

d

dy
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Now using the fact that γ′(t) = γ′1(t) + γ′2(t) we get:

f ′(t)
d

dx
+ f(t)∇γ′1(t)+γ

′
2(t)

d

dx
+ g′(t)

d

dy
+ g(t)∇γ′1(t)+γ2(t)

d

dy

We know that ∇γ′1(t)+γ
′
2(t)
×Z can be rewritten as ∇γ′1(t)

×Z+∇γ′2(t)
×

Z. Therefore we get:

f ′(t)
d

dx
+ f(t)

(
∇γ′1(t)

d

dx
+∇γ′2(t)

d

dx

)
+g′(t)

d

dy
+ g(t)

(
∇γ′1(t)

d

dy
+∇γ′2(t)

d

dy

)
= f ′(t)

d

dx
+ f(t)∇γ′1(t)

d

dx
+ f(t)∇γ′2(t)

d

dx

+g′(t)
d

dy
+ g(t)∇γ′1(t)

d

dy
+ g(t)∇γ′2(t)

d

dy

Now using to fact that ∇p(t)dx = p(t)∇dx and knowing that γ′1(t) is
the x part of γ(t) and γ′2(t) in the y part, we get:

f ′(t)
d

dx
+ f(t)γ′1(t)∇dx

d

dx
+ f(t)γ′2(t)∇dy

d

dx

g′(t)
d

dy
+ g(t)γ′1(t)∇dx

d

dy
+ g(t)γ′2(t)∇dy

d

dy

f ′(t)
d

dx
+f(t)

γ′1(t)

y

d

dy
−f(t)

γ′2(t)

y

d

dx
+g′(t)

d

dy
−g(t)

γ′1(t)

y

d

dx
−g(t)

γ′2(t)

y

d

dy

Now to equal 0 we need the x and y parts to both equal 0 and that
the y in the previous equation is referring to the y coordinate of the
vector field γ(t), so we get the set of equations:

f ′(t)
d

dx
− γ′2(t)

γ2(t)
f(t)

d

dx
− γ′1(t)

γ2(t)
g(t)

d

dx
= 0.

g′(t)
d

dy
+
γ′1(t)

γ2(t)
f(t)

d

dy
− γ′2(t)

γ2(t)
g(t)

d

dy
= 0.

Now we drop the d
dx

and d
dy

since we grouped them by the symbols

and we solve for f ′(t) and g′(t).

f ′(t) =
γ′2(t)

γ2(t)
f(t) +

γ′1(t)

γ2(t)
g(t).

g′(t) = −γ
′
1(t)

γ2(t)
f(t) +

γ′2(t)

γ2(t)
g(t).
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Example 3.2. We will calculate the parallel transport of a vector V0
with angle θ between V0 and the y-axis along a rectangle. The curve γ is
given by γ1(t, 1) and γ2(t, 2) along the horizontal lines and ηπ

2
(π
2
, et) and

η0(0, e
t). V (t) = (b sin(θ+ t

b
), b cos(θ+ t

b
)) and W (t) = (et sin θ, et cos θ)

are the vector fields, and c is a simple closed rectangular curve from
(0, 1) to (π

2
, 1) to (π

2
, 2) to (0, 2) to (0, 1).

We start by checking that V and W are parallel along γ and η by
showing that:

DW (t)

dt
= 0 =

DV (t)

dt
.

DW

dt
=

d

dt
(b sin(θ +

t

b
))
d

dx

∣∣∣∣
(t,b)

+ (b sin(θ +
t

b
))
D

dt
(
d

dx

∣∣∣∣
(t,b)

)

+
d

dt
(b cos(θ +

t

b
))
d

dy

∣∣∣∣
(t,b)

+ (b cos(θ +
t

b
))
D

dt
(
d

dy

∣∣∣∣
(t,b)

)

=
1

b
b cos(θ +

t

b
)
d

dx
+ b sin(θ +

t

b
)∇hb(t)

d

dx

+ (−1

b
)b sin(θ +

t

b
)
d

dy
+ b cos(θ +

t

b
)∇hb(t)

d

dy

= cos(θ +
t

b
)
d

dx
+ b sin(θ +

t

b
)∇dx

d

dx
− sin(θ +

t

b
)
d

dy
+ b cos(θ +

t

b
)∇dx

d

dy

= cos(θ +
t

b
)
d

dx
+ b sin(θ +

t

b
)
1

y

d

dy
− sin(θ +

t

b
)
d

dy
+ b cos(θ +

t

b
)(−1

y
)
d

dx

= cos(θ +
t

b
)
d

dx
+ sin(θ +

t

b
)
d

dy
− sin(θ +

t

b
)
d

dy
− cos(θ +

t

b
)
d

dx
= 0

Also,

DV

dt

∣∣∣∣
(a,et)

=
d

dt
(et sin θ)

∂

∂x

∣∣∣∣
(a,et)

+ et sin θ
D

dt

(
∂

∂x

∣∣∣∣
(a,et)

)
+

d

dt
(etcosθ)

∂

∂y

∣∣∣∣
(a,et)

+ etcosθ
D

dt

(
∂

∂y

∣∣∣∣
(a,et)

)
.

By part 3 of 2.7,
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DV

dt

∣∣∣∣
(a,et)

= et sin θ
∂

∂x

∣∣∣∣
(a,et)

+ et sin θ∇γ̇a(t)

(
∂

∂x

)
+ et cos θ

∂

∂y

∣∣∣∣
(a,et)

+ et cos θ∇γ̇(a,t)

(
∂

∂y

)
.

Notice, if Y (x, y) = y ∂
∂y

is a vector field on R2
+,

then Y (γa(t)) = et ∂
∂y
|(,et) = γ̇a(t).

DV

dt

∣∣∣∣
(a,et)

= et sin θ
∂

∂x

∣∣∣∣
(a,et)

+ et sin θ

(
∇Y

(
∂

∂x

))
(γa(t))

+ et cos θ
∂

∂y

∣∣∣∣
(a,et)

+ et cos θ

(
∇Y

(
∂

∂y

))
(γa(t)).

= et sin θ
∂

∂x

∣∣∣∣
(a,et)

+ et sin θ

(
y∇∂/∂y

(
∂

∂x

))
(γa(t))

+ et cos θ
∂

∂y

∣∣∣∣
(a,et)

+ et cos θ

(
y∇∂/∂y

(
∂

∂y

))
(γa(t)).

Applying the Christoffel symbols in 2.8, we get:

DV

dt

∣∣∣∣
(a,et)

= et sin θ
∂

∂x

∣∣∣∣
(a,et)

+ et sin θ

(
− ∂

∂x

)
(γa(t))

+ et cos θ
∂

∂y

∣∣∣∣
(a,et)

+ et cos θ

(
− ∂

∂y

)
(γa(t))

= 0 ∈ T(a,et).

Remark 3.3. T(a,et) is the set of all tangent vectors with initial points
(a, et).

Since the fields are indeed parallel, we can calculate a parallel trans-
port along a closed curve, a rectangle. The curves and vector fields
were defined above. Refer to Figure 2 to see how the vectors are par-
allel transported about the rectangle. The blue vectors on the graph
are the tangent lines to the rectangle, and the red vectors on the graph
represent the transported vectors. The starting position vector is la-
beled:

v0 = (sin θ, cos θ).

We start by evaluating γ1(t) to get our initial vector. The tangent
vector is (0, 1). We let θ represent the angle from the tangent vector to
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π
2

1

2

γ1(t) = (t, 1)

ηπ
2
(t) = (π

2
, t)

γ2(t) = (t, 2)

η0(t) = (π
2
, t)

V0

π
8

V1

3π
8

V2

7π
8

3π
8

V3
3π
8

7π
8

Vf
3π
8

π
4

Figure 2. Parallel Transport Around a Rectangle

the initial vector. After moving along γ1 the tangent vector becomes:

ηπ
2
(0) =

(π
2
, 1
)
.

Since we are transporting from (π
2
, 1) to (π

2
, 2), we need to solve for

t when et = 2, thus t = ln(2). So this gets us the point (π
2
, 2), by

maintaining the angle (sin(θ + π
2
), cos(θ + π

2
)). We evaluate:

V (ln 2) = (2 sin(θ +
π

2
), 2 cos(θ +

π

2
)).

Our new vector to be transported across the horizontal line is

V3 = (2 sin(α +
t

2
), 2 cos(α +

t

2
))

and W (0) is now (2 sinα, 2 cosα) in which α is the angle between the
tangent vector and V3. Next we evaluate W (t) at t = π

2
to get the

vector

v3 = (2 sin(α +
π

4
), 2 cos(α +

π

4
)).

By solving for α in the equation,

α +
π

4
= θ +

π

2
,

we get

α = θ +
π

4
.

Here we are transporting along a vertical line which is a geodesic, so
the angle remains the same. The angle of our final vector once we
return to the starting point is π

4
.
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Given the curve c(t) = (t,mt+b), we used Mathematica in collabora-
tion with the previously derived system of differential equations to find
the equation for the parallel vector field, V (t) = (V1(t), V2(t)) where:

V1(t) = e−
t

b+mt

(
e

t
b+mt − 1

)
,

V2(t) = e−
t

b+mt

Using Mathematica, we present the parallel transport of the line

y = 2t + 1: Next, we will show a parallel transport
along a hyperbolic triangle with two points on the y-axis.

Example 3.4. We will show that by parallel transporting a vector
about a hyperbolic triangle, we can find the defect angle, or the differ-
ence in angle between the initial vector and transported vector.

A

B C

DE

V0

α

βγ α+ β

π − (α+ β + γ)

N

Vf

O

V2
V1π − (α+ β + γ)

Figure 3. Parallel Transport About Hyperbolic Triangle
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By parallel transporting our original vector about the hyperbolic
triangle, we have shown that the defect angle is equal to π - (α + β +
γ). In both the rectangle and the hyperbolic triangle, there seems to be
a correlation between the areas of the figures and the defect angle after
the transport. In the next section, we will confirm this speculation.

4. Area Correlation to Parallel Transport of Vectors

To find the area of the rectangle, we use the following integral:

A =

∫ π
2

0

∫ 2

1

dydx

y2

=

∫ π
2

0

(
−1

y

∣∣∣∣2
1

) dx

=

∫ π
2

0

1

2
dx

=
1

2
x

∣∣∣∣π2
0

dx

=
π

4
.

Before we can prove this using the hyperbolic triangle, we must first
show that the maximum area of a hyperbolic triangle is π. To do so,
we will verify that the area of a hyperbolic triangle with angles α, β,
and γ = 0 satisfies the following equation:

A =

∫ cosβ

− cosα

∫ ∞
√
1−x2

dydx

y2
= π − (α + β)

Intuitively, we see that it is given by figure 4:

0

CD

α
β

Figure 4. Area of 4AB∞
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Theorem 4.1. The angle sum of a hyperbolic triangle is less than π.

Proof. To prove this, we will show that the angles of a hyperbolic tri-
angle α, β, and γ = 0 with points at A, B, and∞ satisfy the following
equation:
We calculate:

A =

∫ cosβ

− cosα

∫ ∞
√
1−x2

dydx

y2
= π − (α + β).

=

∫ cosβ

− cosα

∫ ∞
√
1−x2

dydx

y2

=

∫ cosβ

− cosα

−1

y

∣∣∣∣∞√
1−x2

dx

=

∫ cosβ

− cosα

1√
1− x2

dx

= arcsin(x)
∣∣cosβ
− cosα

= arcsin(sin(
π

2
− β))− arcsin(− sin(

π

2
− α))

= (
π

2
− β) + (

π

2
− α).

Thus, we have

A =

∫ cosβ

− cosα

∫ ∞
√
1−x2

dydx

y2
= π − (α + β).

Since α,β>0, it is clear that the sum of the angles of a hyperbolic
triangle is less than π.

�

We will now generalize this result to find the area of any hyperbolic
triangle.

Theorem 4.2. The area of a hyperbolic triangle with angles α, β, and
γ is A(4ABC) = π - (α + β + γ).

Proof. We start by letting our original β = β1 + β2.
We will find the area of 4ABC by finding the area of 4AB∞ and
subtracting 4BC∞, which we have already calculated, from that.
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A =

∫ cosβ

− cosα

∫ ∞
√
1−x2

dydx

y2
−
∫ cosβ2

− cos(π−γ)

∫ ∞
√
1−x2

dydx

y2

=

∫ cosβ

− cosα

−1

y

∣∣∣∣∞√
1−x2

dx−
∫ cosβ2

− cos(π−γ)

−1

y

∣∣∞√
1−x2 dx

=

∫ cosβ

− cosα

1√
1− x2

dx−
∫ cosβ2

− cos(π−γ)

1√
1− x2

dx

= arcsin(x)
∣∣cosβ
− cosα

− arcsin(x)
∣∣cosβ2
− cos(π−γ) dx

= arcsin(sin(
π

2
− β))− arcsin(− sin(

π

2
− α))

− (arcsin(sin(
π

2
− γ))− arcsin(− sin(

π

2
− γ)))

= (
π

2
− β) + (

π

2
− α)− ((

π

2
− β2) + (

π

2
− γ))

= π − (α + β)− (π − (γ + β2))

= π − (α + β1 + β2)− (π − (γ + β2))

= π − (α + β + γ)

Therefore, we have shown that the area of any hyperbolic triangle with
angles α, β, and γ is π - (α + β + γ). �

Both of the figures we used to show the parallel transports and areas
had at least two points on the y-axis, but we also wanted to know how
we could parallel transport along a figure that wasn’t on the y-axis.
We found out that we could use a Möbius Transformation to map the
figure to the y-axis to be able to parallel transport the vectors.

5. Möbius Transformation of an Arbitrary Hyperbolic
Triangle

Given a triangle 4ABC where A = (XA, YA), B = (XB, YB), and
C = (XC , YC), we want to find the Möbius transformation of the ar-
bitrary hyperbolic triangle that translates the points of the triangle to
the points (0, 1),(0, Y0), and(A,B) respectively where A,B > 0.

First we want to find a matrix NM for which fNM(A) = i. Remem-
ber that A, B, and C can be written as XA + YAi, XB + YBi, and

XC + YCi respectively. Let matrix M =

[
1 −XA

0 1

]
. This gives us the



14 VINCENT GLORIOSO, BRITTANY LANDRY, AND PHILLIP WHITE

following:

fM(A) =
1(XA + YAi) + (−XA)

0(XA + YAi) + 1
= YAi.

In order to cancel the YA of fM(A), let N =

[
1 0
0 YA

]
.

fNM(B) =
XB −XA + YBi

YA

which, written as a coordinate, would look like (XB−XA
YA

, YB
YA

). We use

a rotation matrix, K, which is always of the form

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
, to

move the fNM(B) to the y-axis as seen in Figure 5.

A

(C0, 0)

BB′

B′′

θ

θ
α

1
r

Figure 5. Möbius transformation

Now we need to find θ, the angle between tangent line of the semi-
circle through the points A and B at A and the y-axis.

We notice that θ is also the angle between the line from the center
of the circle through the points A and B to A, which is the point
(0, 1), and the x-axis. Therefore tan θ = 1

C0
. C0 can be found with the

equation:

C0 =
(yB
yA

)2 + (xB−xA
yA

)2 − 1

2(xB−xA
yA

)
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So
1

C0

=
2(xB−xA

yA
)

(yB
yA

)2 + (xB−xA
yA

)2 − 1

Therefore θ = arctan

(
2(xB−xA

yA
)

(yB
yA

)2 + (xB−xA
yA

)2 − 1

)

From this we get the matrix K:

K =


cos

(
arctan

(
(
xB−xA
yA

)

(
yB
yA

)2+(
xB−xA
yA

)2−1

))
− sin

(
arctan

(
(
xB−xA
yA

)

(
yB
yA

)2+(
xB−xA
yA

)2−1

))

sin

(
arctan

(
(
xB−xA
yA

)

(
yB
yA

)2+(
xB−xA
yA

)2−1

))
cos

(
arctan

(
(
xB−xA
yA

)

(
yB
yA

)2+(
xB−xA
yA

)2−1

))


So, now the equations for the points of the transformed 4 are A′ =
fKNM(A), B′ = fKNM(B), and C ′ = fKNM(C).

6. Future studies

Some future studies on the parallel transport might be to look at it
in different models of hyperbolic geometry such as the Poincaré disk,
and the hyperboloid model.
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