Calculating A^{k} using Fulmer's Method

Rasheen Alexander, Katie Huston, Thomas Le, Camera Whicker

July 12, 2013

Table of Contents

(1) Introduction

- Why?
- Definitions
(2) Examples
- Partial Fractions Decomposition
- Fulmer's Method
(3) Proving why Fulmer's Method works for A^{k}
- Linear Independence
- Generalizing to an $n \times n$ matrix
(4) Example of $e^{A t}$ from A^{k}
(5) Summary

Why find A^{k} and $e^{A t}$?

- A^{k} is essential to find the solutions to difference equations.
- Calculating $e^{A t}$, the matrix exponential.
- $e^{A t}$ is used in solving matrix linear differential equations.

Definition

Let n be a nonnegative integer. The falling factorial is the sequence $k^{\underline{n}}$, with $k=0,1,2, \ldots$ given by the following formula.

Definition

Let n be a nonnegative integer. The falling factorial is the sequence $k^{\underline{n}}$, with $k=0,1,2, \ldots$ given by the following formula.

$$
k^{n}=k(k-1)(k-2) \cdots(k-n+1) .
$$

If k were allowed to be a real variable then k^{n} could be characterized as the unique monic polynomial of degree n that vanishes at $0,1, \ldots, n-1$. Observe also that $\left.k^{n}\right|_{k=n}=n!$.

Definition

Let n be a nonnegative integer and a be a complex number. We define a sequence $\varphi_{n, a}(k)$ as

$$
\varphi_{n, a}(k)= \begin{cases}\frac{a^{k-n} k^{n}}{n!} & a \neq 0, \\ \delta_{n}(k) & a=0\end{cases}
$$

Definition

Let n be a nonnegative integer and a be a complex number. We define a sequence $\varphi_{n, a}(k)$ as

$$
\varphi_{n, a}(k)= \begin{cases}\frac{a^{k-n} k^{\underline{n}}}{n!} & a \neq 0 \\ \delta_{n}(k) & a=0\end{cases}
$$

where

$$
\delta_{n}(k)= \begin{cases}0 & k \neq n \\ 1 & k=n\end{cases}
$$

Example

With $\varphi_{0,0}(k), \varphi_{1,4}(k)$, and $\varphi_{2,5}(k)$, we have

Example

With $\varphi_{0,0}(k), \varphi_{1,4}(k)$, and $\varphi_{2,5}(k)$, we have

$$
\varphi_{0,0}(k)=\delta_{0}(k)=(1,0,0,0,0, \ldots)
$$

Example

With $\varphi_{0,0}(k), \varphi_{1,4}(k)$, and $\varphi_{2,5}(k)$, we have

$$
\begin{array}{rll}
\varphi_{0,0}(k) & =\delta_{0}(k) & =(1,0,0,0,0, \ldots) \\
\varphi_{1,4}(k) & =4^{k-1} k & =(0,1,8,48,256, \ldots)
\end{array}
$$

Example

With $\varphi_{0,0}(k), \varphi_{1,4}(k)$, and $\varphi_{2,5}(k)$, we have

$$
\begin{aligned}
\varphi_{0,0}(k)=\delta_{0}(k) & =(1,0,0,0,0, \ldots) \\
\varphi_{1,4}(k)=4^{k-1} k & =(0,1,8,48,256, \ldots) \\
\varphi_{2,5}(k)=\frac{5^{k-2} k(k-1)}{2} & =(0,0,1,15,150, \ldots)
\end{aligned}
$$

Definition

Let $y(k)$ be a sequence of complex numbers. We define the \mathcal{Z}-transform of $y(k)$ to be the function $\mathcal{Z}\{y(k)\}(z)$, where z is a complex variable, by the following formula:

$$
\mathcal{Z}\{y(k)\}(z)=\sum_{k=0}^{\infty} \frac{y(k)}{z^{k}}
$$

Now that we've defined the \mathcal{Z}-Transform, we can now apply it to $\varphi_{n, a}$. Let $a \in \mathbb{C}$ and $n \in \mathbb{N}$ and we obtain the following formula.

$$
\mathcal{Z}\left\{\varphi_{n, a}(k)\right\}(z)=\frac{z}{(z-a)^{n+1}}
$$

Theorem

Let A be an $n \times n$ matrix with entries in the complex plane. Then

$$
\mathcal{Z}\left\{A^{k}\right\}(z)=z(z I-A)^{-1}
$$

where I is the $n \times n$ identity matrix.

Note that the \mathcal{Z}-Transform is one-to-one and linear. Therefore, the \mathcal{Z}-Transform has an inverse.

Now that we know that the \mathcal{Z}-Transform is invertable we obtain the following formula

$$
A^{k}=\mathcal{Z}^{-1}\left\{z(z I-A)^{-1}\right\}
$$

Examples

Proving why Fulmer's Method works for A^{k} Example of $e^{A t}$ from A^{k} Summary

Example

Find A^{k} if

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]
$$

Recall $\mathcal{Z}\left\{A^{k}\right\}(z)=z(z l-A)^{-1}$.
First, we would compute $z l-A$.

$$
z I-A=\left[\begin{array}{cc}
z-2 & 1 \\
-1 & z
\end{array}\right]
$$

Next, compute the inverse of $z l-A$.

$$
\begin{aligned}
(z I-A)^{-1} & =\frac{1}{z^{2}-2 z+1}\left[\begin{array}{cc}
z & -1 \\
1 & z-2
\end{array}\right] \\
& =\frac{1}{(z-1)^{2}}\left[\begin{array}{cc}
z & -1 \\
1 & z-2
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{z}{(z-1)^{2}} & \frac{-1}{(z-1)^{2}} \\
\frac{1}{(z-1)^{2}} & \frac{z-2}{(z-1)^{2}}
\end{array}\right]
\end{aligned}
$$

So we must perform partial fraction decomposition to obtain

$$
\begin{gathered}
\frac{z}{(z-1)^{2}}=\frac{A}{(z-1)}+\frac{B}{(z-1)^{2}} \\
z=A(z-1)+B
\end{gathered}
$$

If $z=1$,

$$
\begin{aligned}
1 & =A(1-1)+B \\
1 & =A(0)+B \\
1 & =0+B \\
B & =1
\end{aligned}
$$

$$
\begin{aligned}
\frac{z}{(z-1)^{2}} & =\frac{A}{(z-1)}+\frac{B}{(z-1)^{2}} \\
z & =A(z-1)+B
\end{aligned}
$$

If $z=0$,

$$
\begin{aligned}
& 0=A(0-1)+B \\
& 0=A(-1)+B \\
& 0=-A+B \\
& A=B \\
& A=1
\end{aligned}
$$

Plug in results:

$$
\frac{z}{(z-1)^{2}}=\frac{1}{(z-1)}+\frac{1}{(z-1)^{2}}
$$

$$
\begin{aligned}
\frac{z-2}{(z-1)^{2}} & =\frac{A}{(z-1)}+\frac{B}{(z-1)^{2}} \\
z-2 & =A(z-1)+B
\end{aligned}
$$

If $z=1$,

$$
\begin{aligned}
1-2 & =A(1-1)+B \\
-1 & =A(0)+B \\
-1 & =0+B \\
B & =-1
\end{aligned}
$$

$$
\begin{aligned}
\frac{z-2}{(z-1)^{2}}= & \frac{A}{(z-1)}+\frac{B}{(z-1)^{2}} \\
z-2 & =A(z-1)+B
\end{aligned}
$$

If $z=0$,

$$
\begin{aligned}
0-2 & =A(0-1)+B \\
-2 & =A(-1)+B \\
-2 & =-A+B \\
2+B & =A \\
2+(-1) & =A \\
1 & =A
\end{aligned}
$$

Plug in results:

$$
\begin{gathered}
\frac{z-2}{(z-1)^{2}}=\frac{1}{(z-1)}+\frac{-1}{(z-1)^{2}} \\
(z I-A)^{-1}=\left[\begin{array}{cc}
\frac{1}{(z-1)}+\frac{1}{(z-1)^{2}} & \frac{1}{(z-1)^{2}} \\
\frac{1}{(z-1)^{2}} & \frac{1}{(z-1)}+\frac{-1}{(z-1)^{2}}
\end{array}\right]
\end{gathered}
$$

Finally, we obtain the following:

$$
(z l-A)^{-1}=\frac{1}{z-1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1}{(z-1)^{2}}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

which separates the original matrix into two matrices that have a common denominator for each entry.

Multiplying z into the equation, we obtain

$$
z(z l-A)^{-1}=\frac{z}{z-1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{z}{(z-1)^{2}}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

By previous definition and taking the inverse \mathcal{Z}-transform, we find that

$$
\varphi_{n, a}(k)=\mathcal{Z}^{-1}\left\{\frac{z}{(z-a)^{n+1}}\right\}
$$

and since we have fractions that are of this form, we may apply the inverse Z-transform to obtain

$$
\begin{aligned}
A^{k} & =\mathcal{Z}^{-1}\left\{\frac{z}{z-1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{z}{(z-1)^{2}}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\right\} \\
& =\varphi_{0,1}(k)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\varphi_{1,1}(k)\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right] \\
& =\frac{1^{k-0} k^{\underline{0}}}{0!}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\frac{1^{k-1} k^{\underline{1}}}{1!}\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+k\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Therefore, we obtain that

$$
A^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+k\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Example

Find A^{k} by using the Fulmer's Method if

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]
$$

Recall $A^{k}=\mathcal{Z}^{-1}\left\{z(z I-A)^{-1}\right\}$. We first want to compute the determinant of $z(z l-A)^{-1}$. We start by computing $z l-A$.

$$
z I-A=\left[\begin{array}{cc}
z-2 & 1 \\
-1 & z
\end{array}\right]
$$

Recall $A^{k}=\mathcal{Z}^{-1}\left\{z(z I-A)^{-1}\right\}$. We first want to compute the determinant of $z(z I-A)^{-1}$. We start by computing $z l-A$.

$$
z I-A=\left[\begin{array}{cc}
z-2 & 1 \\
-1 & z
\end{array}\right]
$$

Next,

$$
\operatorname{det}(z I-A)=(z-1)^{2}
$$

Recall $A^{k}=\mathcal{Z}^{-1}\left\{z(z l-A)^{-1}\right\}$. We first want to compute the determinant of $z(z I-A)^{-1}$. We start by computing $z l-A$.

$$
z I-A=\left[\begin{array}{cc}
z-2 & 1 \\
-1 & z
\end{array}\right]
$$

Next,

$$
\operatorname{det}(z I-A)=(z-1)^{2}
$$

this implies

$$
\operatorname{det}\left((z I-A)^{-1}\right)=\frac{1}{(z-1)^{2}}
$$

Recall $A^{k}=\mathcal{Z}^{-1}\left\{z(z l-A)^{-1}\right\}$. We first want to compute the determinant of $z(z I-A)^{-1}$. We start by computing $z l-A$.

$$
z I-A=\left[\begin{array}{cc}
z-2 & 1 \\
-1 & z
\end{array}\right]
$$

Next,

$$
\operatorname{det}(z I-A)=(z-1)^{2}
$$

this implies

$$
\operatorname{det}\left((z I-A)^{-1}\right)=\frac{1}{(z-1)^{2}}
$$

Lastly, we must multiply both sides by z

$$
z \operatorname{det}\left((z l-A)^{-1}\right)=\frac{z}{(z-1)^{2}}
$$

We can write A^{k} in the following way

$$
A^{k}=\varphi_{0,1}(k) M+\varphi_{1,1}(k) N
$$

where M and N are our unknown matrices. By the way we defined the φ function, we obtain

$$
\begin{aligned}
A^{k} & =\frac{1^{k-0} k^{\underline{0}}}{0!} M+\frac{1^{k-1} k^{\frac{1}{1}}}{1!} N \\
& =M+k N
\end{aligned}
$$

Let $k=0$

$$
I=M
$$

Let $k=0$

$$
I=M
$$

Let $k=1$

$$
A=M+N
$$

Let $k=0$

$$
I=M
$$

Let $k=1$

$$
A=M+N
$$

Solve for M and N. From the first equation, we get

$$
M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

From the second equation, we obtain

$$
\begin{aligned}
N & =A-M \\
& =\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

Finally,

$$
A^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+k\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Theorem

The standard basis $\mathbb{B}_{q}=\left\{\varphi_{1 \lambda_{1}}, \varphi_{1 \lambda_{2}}, \cdots, \varphi_{2 \lambda_{1}}, \varphi_{2 \lambda_{2}}, \cdots \varphi_{r \lambda_{m}}\right\}$ is linearly independent.

Write \mathbb{B}_{q} as a linear combination.

$$
\begin{aligned}
& a_{11} \varphi_{1 \lambda_{1}}+a_{12} \varphi_{1 \lambda_{2}}+\cdots+a_{1 m} \varphi_{1 \lambda_{m}}+ \\
& a_{21} \varphi_{2 \lambda_{1}}+a_{22} \varphi_{2 \lambda_{2}}+\cdots+a_{2 m} \varphi_{2 \lambda_{m}}+ \\
& \vdots \\
& a_{r 1} \varphi_{r \lambda_{1}}+a_{r 2} \varphi_{r \lambda_{2}}+\cdots+a_{r m} \varphi_{r \lambda_{m}}=0
\end{aligned}
$$

$$
\begin{aligned}
& a_{11} \frac{z}{\left(z-\lambda_{1}\right)^{2}}+a_{12} \frac{z}{\left(z-\lambda_{2}\right)^{2}}+\cdots+a_{1 m} \frac{z}{\left(z-\lambda_{m}\right)^{2}}+ \\
& a_{21} \frac{z}{\left(z-\lambda_{1}\right)^{3}}+a_{22} \frac{z}{\left(z-\lambda_{2}\right)^{3}}+\cdots+a_{2 m} \frac{z}{\left(z-\lambda_{m}\right)^{3}}+ \\
& \vdots \\
& a_{r 1} \frac{z}{\left(z-\lambda_{1}\right)^{r+1}}+a_{r 2} \frac{z}{\left(z-\lambda_{2}\right)^{r+1}}+\cdots+a_{r m} \frac{z}{\left(z-\lambda_{m}\right)^{r+1}}=0
\end{aligned}
$$

Regroup to form like denominators

$$
\begin{aligned}
& \frac{a_{11}\left(z\left(z-\lambda_{1}\right)^{r-1}\right)+a_{21}\left(z\left(z-\lambda_{1}\right)^{r-2}\right)+\cdots+a_{r 1}(z)}{\left(z-\lambda_{1}\right)^{r+1}}+ \\
& \frac{a_{12}\left(z\left(z-\lambda_{2}\right)^{r-1}\right)+a_{22}\left(z\left(z-\lambda_{2}\right)^{r-2}\right)+\cdots+a_{r 2}(z)}{\left(z-\lambda_{2}\right)^{r+1}}+ \\
& \vdots \\
& \frac{a_{1 m}\left(z\left(z-\lambda_{m}\right)^{r-1}\right)+a_{2 m}\left(z\left(z-\lambda_{m}\right)^{r-2}\right)+\cdots+a_{r m}(z)}{\left(z-\lambda_{m}\right)^{r+1}}=0
\end{aligned}
$$

Let $n_{b}\left(z-\lambda_{b}\right)$ be a polynomial.

$$
\frac{n_{1}\left(z-\lambda_{1}\right)}{\left(z-\lambda_{1}\right)^{r+1}}+\frac{n_{2}\left(z-\lambda_{2}\right)}{\left(z-\lambda_{2}\right)^{r+1}}+\cdots+\frac{n_{m}\left(z-\lambda_{m}\right)}{\left(z-\lambda_{m}\right)^{r+1}}=0
$$

Let $n_{b}\left(z-\lambda_{b}\right)$ be a polynomial.

$$
\frac{n_{1}\left(z-\lambda_{1}\right)}{\left(z-\lambda_{1}\right)^{r+1}}+\frac{n_{2}\left(z-\lambda_{2}\right)}{\left(z-\lambda_{2}\right)^{r+1}}+\cdots+\frac{n_{m}\left(z-\lambda_{m}\right)}{\left(z-\lambda_{m}\right)^{r+1}}=0
$$

If $n_{1}\left(z-\lambda_{1}\right) \neq 0$, then
$\lim _{z \rightarrow \lambda_{1}}\left[\frac{n_{1}\left(z-\lambda_{1}\right)}{\left(z-\lambda_{1}\right)^{r+1}}+\frac{n_{2}\left(z-\lambda_{2}\right)}{\left(z-\lambda_{2}\right)^{r+1}}+\cdots+\frac{n_{m}\left(z-\lambda_{m}\right)}{\left(z-\lambda_{m}\right)^{r+1}}\right]=\infty+C=0$
where C is a constant. Thus, we get a contradiction.

Therefore, $n_{1}\left(z-\lambda_{1}\right)=0$ which implies that $n_{1}(z)=0$ and $a_{11}, a_{12}, \cdots, a_{1 m}=0$. You can continue this argument by induction to obtain $\forall a^{\prime} s=0$

Therefore, $n_{1}\left(z-\lambda_{1}\right)=0$ which implies that $n_{1}(z)=0$ and $a_{11}, a_{12}, \cdots, a_{1 m}=0$. You can continue this argument by induction to obtain $\forall a^{\prime} s=0$

With this Theorem we may now show that we may apply Fulmer's method to any $n \times n$ matrix.

Definition

Let n be a natural number and $a(k)$ to be a sequence with complex terms. We define E as a shift operator for sequences where

$$
E^{n}\{a(k)\}=a(k+n)
$$

Example

$$
\begin{aligned}
E\left(2^{k}\right) & =2^{k+1} \\
E^{2}\left(2^{k}\right) & =2^{k+2} \\
E^{3}\left(2^{k}\right) & =2^{k+3}
\end{aligned}
$$

Can this work for any $n \times n$ matrix?

From Thai's paper, we know that

$$
A^{k}=\sum_{a=1}^{r} \sum_{n=0}^{m_{\mathrm{a}}-1} M_{n a} \varphi_{n, a_{r}}(k)
$$

Can this work for any $n \times n$ matrix?

From Thai's paper, we know that

$$
A^{k}=\sum_{a=1}^{r} \sum_{n=0}^{m_{a}-1} M_{n a} \varphi_{n, a_{r}}(k)
$$

However, because there are a finite amount of terms, we may drop the double subscript in favor of a single subscript.

Can this work for any $n \times n$ matrix?

From Thai's paper, we know that

$$
A^{k}=\sum_{a=1}^{r} \sum_{n=0}^{m_{a}-1} M_{n a} \varphi_{n, a_{r}}(k)
$$

However, because there are a finite amount of terms, we may drop the double subscript in favor of a single subscript.

$$
A^{k}=\sum_{n=1}^{R} M_{n} \varphi_{n}(k)
$$

Can this work for any $n \times n$ matrix?

Knowing what the phi sequences are, we may create a system of equations with the shift operator. Setting $k=0$, we have

$$
\begin{array}{rll}
A^{k} & =I & =M_{1} \varphi_{1}(0)+M_{2} \varphi_{2}(0)+M_{3} \varphi_{3}(0)+\ldots \\
E\left\{A^{k}\right\} & =A & =M_{1} \varphi_{1}(1)+M_{2} \varphi_{2}(1)+M_{3} \varphi_{3}(1)+\ldots \\
E^{2}\left\{A^{k}\right\} & =A^{2} & =M_{1} \varphi_{1}(2)+M_{2} \varphi_{2}(2)+M_{3} \varphi_{3}(2)+\ldots \\
\vdots & =\vdots & \\
\vdots \\
E^{R-1}\left\{A^{k}\right\} & =A^{R-1} & =M_{1} \varphi_{1}(R-1)+M_{2} \varphi_{2}(R-1)+\ldots
\end{array}
$$

Can this work for any $n \times n$ matrix?

Knowing what the phi sequences are, we may create a system of equations with the shift operator. Setting $k=0$, we have

$$
\begin{array}{rll}
A^{k} & =I & =M_{1} \varphi_{1}(0)+M_{2} \varphi_{2}(0)+M_{3} \varphi_{3}(0)+\ldots \\
E\left\{A^{k}\right\} & =A & =M_{1} \varphi_{1}(1)+M_{2} \varphi_{2}(1)+M_{3} \varphi_{3}(1)+\ldots \\
E^{2}\left\{A^{k}\right\} & =A^{2} & =M_{1} \varphi_{1}(2)+M_{2} \varphi_{2}(2)+M_{3} \varphi_{3}(2)+\ldots \\
\vdots & =\vdots & \\
\vdots \\
E^{R-1}\left\{A^{k}\right\} & =A^{R-1} & =M_{1} \varphi_{1}(R-1)+M_{2} \varphi_{2}(R-1)+\ldots
\end{array}
$$

Can this work for any $n \times n$ matrix?

Representing as a matrix equation, we have

$$
\left[\begin{array}{c}
I \\
A \\
A^{2} \\
\vdots \\
A^{R-1}
\end{array}\right]=\left[\begin{array}{ccccc}
\varphi_{1}(0) & \varphi_{2}(0) & \varphi_{3}(0) & \ldots & \varphi_{R}(0) \\
\varphi_{1}(1) & \varphi_{2}(1) & \varphi_{3}(1) & \ldots & \varphi_{R}(1) \\
\varphi_{1}(2) & \varphi_{2}(2) & \varphi_{3}(2) & \ldots & \varphi_{R}(2) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\varphi_{1}(R-1) & \varphi_{2}(R-1) & \varphi_{3}(3) & \ldots & \varphi_{R}(R-1)
\end{array}\right]\left[\begin{array}{c}
M_{1} \\
M_{2} \\
M_{3} \\
\vdots \\
M_{R}
\end{array}\right]
$$

Where

$$
\left[\begin{array}{c}
M_{1} \\
M_{2} \\
M_{3} \\
\vdots \\
M_{R}
\end{array}\right]
$$

is our unknown matrix to solve for.

Can this work for any $n \times n$ matrix?

We will let B equal to

$$
\left[\begin{array}{ccccc}
\varphi_{1}(0) & \varphi_{2}(0) & \varphi_{3}(0) & \ldots & \varphi_{R}(0) \\
\varphi_{1}(1) & \varphi_{2}(1) & \varphi_{3}(1) & \ldots & \varphi_{R}(1) \\
\varphi_{1}(2) & \varphi_{2}(2) & \varphi_{3}(2) & \ldots & \varphi_{R}(2) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\varphi_{1}(R-1) & \varphi_{2}(R-1) & \varphi_{3}(3) & \ldots & \varphi_{R}(R-1)
\end{array}\right]
$$

B is a special matrix called the Matrix of Casorati, where the matrix is made from a set of functions and their E shift. Its determinant is called the Casoratian If we want to find a unique answer for our coefficient matrices, B must be invertible or the determinant of B must be non-zero.

Can this work for any $n \times n$ matrix?

Theorem

Let $u_{1}(t), u_{2}(t), \ldots, u_{n}(t)$ be a set of functions. If these functions are linearly independent, then the Casoratian is non-zero for all t.

Can this work for any $n \times n$ matrix?

Knowing that the phi functions are linearly independent, we know we find that the determinant of B is non-zero. Therefore, B is invertible and we may find the set of unknown coefficient matrices. Therefore, we may use Fulmer's Method for any $n \times n$ matrix.

$$
B^{-1}\left[\begin{array}{c}
I \\
A \\
A^{2} \\
\vdots \\
A^{R-1}
\end{array}\right]=\left[\begin{array}{c}
M_{1} \\
M_{2} \\
M_{3} \\
\vdots \\
M_{R}
\end{array}\right]
$$

From Davidson's class, we learned how to solve $e^{A t}$ by the Laplace Transform.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right] \\
e^{A t}=e^{t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
\end{gathered}
$$

Now, we will show a quicker way to find $e^{A t}$ by knowing A^{k} from the \mathcal{Z}-Transform.

Find $e^{A t}$ if

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]
$$

From a previous example, we found that

$$
A^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+k\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Next, we can manipulate this equation by adding a summation, multiplying by t^{k}, and dividing by k ! to both sides. We get the following:

$$
\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{t^{k}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}{k!}+\sum_{k=0}^{\infty} \frac{k t^{k}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]}{k!}
$$

From calculus, we know we can rewrite this as:

$$
e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k} A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{t^{k}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}{k!}+\sum_{k=0}^{\infty} \frac{k t^{k}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]}{k!}
$$

Since the matrices are not dependent on k we can move them out of the summation.

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \sum_{k=0}^{\infty} \frac{t^{k}}{k!}+\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \sum_{k=0}^{\infty} \frac{k t^{k}}{k!} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \sum_{k=0}^{\infty} \frac{t^{k}}{k!}+\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right] \sum_{k=1}^{\infty} \frac{t^{k}}{(k-1)!}
\end{aligned}
$$

Again, from calculus we know we can rewrite the summations as a Taylor Series, giving us the following equation:

$$
e^{A t}=e^{t}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+t e^{t}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Summary

- Using the φ functions and the \mathcal{Z}-transform, we found that Fulmer's method may be used to calculate A^{k}.
- Using the formula for A^{k}, we may calculate $e^{A t}$.

