
CHAPTER 2

MANIFOLDS

In this chapter, we address the basic notions: What is a manifold and what is a map
between manifolds. Several examples are given.

An n dimensional manifold is a topological space that appears to be Rn near a point,
i.e., locally like Rn. Since these topological spaces appear to be locally like Rn, we may
hope to develop tools similar to those used to study Rn in order to study manifolds. The
term manifold comes from “many fold,” and it refers to the many dimensions of space that
a manifold may describe.

Later in this section we will also need structure to discuss C∞ functions on manifolds.
Our notion of smooth will be C∞, i.e., continuous partial derivatives of all orders. The
terms C∞ and smooth are usually synonymous, however, in this chapter and the next,
we will use C∞ to describe maps between real vector spaces (as in advanced Calculus)
and smooth for maps between manifolds. We use this distinction since many confusing
compositions occur and the reader is assumed to be familiar with C∞ maps between real
vector spaces while results on smooth maps between manifolds must be proven. We begin
with the notion of a topological manifold.

Definition 2.1***. A topological manifold of dimension n is a second countable Haus-
dorff space M for which each point has a neighborhood homeomorphic to an open set in
Rn.

This notion appears to capture the topological ideal of locally looking like Rn, but in
order to do Calculus we will need more structure. The term n-manifold is usually written
for n dimensional manifold, and the dimension n is often suppressed.

Definition 2.2***. Let U ⊂ M be a connected open set in a topological n-manifold M ,
and φ : U → Rn be a homeomorphism to its image φ(U), an open set in Rn.

The pair (U , φ) is called a coordinate system or chart. If x0 ∈ U and φ(x0) = 0 ∈ Rn,
then the coordinate system is centered at x0. Call the map φ a coordinate map.

Definition 2.3***. Suppose M is a topological manifold. For k ∈ N, k = 0, or k = ∞,
a Ck atlas is a set of charts {(Ui, φi) | i ∈ I} such that

(1)
⋃

i∈I Ui = M , and

(2) φi ◦ φ
−1
j is Ck on its domain for all i, j ∈ I.

The k denotes the degree of differentiability. If k = 0, then maps are just continuous.

Definition 2.4***. If A = {(Ui, φi)|i ∈ I} is a Ck atlas for an n-manifold Mn and
f : U → Rn is a homeomorphism onto its image with U ⊂ M open, then (U , f) is
compatible with A if φi ◦ f

−1 : f(U ∩Ui) → φ(U ∩Ui) is Ck and f ◦φ−1
i is Ck for all i ∈ I.
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2 CHAPTER 2 MANIFOLDS

Theorem 2.5***. If A = {(Ui, φi)|i ∈ I} is a Ck atlas for Mn then A is contained in a
unique maximal atlas for M where atlases are ordered as sets by containment.

Proof. Let

M ={(Vα, fα)|Vα ⊂M is open, fα : Vα → Rn

is a homeomorphism onto its image, and (Vα, fα) is compatible with A}.

Since M contains all compatible charts it is the unique maximal atlas if it is an atlas. We
now show that it is an atlas. If (Vα, fα) and (Vβ , fβ) are in M then we must show that
fβ ◦ f−1

α : fα(Vα ∩ Vβ) → fβ(Vα ∩ Vβ) is Ck. Suppose m ∈ Vα ∩ Vβ . Take i ∈ I such that

m ∈ Ui. Then on fα(Vα ∩Vβ ∩Ui), fβ ◦ f−1
α = (fβ ◦ φ−1

i ) ◦ (φi ◦ f
−1
α ). Since fβ and fα are

compatible with A, fβ ◦ φ−1
i and φi ◦ f

−1
α are Ck on open sets of Rn to open sets of Rn.

Therefore fβ ◦ f−1
α is Ck on its domain. �

Definition 2.6***. A maximal Ck atlas is called a Ck differential structure.

Definition 2.7***. A Ck n-manifold is a topological n-manifold M along with a Ck

differential structure S. By Theorem 2.5***, a single atlas is enough to determine the
differential structure.

The reader should note that this definition for a C0 structure agrees with the definition
of a topological manifold. A C∞ n-manifold is also called a smooth manifold. The word

“manifold,” without other adjectives, will denote a smooth manifold as these
will be the subject of the remainder of this manuscript.

Usually the notation for the structure S is suppressed. However, the phrase “a manifold
M” supposes that there is an unnamed differential structure S in the background. In
particular this means that if A is an atlas, then A ⊂ S; and, if (U, φ) is a chart, then
(U, φ) ∈ S. The differential structure contains all compatible charts. For example, if
(U, φ) ∈ S and V ⊂ U is open, then (V, φ|V ) ∈ S.

Example 2.8.a***. A real n-dimensional vector space is an n-manifold.

Let V be an n-dimensional vector space. Pick an ordered basis v1, · · · , vn and define

charts (V, fv1,··· ,vn
), where fv1,··· ,vn

(
n

∑

i=1

aivi) = (a1, · · · , an) is an isomorphism of V to Rn.

The image is all of Rn, which is an open subset of itself. These charts are compatible since
fw1,··· ,wn

f−1
v1,··· ,vn

is a linear automorphism on Rn.
Recall that every real vector space is isomorphic to Rn, however Rn comes equiped with

a standard ordered basis or set of coordinates. A real vector space may appear in several
guises. We now mention a few instances of vector spaces that relate to matrices.

Example 2.8.b***. Let the set of n × n real matrices be denoted Matn×n. The set
Matn×n is a real vector space of dimension n2.

Let e1, e2, · · · , em be the standard ordered basis for Rm. If eij is the matrix with 1
in the i-th row and j-th column and zero elsewhere, then {eij | 1 ≤ i, j ≤ n} is a basis.

The isomorphism of Matn×n to Rn2

is determined by the linear map f(eij) = en(i−1)+j

for 1 ≤ i, j ≤ n, and allows one to think of the matrix entries as coordinates in Rn2

. In
coordinates, if A = (aij), then f(A) = (a11, a12, · · · , a1n, a21, · · · , ann).
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Example 2.8.c***. The symmetric matrices Symn×n = {A ∈ Matn×n | At = A} form a

vector subspace of dimension
n(n+ 1)

2
.

The entries on and above the diagonal can be arbitrary. Below the diagonal, the entries
are determined by symmetry, i.e., aij = aji.

Example 2.8.d***. The skew symmetric matrices Skewn×n = {A ∈ Matn×n | At = −A}

form a vector subspace of dimension
n(n− 1)

2
.

The entries on the diagonal must be zero, since aij = −aji. The entries above the
diagonal can be arbitrary and the entries below are determined by the antisymmetry, i.e.,
aij = −aji.

Example 2.9a***. The sphere Sn = {x ∈ Rn+1 | |x| = 1} is an n-manifold.

We construct an atlas {(U1, φ1), (U2, φ2)} with the aid of a standard well-known map
called stereographic projection. Let U1 = Sn\{(0, · · · , 0, 1)} and U2 = Sn\{(0, · · · , 0,−1)}.
Note that U1 ∪ U2 = Sn. Let φ1(x1, x2, · · · , xn+1) = ( x1

1−xn+1
, · · · , xn

1−xn+1
). The map

φ1 : U1 → Rn is called stereographic projection. The inverse map φ−1
1 : Rn → U1 is

defined by

φ−1
1 (y1, · · · , yn) =

(

2y1
∑n

i=1 y
2
i + 1

,
2y2

∑n

i=1 y
2
i + 1

, · · · ,
2yn

∑n

i=1 y
2
i + 1

, 1 −
2

∑n

i=1 y
2
i + 1

)

.

Both φ1 and φ−1
1 are continuous and hence φ1 is a homeomorphism.

The second coordinate chart (U2, φ2), stereographic projection from the south pole,
is given by φ2 = −φ1 ◦ (−1) where (-1) is multiplication by −1 on the sphere. Since
multiplication by -1 is a homeomorphism of the sphere to itself (its inverse is itself), the
map φ2 : U2 → Rn is a homeomorphism.

Checking the compatability conditions, we have φ2◦φ
−1
1 (y1, · · · , yn) =

1
∑n

i=1 y
2
i

(y1, · · · , yn)

and φ2 ◦ φ
−1
1 = φ1 ◦ φ

−1
2 . Hence, Sn is shown to be an n-manifold.

Example 2.9b***. Another atlas for the sphere Sn.

We use 2(n+ 1) coordinate charts to construct this atlas. For each i ∈ {1, · · · , n+ 1}
let Ui,+ = {(x1, · · · , xn+1) | xi > 0} and Ui,− = {(x1, · · · , xn+1) | xi > 0}. Define φi,+ :
Ui,+ → Rn by φi,+(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1) and φi,+ : Ui,− → Rn

by φi,−(x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1). The coordinate xi is a function of
x1, · · · , xi−1, xi+1, · · · , xn+1 on the sets Ui,+ and Ui,−.

The atlases in Examples 2.9a*** and 2.9b*** are compatible and give the same differ-
ential structure. See Exercise 1***.

Example 2.10***. Suppose U1 ⊂ Rn and U2 ⊂ Rm are open sets. If f : U1 → U2 is a
C∞ function, then the graph of f,

Gf = {(x, y) ∈ Rn+m | y = f(x)}
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is a manifold.

There is only one coordinate neighborhood required. Let π : U1 × U2 → U1 be the
projection π(x, y) = x and let if : U1 → U1 × U2 be defined by if (x) = (x, f(x)). The one
coordinate neighborhood is (Gf , π|Gf

). Both π and if are C∞ maps. The composites are
π|Gf

◦ if = IU1
and if ◦ π|Gf

= IGf
. Hence, π|Gf

is a homeomorphism.

Proposition 2.11***. An open subset of an n-manifold is an n-manifold.

Proof. Suppose M is an n-manifold and U ⊂ M is an open subset. If (φ, V ) is a chart of
M , then (φ|V ∩U , V ∩ U) is a chart for U . �

While the next example uses Proposition 2.11***, it is just an open subset of Rn2

.

Example 2.12***. GL(n,R) = {n× n nonsingular matrices} is an n2-manifold.

Consider the function det : Matn×n → R. We use the usual coordinates on Matn×n, the
entries as was described in the first example. In these coordinates,

det(A) =
∑

σ∈Sn

(−1)signσa1σ(1)a2σ(2) · · ·anσ(n).

This function is an n-th degree polynomial. Hence, it is a continuous map. The set
det−1(R \ 0) is an open set, the set of nonsingular matrices, GL(n,R).

If a vector space V does not have a natural choice of basis or we do not wish to focus on
the choice of basis, then we write its set of automorphisms as GL(V ). By picking a basis
for V , it becomes GL(n,R).

It is useful to see that the basic operations in GL(n,R) are C∞.

Proposition 2.13***. The following maps are C∞:

(1) GL(n,R) ×GL(n,R) → GL(n,R) by (A,B) 7→ AB
(2) GL(n,R) → GL(n,R) by A 7→ AT

(3) GL(n,R) → GL(n,R) by A 7→ A−1

Proof. Recall that GL(n,R) is an open subset of Rn2

and that GL(n,R) × GL(n,R) is

an open subset of Rn2

× Rn2

. The notion of C∞ is from advanced Calculus.
The first map, multiplication, is a quadratic polynomial in each coordinate as the i, j

entry of AB is
∑n

k=1 aikbkj .
The second map, transpose, is just a reordering of coordinates. In fact, transpose is a

linear map.
The third map, inverse, is a rational function of the entries of A. The numerator is the

determinant of a minor of A and the denominator is detA, a polynomial that is nonzero
on GL(n,R). �

Proposition 2.14***. The product of an n-manifold and an m-manifold is an (n+m)-
manifold.

Proof. Suppose M is an m-manifold with atlas AM = {(Ui, φi) | i ∈ I} and N is an
n-manifold with atlas AN = {(Vj, ψj) | j ∈ J}. An atlas for M ×N is

A = {(Ui × Vj , φi × ψj) | i ∈ I, j ∈ J},
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where φi × ψj(x, y) = (φi(x), ψj(y)) ∈ Rn × Rm for (x, y) ∈ Ui × Vj .
It is easy to see that A is an atlas, since the union

⋃

(i,j)∈I×J Ui ×Vj = M ×N , and it is

easy to check compatibility. If (Ui1 , φi1), (Ui2 , φi2) ∈ AM and (Vj1 , ψj1), (Vj2, ψj2) ∈ AN ,
then

(1) (φi1 × ψj1) ◦ (φi2 × ψj2)
−1 = (φi1 ◦ (φi2)

−1) × (ψi1 ◦ (ψi2)
−1)

on the set (φi2 × ψj2)((Ui1 × Vj1) ∩ (Ui2 × Vj2)) = φi2(Ui1 ∩ Ui2) × ψi2(Vj1 ∩ Vj2) an open
set in Rm ×Rn. Since AM and AN are atlases, the right side of (1) is C∞, hence the left
side is also, and A is an atlas. �

When can a manifold be pieced together from abstract charts? The question is of
philosophical and practical interest.

Theorem 2.15***. Let X be a set. Suppose A = {(Ui, φi)|i ∈ I} satisfies

(1) Ui ⊂ X for each i ∈ I.
(2)

⋃

i∈I Ui = X.
(3) φi : Ui → φi(Ui) ⊂ Rn is a bijection for all i.
(4) φi(Ui), φi(Ui ∩ Uj) ⊂ Rn are open for all i, j ∈ I.

(5) φjφ
−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) is C∞ for all i, j ∈ I.

Then there is a unique topology on X such that each Ui is open and each φi is a home-
omorphism. If the topology is second countable and Hausdorff then X is an n-manifold
and A is an atlas.

Remark 2.16***. If for every x, y ∈ X there are i, j ∈ I with x ∈ Ui, y ∈ Uj and
Ui ∩ Uj = ∅ or there is an i ∈ I with x, y ∈ Ui, then X is Hausdorff.

If the open cover {Ui|i ∈ I} has a countable subcover, then X is second countable since
the countable union of second countable spaces is a second countable space.

Proof of Theorem 2.15***. For each x ∈ M we give a neighborhood basis. Induce a
topology on Ui by taking O ⊂ Ui is open if and only if O = φ−1

i (W ) for W ⊂ Rn open.
The map φi is then a homeormorphism. We must check that this gives a well defined
neighborhood basis for a topology. Suppose x ∈ Ui ∩ Uj . The neighborhood basis is then

defined by both φi and φj . Since φjφ
−1
i is a homeomorphism of open sets, φj = (φjφ

−1
i )◦φi

defines a neighborhood basis of x in a manner consistent with φi. This construction defines
a neighborhood basis of each point and so a topology on X. This is the only topology with
each φi a homeomorphism as the basis determines the topology. We now see that A satisfies
the conditions for an atlas: {Ui|i ∈ I} is an open cover by 2, φi is a homeomorphism by
3 and the construction above, and the compatibility condition is 5. If X is Hausdorff and
second countable, then X is an n-manifold. �

Now that we know the definition of a manifold, the next basic concept is a map between
manifolds.

Definition 2.17***. Suppose f : Mm → Nn is a function between manifolds. If for all
charts (U , φ) and (W, ψ) in the differential structures of M and N respectively, ψ ◦ f ◦φ−1

is C∞ on its domain, then f is a smooth map or function.
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The reader should note that Definition 2.17*** agrees with the notion of a C∞ map of
functions from Calculus, i.e., if O ⊂ Rm, then f : O → Rn is C∞ as defined in Calculus
if and only if it is smooth as a map between manifolds.

In order to check if a function between manifolds is smooth, one does not have to check
every chart in a differential structure. It is enough to check one chart about each point as
is proved in the following theorem.

Proposition 2.18***. Let f : Mm → Nn be a function between manifolds. Further
suppose that for each x ∈ M there are charts (Ux, φx) about x for M and (Wf(x), ψf(x))

about f(x) for N such that ψf(x) ◦ f ◦ φ−1
x is C∞ on its domain. Then f is smooth.

Proof. Suppose that (U, φ) and (W,ψ) are in the differential structure for M and N re-
spectively. We wish to show that ψ ◦ f ◦ φ−1 is C∞ on its domain, φ(f−1(W ) ∩ U).
Take a point in the domain of ψ ◦ f ◦ φ−1, say φ(x) for x ∈ f−1(W ) ∩ U . Then
φ(f−1(W ) ∩ U ∩ f−1(Wf(x)) ∩ Ux) is an open neighborhood of φ(x) in Rm, and on this
open set,

ψ ◦ f ◦ φ−1 = (ψ ◦ ψ−1
f(x)) ◦ (ψf(x) ◦ f ◦ φ−1

x ) ◦ (φx ◦ φ−1)

The compositions in parentheses are maps between real spaces. The first and third are
C∞ since (Wf(x), ψf(x)), (W,ψ) and (Ux, φx), (U, φ) are compatible pairs of charts. The

second composition is C∞ by the hypothesis of the theorem. Hence, ψ ◦ f ◦ φ−1 is C∞, so
by Definition 2.17***, f is smooth. �

Proposition 2.19***. The composition of smooth functions is a smooth function. Sup-
pose f : Mm → Nn and g : Nn → Kk are smooth functions between manifolds. Then
g ◦ f : Mm → Kk is a smooth function.

Proof. Suppose p ∈ M . Suppose that (U, φ), (V, ψ), and (W,ϕ) are chart on M , N , K
respectively; and p ∈ U , f(p) ∈ V , and g(f(p)) ∈ W . The composite ϕ ◦ g ◦ f ◦ φ−1 is
defined on a neighborhood of p, and we need to show that this composite is C∞ on some
neighborhood of p. The composite function

ϕ ◦ g ◦ ψ−1 ◦ ψ ◦ f ◦ φ−1 = ϕ ◦ g ◦ f ◦ φ−1

on some neighborhood of p. Note that (ϕ ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) is the same function
and it is C∞ since each of the functions in parentheses is C∞ because both f and g are
smooth. �

The notion of equivalence between differential manifolds is diffeomorphism.

Definition 2.20***. Suppose M and N are differential manifolds. If there is a smooth
map f : M → N with a smooth inverse f−1 : N →M , then

(1) f is called a diffeomorphism, and
(2) M and N are diffeomorphic.

We make the following simple but useful observation.
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Proposition 2.21***. Suppose that M is an n-manifold, U ⊂ M , φ : U → Rn, and
φ(U) is open in Rn. The pair (U, φ) is a chart of the manifold M if and only if φ is a
diffeomorphism.

Proposition 2.22***. If M is an n-manifold, then the set of diffeomorphisms of M is a
group under composition.

Let Diff(M) denote the group of diffeomorphisms of M .

Proof. The identity map on M , the map IM , is a smooth map, which we easily check. If
(U.ψ) is any coordinate chart for M , then φ ◦ IM ◦ φ−1 is just the identity on φ(U) ⊂ Rn.
By Proposition 2.18***, IM is smooth.

A diffeomorphism f has a smooth inverse by its definition.
The composition of two diffeomorphisms is again a diffeomorphism. If f and g are

diffeomorphisms, the composition is smooth by Proposition 2.19***. The inverse of f ◦ g
is g−1 ◦ f−1.

Finally note that the composition of functions is associative. Hence, Diff(M) is a
group. �

We now consider a method of constructing manifolds. Those students who have al-
ready learned of covering spaces will recognize the construction, although no background
is assumed in these notes.

The construction involves a subgroup G of the diffeomorphisms of an n-manifold M .
We can consider the quotient space M/G defined by the equivalence relation on M that
x ∼ y if and only if y = g(x) for some g ∈ G. Notice that ∼ is an equivalence relation so
that M/G makes sense as a topological space:

(1) If x ∼ x since x = IM (x)
(2) If x ∼ y then y = g(x) and x = g−1(y), so y ∼ x
(3) If x ∼ y and y ∼ z, then y = g(x) and z = h(y), so z = h ◦ g(x) and x ∼ z

We know that M/G is a topological space under the quotient topology and that the
quotient map π : M →M/G is continuous. Can we guarantee it is a manifold? In general,
the answer is no, but we do have the following theorem.

Theorem 2.23***. Suppose M is an n-manifold, and G is a finite subgroup of Diff(M).
Suppose that G satisfies one of the following, either (a) or (b):

(a) If for some x ∈ M and g ∈ G, g(x) = x, then g is the identity, or
(b) There is atlas A for M such that if (U, φ) ∈ A,

(1) then (g(U), φ ◦ g−1) ∈ A, and
(2) h(U) ∩ g(U) = ∅ for all g, h ∈ G, g 6= h.

Then M/G is an n-manifold and the quotient map π : M →M/G is a smooth map.

The condition “if for some x ∈M and g ∈ G, g(x) = x, then g is the identity,” says that
no g, other that the identity can fix a point. The group G is said to operate without fixed
points. Before proving Theorem 2.23***, we first prove the following lemma.

Lemma 2.24***. Suppose M is an n-manifold, and G is a finite subgroup of Diff(M).
Suppose that G satisfies the following property: If for some x ∈ M and g ∈ G, g(x) = x,
then g is the identity. Then there is atlas A for M such that if (U, φ) ∈ A,

(1) then (g(U), φ ◦ g−1) ∈ A, and
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(2) h(U) ∩ g(U) = ∅ for all g, h ∈ G, g 6= h.

Proof. We first show that for every g ∈ G and x ∈M there is an open set Og, a neighbor-
hood of g(x), such that

(1) if g, h ∈ G and g 6= h then Og ∩Oh = ∅.

Fix x ∈ M . For each pair g(x), h(x) there are open sets Ogh and neighborhood of g(x)
and Ohg and neighborhood of h(x) such that Ogh ∩ Ohg = ∅. These sets exist since M is
Hausdorff. Let Og =

⋂

h∈GOgh. The intersection is finite, so Og is open. Given g, h ∈ G,
g 6= h, then Og ⊂ Ogh and Oh ⊂ Ohg, so

Og ∩ Oh ⊂ Ogh ∩ Ohg = ∅.

The next step is to show there is a neighborhood of x, call it O, such that

g(O) ∩ h(O) = ∅ for any g 6= h.

We have g(x) ∈ Og, so g−1(Og) is a neighborhood of x. Let

O =
⋂

g∈G

g−1(Og).

Now, g(O) ⊂ g(g−1(Og)) = Og, and therefore, g(O) ∩ h(O) ⊂ Og ∩ Oh = ∅.
We now produce the atlas. Take a chart (Ux, φx) about x with Ux ⊂ O. Then (g(Ux), φx◦

g−1) is a chart about g(x). Note that h(U) ∩ g(U) ⊂ h(O) ∩ g(O) = ∅. Hence, the atlas
{(g(Ux), φx ◦ g−1) | x ∈M, g ∈ G} satisfies the required properties. �

Proof of Theorem 2.23***. We first construct the coordinate charts. Take A an atlas that
satisfies the two items in Lemma 2.24*** and take (U, φ) ∈ A. The quotient map π is a
continuous and open map. By the second item in Lemma 2.24***, π is also one-to-one
on U . Therefore π|U is a homeomorphism. Denote its inverse by iU : π(U) → U . Let
Φ = φ ◦ iU , then the pair (π(U),Φ) is a coordinate chart for M/G.

We have constructed charts about any point and it remains to show that these charts
are compatible. Suppose z ∈ M/G and z ∈ π(V ) ∩ π(U) where (V, ψ) ∈ A and (π(V ),Ψ)
is a chart of M/G constructed as in the previous paragraph. We wish to show that

Ψ ◦ Φ−1 : Φ(π(U) ∩ π(V )) → Ψ(π(U) ∩ π(V ))

is a diffeomorphism. Since it as an inverse (of the same form) we only have to show it is
C∞. Now, for some y ∈ M , π−1(z) = {g(y) | g ∈ G} a set of |G| points. There are two
group elements g, h ∈ G with g(y) ∈ V and h(y) ∈ U . Let O be a neighborhood of h(y) in
hg−1(V ) ∩ U . A neighborhood of g(y) in V ∩ gh−1(U) is gh−1(O). The map Ψ ◦ Φ−1 on
the open set π(O) is

(1)

Ψ ◦ Φ−1 = (ψ ◦ iV )(φ ◦ iU )−1

= ψ ◦ (iV ◦ π|U ) ◦ φ−1

= ψ ◦ (gh−1) ◦ φ−1
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since gh−1 : O → gh−1(O) is a diffeomorphism, so is the composite (1). This completes
the proof that M/G is a manifold.

That π is a smooth map is almost a tautology. Given x ∈M take (π(U), iU) a chart in
A about x and (π(U),Φ) the chart about π(x) constructed above in the first paragraph.
The map which we are required to show is C∞ is Φ ◦ π ◦ φ−1 = φ ◦ (iU ◦ π|U ) ◦ φ−1 which
is just the identity on φ(U). Therefore π is smooth. �

We give two examples.

Example 2.25***. Real Projective Space RPn.

The n-sphere, Sn ⊂ Rn+1 admits the action of the group Z2 = {1,−1}. Multiplication
by 1 is the identity which is smooth, Theorem 2.22***. We check -1 using the charts from
Example 2.9b***. Multiplication by -1 is a map

−1 : Ui,+ → Ui,− and − 1 : Ui,− → Ui,+.

Now, both φi,+◦(−1)◦φ−1
i,− and φi,−◦(−1)◦φ−1

i,+ are the same as maps from B1(0) → B1(0).

They are (y1, · · · , yn) 7→ (−y1, · · · ,−yn) which is C∞ on Rn. Hence, {1,−1} ⊂ Diff(M).
Therefore, by Theorem 2.23***, Sn/Z2 is an n-manifold. It is called real projective space.
Denote it RPn.

Let q : Sn → RPn be the quotient map. Notice that if U ⊂ Sn that is entirely in some
hemisphere of Sn then q(U) can serve as a neighborhood for a chart since U ∩ −U = ∅.

Example 2.26***. Configuration Space.

Imagine that n-particles are moving in Rm. These particles are ideal particles in that
they are points, i.e., they have no diameter. What are the possible arrangements? If the
particles are labeled, they we can write the arrangement as an n-tuple, (x1, x2, · · · , xn).
Since no two particles can occupy the same point in space, the manifold that describes such
arrangements is {(x1, x2, · · · , xn) | xi 6= xj for i 6= j}, i.e., Rmn with several subspaces
removed. It is a manifold since it is an open subset of Rmn. It is ordered configuration
space. Denote it Cnm

If the n-particles are not labeled, then we can only know the location of the n pari-
ciles and not which particle occupies which location, e.g., we cannot distinguish between
(x, y, z) and (y, x, z). The symmetric group Sn acts on Cnm by σ · (x1, x2, · · · , xn) =
(xσ−11, xσ−12, · · · , xσ−1n). The space Cnm/Sn is configuration space.

We show that Cnm/Sn is an mn-manifold. We use Theorem 2.23***. The manifold
M is Cnm and the subgroup of the diffeomorphisms is Sn the permutation group. Each
permutation is the restriction of a linear map on Rmn to Cnm, and so each permutation
is C∞, i.e., smooth. The inverse of a permutation is again a permutation. Hence, Sn is
a subgroup of Diff(Cnm). If σ fixes x = (x1, · · · , xn), then xi = xσ(i) for i = 1, · · · , n. If
σ(i) = j and j 6= i, then xi = xj for an i 6= j. Therefore x is not in Cnm. If σ(i) = i for
all i = 1, · · · , n, then σ is the identity. We can now apply Theorem 2.23***. By Theorem
2.23***, Cnm/Sn is an nm-manifold.

In physics, the term configuration space is used for to describe the space of physical
configurations of a mechanical system. If m = 3, then Example 2.26*** is the configuration
space of n particles in ordinary 3-dimensional space.
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Exercises

Exercise 1***. Verify the calculations of Example 2.9a***. Show the two atlases given
for Sn in Example 2.9a*** and Example 2.9b*** give the same differential structure and
so may be merged.

Exercise 2***. S1 × S1 is a 2-manifold, S2 × S1 is a 3-manifold,and S2 × S1 × S1 is a
4-manifold.

Of course these all follow from Proposition 2.13***. The reader should note, however,
that there is an ambiguity in S2 × S1 × S1, is it (S2 × S1) × S1 or S2 × (S1 × S1)? The
reader should show that the atlases are compatible and so these are the same manifold.

There is also a second approach that is sometimes used to define smooth functions. In
this approach, one first defines a smooth function for f : M → R only. The statement of
the next exercise would be a defintion in some textbooks, e.g., Warner and Helgason, but
for us, it is a proposition.

Exercise 3***. Show that a function f : Mm → Nn between manifolds is smooth if and
only if for all open sets U ⊂ N and all smooth functions g : U → R, g ◦ f is smooth on its
domain.

Exercise 4***. Consider R with the following three atlases:

(1) A1 = {f | f(x) = x}
(2) A2 = {f | f(x) = x3}
(3) A3 = {f | f(x) = x3 + x}

Which of these atlases determines the same differential structure. Which of the manifolds
are diffeomorphic?

Exercise 5***. Let M , N , and Q be manifolds.

(1) Show that the projections π1 : M ×N →M and π2 : M ×N → N are smooth.
(2) Show that f : Q→M ×N is smooth iff πif is smooth for i = 1, 2.
(3) Show for b ∈ N that the inclusion x 7→ (x, b) : M →M ×N is smooth.

The following is a difficult exercise.

Exercise 6***. Prove that the set of all n × n matrices of rank k (where k < n) is a
smooth manifold. What is its dimension?

If this is too hard, then prove that the set of all n × n matrices of rank 1 is a smooth
manifold of dimension 2n− 1.
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Warmup Exercises, Chapter 2

Exercise 1*. Suppose that {(Ui, φ) : i ∈ I} is an atlas for M . Argue that a chart (V, ψ)
is compatible with the atlas if for each x ∈ V , there exists an open set W , x ∈ W ⊆ V
and an ix ∈ I such that φix

◦ (ψ|W )−1 and ψ|W ◦ φ−1
ix

are C∞.

Exercise 2*. Suppose that {(Ui, φ) : i ∈ I} is an atlas for M , J ⊆ I and
⋃

i∈J Ui = M .
Argue that {(Ui, φ) : i ∈ I} is an atlas that generates the same differentiable structure on
M .

Exercise 3*. Let φ : U → Rn be a chart for a smooth manifold M and let V be a
nonempty open subset of U . Argue that φ|V : V → Rn is also a chart in the differentiable
structure of M .

Exercise 4*. Let U be a nonempty open subset of a manifold M . Show that the charts
of M with domain contained in U form a differentiable structure on U . Show that the
restriction of any chart on M to U belongs to this differentiable structure.

Exercise 5*. Prove Proposition 2.21***.


