
CHAPTER 3

SUBMANIFOLDS

One basic notion that was not addressed in Chapter 1 is the concept of containment:
When one manifold is a subset on a second manifold. This notion is subtle in a manner
the reader may have experienced in general topology. We give an example.

Example 3.1. Let Qd be the rational numbers with the discrete topology and R the

usual real numbers. The inclusion ι : Qd → R is a one-to-one continuous map.

Is Qd a subspace of R? The usual answer is no, it is only a subspace if ι is a homeomor-
phism to its image, ι(Qd) = Q. This map is not a homeomorphism to its image since the
topology on Q, the subspace topology, is not discrete. the same issue arises in manifold
theory. In fact Qd is a 0-dimensional manifold and ι is a smooth map. We, however, will
not refer to Qd as a submanifold of R, i.e., submanifold is not quite the correct relationship
of Qd to R. This relationship will be studied in Chapter 6*** (immersed submanifold). For
the notion “N is a submanifold of M ,” we require that N inherits its differential structure
from M . Some authors refer to this relationship as “embedded submanifold.”

We give the definition of submanifold in Definition 3.2***. At first glance, it may appear
to be overly restrictive, however, it turns out not to be the case. It is analogous to the
notion of subspace topology. This assertion is justified in a later chapter, Theorem 6.3***.

Definition 3.2***. Suppose m > n and write Rm = Rn × Rm−n. Let M be an m-

manifold and N ⊂M . Suppose that for each x ∈ N there is a chart of M

(1) (U, φ) centered at x such that φ−1(Rn × {0}) = U ∩N

Then N is an n-dimensional submanifold of M .

Charts that satisfy property (1) from Definition 3.2*** are called slice charts or slice
coordinate neighborhoods.

We next observe that if N ⊂ M is an n-dimensional submanifold, then N is an n-
manifold.

Proposition 3.3***. Suppose thatN is an n-dimensional submanifold of the m-manifold

M . Then N is an n-manifold and

A ={(Ux ∩N, φ|U∩N ) | (Ux, φ) is a chart of M centered at x ∈ N such

that φ−1(Rn × {0}) = U ∩N}

is an atlas for N .

Proof. We first show that N is a topological manifold in the induced topology on N . The
topology on N is the subspace topology. Therefore, N is Hausdorff and second countable
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2 CHAPTER 3 SUBMANIFOLDS

since M is Hausdorff and second countable. Also since the topology on N is the subspace
topology, Ux ∩ N is an open set in N . The set φ(Ux ∩ N) = φ(Ux) ∩ (Rn × {0}), since
(Ux, φ) is a slice neighborhood. The map φ is a homeomorphism to its image, so φ|Ux∩N

is a homeomorphism to its image. Now, since there is a neighborhood Ux ∩N around any
x ∈ N , the requirements of Definition 2.1*** are shown and N is a topological manifold.

To show that N is an n-manifold, we must show that the charts satisfy the compatibility
condition of Definition 2.3*** item 2. Suppose (Uy, ψ) is another coordinate neighborhood
in the potential atlas A. Then

(

φ|Ux∩N (ψ|Uy∩N ))−1
)

|ψ(Ux∩Uy∩N) = (φψ−1)|ψ(Ux∩Uy∩N)

is C∞ since it is the composition of the inclusion of Rn into Rm composed with φψ−1,
two C∞ functions. This completes the proof. �

Theorem 3.4***. Suppose O ⊂ Rn+m is an open set and f : O → Rm is a C∞ map. Let

q ∈ Rm and M = f−1(q). If Df(x) has rank m for all x ∈M , then M is an n-dimensional

submanifold of Rn+m.

Proof. For each x ∈ M , there is a neighborhood of x, Ux ⊂ Rn+m; an open set U1 ⊂ Rn;
an open set U2 ⊂ Rm; and a diffeomorphism H : Ux → U1 × U2 such that H(M ∩ Ux) =
U1 ×{0} as was laid out in the Rank Theorem. The pair (Ux, H) is a chart for the smooth
manifold Rn+m since H is a diffeormorphism, Proposition 2.21***. This chart satisfies the
required property given in Definition 3.2***. Hence, M is an n-dimensional submanifold
of Rn+m. �

Example 3.5***. Sn is a submanifold of Rn+1.

Let l : Rn+1 → R by l(x1, x2, · · · , xn+1) =
√

x2
1 + · · ·x2

n+1. Then Sn = l−1(1). The

map l is C∞ on Rn+1 \ 0. In fact, each partial derivative is a rational function of
x1, · · · , xn+1, and l, i.e., ∂l

∂xi
= xi

l
. Therefore the partial derivative of a rational func-

tion of x1, · · · , xn+1, l is another such function and l is C∞. To check that the rank of
Dvl(x) is one, it is enough to show that some directional derivative is not zero. Hence, for
x ∈ Sn, we compute,

Dxl(x) =
d

dt
l(x + tx)|t=0

=
d

dt
(1 + t)

√

x2
1 + · · ·x2

n+1

∣

∣

∣

∣

t=0

=
d

dt
(1 + t)|t=0

= 1.

Since l has rank 1 on Sn, Theorem 3.4*** applies.
Proposition 3.3*** along with the Rank Theorem*** gives instructions for computing

an atlas. The atlas essentially comes from the Implicit Function Theorem. The charts
include the atlas in Example 2.9b***. The reader should check this fact.
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Example 3.6***. Let SL(n,R) = {A ∈ Matn×n | detA = 1}. Then

(1) If A ∈ SL(n,R), then Ddet(A) has rank 1.

(2) SL(n,R) is an (n2 − 1)-manifold.

First, det : Rn2

→ R is a polynomial (as shown in Example 2.12***) and so C∞. To
show that Ddet(A) has rank 1 it is only necessary to show that some directional derivative
DBdet(A) is nonzero. We compute for A ∈ SL(n,R),

DAdet(A) =
d

dt
det(A+ tA)|t=0

=
d

dt
(1 + t)ndet(A)|t=0

=
d

dt
(1 + t)n|t=0

= n.

Hence item 1 is shown.
To see item 2, we use Theorem 3.4***. The set GL(n,R) ⊂ Rn2−1×R is an open set and

det : GL(n,R) → R is a C∞ map. The set det−1(1) = SL(n,R), and Ddet(A) has rank 1
for each A ∈ SL(n,R). Therefore, by Theorem 3.4***, SL(n,R) is an (n2 − 1)-manifold.

Example 3.7***. Let O(n,R) = {A ∈ Matn×n | AAT = I} and let SO(n,R) = {A ∈
Matn×n | AAT = I and detA = 1}. Also let f : Matn×n → Matn×n by f(A) = AAT

(1) f(A) ∈ Symn×n and f is C∞.

(2) If A ∈ O(n,R), then Df(A) has rank
n(n+ 1)

2
.

(3) O(n,R) and SO(n,R) are
n(n− 1)

2
-manifolds.

First note that AAT = I implies that (det(A))2 = 1 so A is invertible.
The map f is a composition the identity cross the transpose and multiplication. These

maps are C∞ maps by Proposition 2.13***. Since f is the composition of C∞ maps, it
is C∞. Since f(A) = AAT and (AAT )T = AAT , f(A) ∈ Symn×n. This argument shows
item 1.

To show item 2, it is enough to show that Df(A) is surjective since dimSymn×n =
n(n+ 1)

2
. Now,

Df(A)(M) =
d

dt
(A+ tM)(A+ tM)T

∣

∣

t=0

= AMT +MAT

= AMT + (AMT )T

Hence Df(A) is a composition of two maps

Matn×n → Matn×n

M 7→MAT
and

Matn×n → Symn×n

X 7→ X +XT
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The first map is onto if AT is invertible, which it is if A ∈ f−1(I). The second map is
onto, since, if Y ∈ Symn×n then Y = Y T and Y = 1

2
Y + ( 1

2
Y )T , i.e., if X = 1

2
Y , then

Y = X +XT . Therefore, Df(A) is a surjection and has rank
n(n+ 1)

2
.

The third item follows from Theorem 3.4***. Since f−1(I) = O(n,R), O(n,R) is a

manifold of dimension n2 −
n(n+ 1)

2
=
n(n− 1)

2
. The determinant function is continuous

on Matn×n and O(n,R) ⊂ Matn×n. If AAT = I, then detA = ±1. Therefore SO(n,R)

is an open subset of O(n,R) and hence a manifold of dimension
n(n− 1)

2
, by Proposition

2.11***.
The next example requires notation and a lemma.

Lemma 3.8***. Suppose that n is even and let J be the n× n matrix

J =

(

0n/2×n/2 −In/2×n/2
In/2×n/2 0n/2×n/2

)

Then JT = −J = J−1.

Proof. Just compute the transpose, the negative, and the inverse. �

.

Example 3.9***. Suppose that n is even and let Sp(n,R) = {A ∈ Matn×n | AJAT = J}.
Also let f : Matn×n → Matn×n by f(A) = AJAT

(1) f(A) ∈ Skewn×n and f is C∞.

(2) If A ∈ Sp(n,R), then Df(A) has rank
n(n− 1)

2
.

(3) Sp(n,R) is an
n(n+ 1)

2
-manifold.

First note that AJAT = J implies that (det(A))2 = 1 so A is invertible.
The map f is a composition the identity cross the transpose and multiplication. These

maps are C∞ maps by Proposition 2.13***. Since f is the composition of C∞ maps, it
is C∞. Since f(A) = AJAT and (AJAT )T = AJTAT = −AJAT by Lemma 3.8***,
f(A) ∈ Skewn×n. This argument shows item 1.

To show item 2, it is enough to show that Df(A) is surjective since dimSkewn×n =
n(n− 1)

2
. Now,

Df(A)(M) =
d

dt
(A+ tM)J(A+ tM)T

∣

∣

t=0

= AJMT +MJAT

= AJMT − (AJMT )T

Hence Df(A) is a composition of two maps

Matn×n → Matn×n

M 7→MJAT
and

Matn×n → Symn×n

X 7→ X −XT
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The first map is onto if JAT is invertible, which it is if A ∈ f−1(J). The second map is
onto, since, if Y ∈ Skewn×n then Y = −Y T and Y = 1

2
Y − ( 1

2
Y )T , i.e., if X = 1

2
Y , then

Y = X −XT . Therefore, Df(A) is a surjection and has rank
n(n− 1)

2
.

The third item follows from Theorem 3.4***. Since f−1(I) = Sp(n,R), Sp(n,R) is a

manifold of dimension n2 −
n(n− 1)

2
=
n(n+ 1)

2
.

Proposition 3.10***. Suppose thatN is an n-dimensional submanifold of them-manifold
M . Suppose that U is an open neighborhood of N in M and g : U → P is a smooth map

to a manifold P . Then, g|N : N → P is a smooth map.

Proof. Suppose x ∈ N is an arbitrary point and (O, η) is a chart of P about g(x). By
Proposition 2.18***, it is enough to check that there is a chart of N , (V, ψ), with x ∈ V
and η◦g|M ◦ψ−1 is C∞. By the definition of submanifold, Definition 3.2***, we can always
find a product chart (of M) centered at x. Suppose the chart is (W,φ), so we can take
V = W ∩N and ψ = φ|W∩N . Then

η ◦ g|M ◦ ψ−1 = η ◦ g|M ◦ (φ−1)|Rn×{0}∩φ(W ),

the restriction of a C∞ function of m variables to its first n variables by setting the last
m− n variables to zero. This map is C∞. �

Example 3.11***.

Suppose that M is either of O(n), SO(n), SL(n,R), or Sp(n,R). Then multiplication

M ×M →M

(A,B) 7→ AB

and inverse
M →M

A 7→ A−1

are smooth maps.

Just as M is a submanifold of GL(n,R), M ×M is also a submanifold of GL(n,R) ×
GL(n,R). Both GL(n,R) and GL(n,R)×GL(n,R) are open subsets of real spaces. Mul-
tiplication and inverse are C∞ functions as explained in Example 2.13***. By Proposition
3.10***, these maps are smooth maps between manifolds.
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Exercises

Exercise 1***. Suppose O ⊂ Rn+m is an open set, f : O → Rm is a C∞ map, q ∈ Rm,
and M = f−1(q). Further suppose U ⊂ Rs+k is an open set, g : U → Rk is a C∞ map,

p ∈ Rk, and n = g−1(p). If Df(x) has rank m for all x ∈ M and Dg(x) has rank k for
all x ∈ N , then show that M and N are manifolds; and, (f × g)−1(q, p) is the manifold

M ×N .

Exercise 2***. Show that the atlas for Sn constructed in Example 3.5*** does include

the 2(n+ 1) charts constructed in Example 2.9b***.

Exercise 3***. Let M be defined by

M = {(w, x, y, z) ∈ R4 | w3 + x2 + y3 + z2 = 0 and yez = wex + 2}.

Show that M is a two dimensional submanifold of R4.

The reader may wish to compare the following Exercise to Example 2.10***.

Exercise 4***. Suppose U1 ⊂ Rn and U2 ⊂ Rm are open sets. If f : U1 → U2 is a C∞

function, then show the graph of f,

Gf = {(x, y) ∈ Rn+m | y = f(x)}

is a submanifold of Rn+m.

In the exercise below, we use that R4 ∼= C2 under the isomorphism of real vector spaces,
(w, x, y, z) 7→ (w + xi, y + zi).

Exercise 5***. a. Suppose p and q are relatively prime integers. Let ω = e
2πi

p . Show
that τ : S3 → S3 by τ(z1, z2) = (ωz1, ω

qz2) is a smooth map. Let G = {τ, τ 2, · · · , τp}.
Show that G is a subgroup of Diff(S3).

b. Show that S3 is {(z1, z2) ∈ C2 | z1z̄1 + z2z̄2 = 1}, and a submanifold of C2.

c. Show that S3/G is a 3-manifold. It is denoted L(p, q) and is called a lens space.
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Warmup Exercises, Chapter 3

Exercise 1*. Let F : R2 → R be defined by

F (x, y) = x3 + xy + y3.

Which level sets are embedded submanifolds of R.

Exercise 2*. Consider the map F : R4 → R2 defined by

F (x1, x2, x3, x4) = (x2
1 + x2, x

2
1 + x2

2 + x2
3 + x2

4 + x2).

Show that F restricted to M = F−1(0, 1) has rank 2 at every point of M .

Exercise 3*. Which level sets of

f(x1, . . . , xn+1
) = x1x2 · · ·xn+1 + 1

are submanifolds, according to Theorem 3.4***.


