CHAPTER 5 TANGENT VECTORS

In \mathbf{R}^{n} tangent vectors can be viewed from two perspectives
(1) they capture the infinitesimal movement along a path, the direction, and
(2) they operate on functions by directional derivatives.

The first viewpoint is more familiar as a conceptual viewpoint from Calculus. If a point moves so that its position at time t is $\rho(t)$, then its velocity vector at $\rho(0)$ is $\rho^{\prime}(0)$, a tangent vector. Because of the conceptual familiarity, we will begin with the first viewpoint, although there are technical difficulties to overcome. The second interpretation will be derived as a theorem. The second viewpoint is easier to generalize to a manifold. For instance, operators already form a vector space. It is the second viewpoint that ultimately plays the more important role.

Suppose M is an n-manifold. If $m \in M$, then we define a tangent vector at m as an equivalence class of paths through m. Equivalent paths will have the same derivative vector at m and so represent a tangent vector. The set of all tangent vectors at m forms the tangent space. The description and notation of tangent vectors in \mathbf{R}^{n} from the advanced Calculus setting and in the present setting is discussed in Remark 5.9***.
Definition 5.1***. Suppose M is a manifold. A path is a smooth map $\rho:(-\epsilon, \epsilon) \rightarrow M$, where $\epsilon>0$.

As was mentioned, if $M=\mathbf{R}^{n}$, then $\rho^{\prime}(0)$ is the velocity vector at $\rho(0)$. We also recall, from advanced Calculus, the relationship between the derivative map and the directional derivative,

$$
\begin{equation*}
D \rho(0)(1)=D_{1} \rho(0)=\rho^{\prime}(0) \tag{1}
\end{equation*}
$$

Definition 5.2***. Suppose M is a manifold and $m \in M A$ tangent vector at m is an equivalence class of paths α with $\alpha(0)=m$. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m, two paths α and β are equivalent if $\left.\frac{d \phi \circ \alpha(t)}{d t}\right|_{t=0}=\left.\frac{d \phi \circ \beta(t)}{d t}\right|_{t=0}$.

Denote the equivalence class of a path α by $[\alpha]$. We can picture $[\alpha]$ as the velocity vector at $\alpha(0)$.

We next observe that the equivalence class doesn't depend on the specific choice of a coordinate chart. If (\mathcal{W}, ψ) is another coordinate neighborhood centered at m, then $\psi \circ \alpha=\psi \circ \phi^{-1} \circ \phi \circ \alpha$, and, we use formula (1),

$$
\left.\frac{d \psi \circ \alpha(t)}{d t}\right|_{t=0}=D\left(\psi \circ \phi^{-1}\right)(\phi(m)) \circ D(\phi \circ \alpha)(0)(1)
$$

copyright © 2002

The diffeomorphisms $\psi \circ \phi^{-1}$ and $\phi \circ \alpha$ are maps between neighborhoods in real vector spaces, so

$$
\left.\frac{d \phi \circ \alpha(t)}{d t}\right|_{t=0}=\left.\frac{d \phi \circ \beta(t)}{d t}\right|_{t=0} \text { if and only if }\left.\frac{d \psi \circ \alpha(t)}{d t}\right|_{t=0}=\left.\frac{d \psi \circ \beta(t)}{d t}\right|_{t=0}
$$

Therefore the notion of tangent vector is independent of the coordinate neighborhood. If $\rho:(-\epsilon, \epsilon) \rightarrow M$ is a path in M with $\rho(0)=m$, then $[\rho]$ is a tangent vector to M at m and is represented by the path ρ. Consistent with the notation for \mathbf{R}^{n}, we can denote $[\rho]$ by $\rho^{\prime}(0)$.

Let $T M_{m}$ denote the set of tangent vectors to M at m. Other common notations are M_{m} and $T_{m} M$.

Theorem 5.3***. Suppose M, N, and R are manifolds.
(1) If $\phi: M \rightarrow N$ is a smooth map between manifolds and $m \in M$ then there is an induced map $\phi_{* m}: T M_{m} \rightarrow T N_{\phi(m)}$.
(2) If $\psi: N \rightarrow R$ is another smooth map between manifolds then $(\psi \circ \phi)_{* m}=\psi_{* \phi(m)} \circ$ $\phi_{* m}$. This formula is called the chain rule.
(3) If $\phi: M \rightarrow M$ is the identity then $\phi_{* m}: T M_{m} \rightarrow T M_{m}$ is the identity. If $\phi: M \rightarrow N$ is a diffeomorphism and $m \in M$ then $\phi_{* m}$ is $1-1$ and onto.
(4) $T M_{m}$ is a vector space of dimension n, the dimension of M, and the induced maps are linear.

The induced map $\phi_{* m}$ is defined by

$$
\phi_{* m}([\alpha])=[\phi \circ \alpha] .
$$

Notice that if $M=\mathbf{R}^{m}, N=\mathbf{R}^{n}$, then we have a natural way to identify the tangent space and the map ϕ_{*}. We have coordinates on the tangent space so that

$$
[\phi \circ \alpha]=\left.\frac{d \phi \circ \alpha(t)}{d t}\right|_{t=0}
$$

and

$$
\phi_{* m}([\alpha])=D \phi(m)\left(\alpha^{\prime}(0)\right) .
$$

The induced map $\phi_{* m}$ is also commonly denoted $T \phi$ or $d \phi$. These results follow for neighborhoods in manifolds since these are manifolds too. Also note that if there is a neighborhood \mathcal{U} of $m \in M$ and $\left.\phi\right|_{\mathcal{U}}$ is a diffeomorphism onto a neighborhood of $\phi(m)$ then $\phi_{* m}$ is an isomorphism.

Proof.
(1) If $\phi: M \rightarrow N$ is a smooth map and $m \in M$ then there is an induced map $\phi_{* m}: T M_{m} \rightarrow T N_{\phi(m)}$ defined by $\phi_{* m}([\alpha])=[\phi \circ \alpha]$. We need to show this map is
well-defined. Take charts (\mathcal{U}, θ) on N centered on $\phi(m)$ and (\mathcal{W}, ψ) on M centered on m. If $[\alpha]=[\beta]$, then

$$
\begin{aligned}
\left.\frac{d \psi \circ \alpha(t)}{d t}\right|_{t=0} & =\left.\frac{d \psi \circ \beta(t)}{d t}\right|_{t=0} \\
\left(\theta \circ \phi \circ \psi^{-1}\right)_{*}\left(\left.\frac{d \psi \circ \alpha(t)}{d t}\right|_{t=0}\right) & =\left(\theta \circ \phi \circ \psi^{-1}\right)_{*}\left(\left.\frac{d \psi \circ \beta(t)}{d t}\right|_{t=0}\right) \\
\left.\frac{d}{d t}\left(\theta \circ \phi \circ \psi^{-1} \circ \psi \circ \alpha\right)(t)\right|_{t=0} & =\left.\frac{d}{d t}\left(\theta \circ \phi \circ \psi^{-1} \circ \psi \circ \beta\right)(t)\right|_{t=0} \\
\left.\frac{d}{d t}(\theta \circ \phi \circ \alpha)(t)\right|_{t=0} & =\left.\frac{d}{d t}(\theta \circ \phi \circ \beta)(t)\right|_{t=0}
\end{aligned}
$$

so $\phi_{* m}$ is well defined on equivalence classes.
(2) If $\phi: M \rightarrow N$ and $\psi: N \rightarrow R$ are smooth maps, then $(\psi \circ \phi)_{* m}([\alpha])=[\psi \circ \phi \circ \alpha]=$ $\psi_{* \phi(m)}([\phi \circ \alpha])=\psi_{* \phi(m)} \circ \phi_{* m}([\alpha])$.
(3) $I_{M * m}([\alpha])=\left[I_{M} \circ \alpha\right]=[\alpha]$. If $\phi \circ \phi^{-1}=I_{M}$ then $\phi_{*} \circ\left(\phi^{-1}\right)_{*}=I_{M *}=I_{T M_{m}}$. Also, if $\phi^{-1} \circ \phi=I_{M}$, then $\left(\phi^{-1}\right)_{*} \circ \phi_{*}=I_{T M_{m}}$. Therefore ϕ_{*} is a bijection and $\left(\phi_{*}\right)^{-1}=\left(\phi^{-1}\right)_{*}$.
(4) Let (\mathcal{U}, ϕ) be a coordinate neighborhood centered at m. We first show that $T \mathbf{R}_{\mathbf{0}}^{n}$ is an n-dimensional vector space. Since \mathbf{R}^{n} requires no coordinate neighborhood (i.e., it is itself), $[\alpha]$ is equivalent to $[\beta]$ if and only if $\alpha^{\prime}(0)=\beta^{\prime}(0)$: two paths are equivalent if they have the same derivative vector in \mathbf{R}^{n}. Every vector \mathbf{v} is realized by a path $\alpha_{\mathbf{v}}, \alpha_{\mathbf{v}}(t)=t \mathbf{v}$. This identification gives $T \mathbf{R}_{\mathbf{0}}^{n}$ the vector space structure. We show that the linear structure is well defined on $T M_{m}$. The linear structure on $T M_{m}$ is induced by the structure on $T \mathbf{R}_{\mathbf{0}}^{n}$ (where $[\alpha]+k[\beta]=[\alpha+k \beta]$ and induced maps are linear) via the coordinate maps. If (\mathcal{V}, ψ) is another chart centered at m, then the structure defined by ψ and ϕ agree since $\left(\phi \circ \psi^{-1}\right)_{*}$ is an isomorphism and $\left(\phi \circ \psi^{-1}\right)_{*} \circ \psi_{*}=\phi_{*}$.

We can give explicit representatives for linear combinations of paths in the tangent space $T M_{m}$. In the notation of the proof of Theorem $5.3^{* * *}$ part 4,

$$
k[\alpha]+c[\beta]=\left[\phi^{-1}(k \phi \circ \alpha+c \phi \circ \beta)\right]
$$

Note that the coordinate chart serves to move the paths into \mathbf{R}^{n} where addition and multiplication makes sense.

Before we turn to the second interpretation of a tangent vector as a directional derivative, we pause for a philosophical comment. We first learn of functions in our grade school education. We learn to speak of the function as a whole or its value at particular points. Nevertheless, the derivative at a point does not depend on the whole function nor is it determined by the value at a single point. The derivative requires some open set about a point but any open set will do. If M is a manifold and $m \in M$, then let \mathcal{G}_{m} be the set of functions defined on some open neighborhood of m.

Definition 5.6***. A function $\ell: \mathcal{G}_{m} \rightarrow \mathbf{R}$ is called a derivation if for every $f, g \in \mathcal{G}_{m}$ and $a, b \in \mathbf{R}$,
(1) $\ell(a f+b g)=a \ell(f)+b \ell(g)$ and
(2) $\ell(f g)=\ell(f) g(m)+f(m) \ell(g)$

Denote the space of derivations by \mathcal{D}. The product rule which occurs in the definition is called the Leibniz rule, just as it is in Calculus.

Proposition 5.7 ${ }^{* * *}$. Elements of $T M_{m}$ operate as derivations on \mathcal{G}_{m}. In fact there is a linear map $\ell: T M_{m} \rightarrow \mathcal{D}$ given by $v \mapsto \ell_{v}$.

The theorem is straightforward if the manifold is \mathbf{R}^{n}. If $v \in T \mathbf{R}_{x}^{n}$, then the derivation ℓ_{v} is the directional derivative in the direction v, i.e., $\ell_{v}(f)=D f(x)(v)$. On a manifold the argument is really the same, but more technical as the directions are more difficult to represent. We will see in Theorem 5.8*** that the derivations are exactly the directional derivatives.

Proof. If $\alpha:((-\epsilon, \epsilon),\{0\}) \rightarrow(M,\{m\})$ represents v then define $\ell_{v}(f)=\left.\frac{d f \circ \alpha(t)}{d t}\right|_{t=0}$. The fact that ℓ_{v} is a linear functional and the Leibniz rule follow from these properties of the derivative.

To show that ℓ is a linear map requires calculation. Suppose (\mathcal{U}, ϕ) is a coordinate chart centered at m. If $[\alpha]$ and $[\beta]$ are equivalence classes that represent tangent vectors in $T M_{m}$ and $c, k \in \mathbf{R}$, then $\phi^{-1}((k \phi \alpha(t)+c \phi \beta(t)))$ represents $k[\alpha]+c[\beta]$. Hence,

$$
\begin{aligned}
\ell_{k[\alpha]+c[\beta]}(f) & =\left.\frac{d f\left(\phi^{-1}((k \phi \alpha(t)+c \phi \beta(t)))\right)}{d t}\right|_{t=0} \\
& =f_{*} \phi_{*}^{-1}\left(\left.\frac{d(k \phi \alpha(t)+c \phi \beta(t))}{d t}\right|_{t=0}\right) \\
& =f_{*} \phi_{*}^{-1}\left(\left.k \frac{d(\phi \alpha(t)}{d t}\right|_{t=0}+\left.c \frac{d(\phi \beta(t))}{d t}\right|_{t=0}\right) \\
& =k f_{*} \phi_{*}^{-1}\left(\left.\frac{d \phi \alpha(t)}{d t}\right|_{t=0}\right)+c f_{*} \phi_{*}^{-1}\left(\left.\frac{d \phi \beta(t)}{d t}\right|_{t=0}\right) \\
& =\left.k \frac{d f\left(\phi^{-1}(\phi(\alpha(t)))\right)}{d t}\right|_{t=0}+\left.c \frac{d f\left(\phi^{-1}(\phi(\beta(t)))\right)}{d t}\right|_{t=0} \\
& =\left.k \frac{d f((\alpha(t)))}{d t}\right|_{t=0}+\left.c \frac{d f((\beta(t)))}{d t}\right|_{t=0} \\
& =k \ell_{[\alpha]}(f)+c \ell_{[\beta]}(f)
\end{aligned}
$$

Lines 3 and 4 respectively follow from the linearity of the derivative and the total derivative map. Therefore ℓ is linear.

The second interpretation of tangent vectors is given in the following Theorem.

Theorem 5.8***. The linear map $\ell: T M_{m} \rightarrow \mathcal{D}$ given by $v \mapsto \ell_{v}$ is an isomorphism. The elements of $T M_{m}$ are the derivations on \mathcal{G}_{m}.

Proof. We first note two properties on derivations.

$$
\begin{equation*}
\text { If } f(m)=g(m)=0 \text {, then } \ell(f g)=0 \tag{1}
\end{equation*}
$$

Since $\ell(f g)=f(m) \ell(g)+g(m) \ell(f)=0+0$.

$$
\begin{equation*}
\text { If } k \text { is a constant, then } \ell(k)=0 \tag{2}
\end{equation*}
$$

Since $\ell(k)=k \ell(1)=k(\ell(1)+\ell(1))=2 k \ell(1), \ell(k)=2 \ell(k)$ and $\ell(k)=0$.
We now observe that ℓ is one-to-one. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m. Suppose $v \neq 0$ is a tangent vector. We will show that $\ell_{v} \neq 0$. Let $\phi_{*}(v)=w_{1} \in \mathbf{R}^{n}$. Note that $w_{1} \neq 0$. Then $\left[\phi^{-1}\left(t w_{1}\right)\right]=v$ where t is the real variable. Let w_{1}, \cdots, w_{n} be a basis for \mathbf{R}^{n} and $\pi\left(\sum_{i=1}^{n} a_{i} w_{i}\right)=a_{1}$. Then

$$
\begin{aligned}
\ell_{v}(\pi \circ \phi) & =\ell_{\left[\phi^{-1}\left(t w_{1}\right)\right]}(\pi \circ \phi) \\
& =\left.\frac{d \pi\left(\phi\left(\phi^{-1}\left(t w_{1}\right)\right)\right)}{d t}\right|_{t=0} \\
& =\left.\frac{d t w_{1}}{d t}\right|_{t=0} \\
& =w_{1} .
\end{aligned}
$$

Next we argue that ℓ is onto. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m and let e_{i} for $i=1, \cdots, n$ be the standard basis for \mathbf{R}^{n}. We consider the path $t \mapsto \phi^{-1}\left(t e_{i}\right)$ and compute some useful values of ℓ, i.e., the partial derivatives.

$$
\begin{aligned}
\ell_{\left[\phi^{-1}\left(t e_{i}\right)\right]}(f) & =\left.\frac{d f \phi^{-1}\left(t e_{i}\right)}{d t}\right|_{t=0} \\
& =\left.\frac{\partial f \phi^{-1}}{\partial x_{i}}\right|_{\overrightarrow{0}}
\end{aligned}
$$

Let $x_{i}\left(a_{1}, \cdots, a_{n}\right)=a_{i}$. Suppose \mathbf{d} is any derivation. We will need to name certain values. Let $\mathbf{d}\left(x_{i} \circ \phi\right)=a_{i}$. These are just fixed numbers. Suppose f is C^{∞} on a neighborhood of m. Taylor's Theorem says that for p in a neighborhood of $\overrightarrow{0} \in \mathbf{R}^{n}$,

$$
f \circ \phi^{-1}(p)=f \circ \phi^{-1}(\overrightarrow{0})+\left.\sum_{i=1}^{n} \frac{\partial f \circ \phi^{-1}}{\partial x_{i}}\right|_{\overrightarrow{0}} x_{i}(p)+\sum_{i, j=1}^{n} R_{i j}(p) x_{i}(p) x_{j}(p)
$$

where $R_{i j}(p)=\left.\int_{0}^{1}(t-1) \frac{\partial^{2} f \circ \phi^{-1}}{\partial x_{i} \partial x_{j}}\right|_{t p} d t$ are C^{∞} functions. So,

$$
f=f(m)+\left.\sum_{i=1}^{n} \frac{\partial f \circ \phi^{-1}}{\partial x_{i}}\right|_{\overrightarrow{0}} x_{i} \circ \phi+\sum_{i, j=1}^{n}\left(R_{i j} \circ \phi\right) \cdot\left(x_{i} \circ \phi\right) \cdot\left(x_{j} \circ \phi\right) .
$$

We now apply d. By $(2), \mathbf{d}(f(m))=0$. Since $x_{j} \circ \phi(m)=0$, the terms $\mathbf{d}\left(\left(R_{i j} \circ \phi\right) \cdot\left(x_{i} \circ \phi\right)\right.$. $\left.\left(x_{j} \circ \phi\right)\right)=0$ by (1). Also, $\mathbf{d}\left(\left.\frac{\partial f \circ \phi^{-1}}{\partial x_{i}}\right|_{\overrightarrow{0}} x_{i} \circ \phi\right)=a_{i} \ell_{\left[\phi^{-1}\left(t e_{i}\right)\right]}(f)$. Hence, $\mathbf{d}=\ell_{\sum_{i=1}^{n} a_{i}\left[\phi^{-1}\left(t e_{i}\right)\right]}$, and ℓ is onto.

Remark 5.9***. Tangent vectors to points in \mathbf{R}^{n}.
The usual coordinates on \mathbf{R}^{n} give rise to standard coordinates on $T_{p} \mathbf{R}^{n}$. Let $e_{i}=$ $(0, \cdots, 0,1,0, \cdots, 0)$ with the only nonzero entry in the i-th spot. The path in \mathbf{R}^{n} defined by $\alpha_{i}(t)=t e_{i}+p$ is a path with $\alpha_{i}(0)=p$. Its equivalence class $\left[\alpha_{i}\right]$ is a vector in $T_{p} \mathbf{R}^{n}$ and we denote it $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$. In Advanced Calculus, the ordered basis $\left.\frac{\partial}{\partial x_{1}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{n}}\right|_{p}$ is the usual basis in which the Jacobian matrix is usually written and sets up a natural isomorphism $T_{p} \mathbf{R}^{n} \cong \mathbf{R}^{n}$. The reader should notice that the isomorphism is only natural because \mathbf{R}^{n} has a natual basis and is not just an abstract n-dimensional vector space. If ρ is a path in \mathbf{R}^{n}, then $\rho^{\prime}(0) \in T_{\rho(0)} \mathbf{R}^{n}$ via this isomorphism. This notation is also consistant with the operator notation (the second interpretation) since,

$$
\begin{aligned}
\left.\frac{\partial}{\partial x_{i}}\right|_{p}(f) & =\left[f \circ \alpha_{i}\right] \\
& =\left.\frac{d}{d t} f\left(t e_{i}+p\right)\right|_{t=0} \\
& =\left.\frac{\partial f}{\partial x_{i}}\right|_{x=p} \in \mathbf{R}^{n} \cong T_{p} \mathbf{R}^{n}
\end{aligned}
$$

In the first line, the tangent vector $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ operates via the second interpretation on the function f.
Example 5.10***. $T M_{x}$ for M an n-dimensional submanifold of \mathbf{R}^{k}.
Suppose $M \subset \mathbf{R}^{k}$ is a submanifold and $i: M \rightarrow \mathbf{R}^{k}$ is the inclusion. Take $\left(U_{x}, \phi\right)$ a slice coordinate neighborhood system for \mathbf{R}^{k} centered at x as specified in the definition of a submanifold, Definition 3.2***, $\phi: U_{x} \rightarrow U_{1} \times U_{2}$. Under the natural coordinates of $T \mathbf{R}_{x}^{k} \cong \mathbf{R}^{k}, T M_{x}=\phi\left(U_{1} \times\{0\}\right) \subset \mathbf{R}^{k}$ and $i_{* x}$ has rank n.

To see these facts, note that $\phi \circ i \circ\left(\left.\phi\right|_{U_{x} \cap M}\right)^{-1}: U_{1} \times\{0\} \rightarrow U_{1} \times U_{2}$ is the inclusion. So, $\operatorname{rank}\left(i_{*}\right)=\operatorname{rank}\left(\left(\left.\phi \circ i \circ \phi\right|_{U_{x} \cap M}\right)_{*}\right)=n$. Under the identification $T \mathbf{R}_{x}^{k} \cong \mathbf{R}^{k}, \phi_{* x}\left(\mathbf{R}^{n} \times\right.$ $\{0\})=D \phi(x)\left(\mathbf{R}^{n} \times\{0\}\right) \subset \mathbf{R}^{k}$. This is the usual picture of the tangent space as a subspace of \mathbf{R}^{k} (i.e., shifted to the origin) that is taught in advanced Calculus.
Example 5.11***. $T S_{x}^{n}$ for $S^{n} \subset \mathbf{R}^{n+1}$, the n-sphere.
This is a special case of Example $5.10^{* * *}$. Suppose $\left(x_{1}, \cdots, x_{n+1}\right) \in S^{n}$, i.e., $\sum_{i=1}^{n+1} x_{i}^{2}=$

1. One of the x_{i} must be nonzero, we assume that $x_{n+1}>0$. The other cases are analogous. The inclusion from the Implicit Function Theorem is $\left.\phi\right|_{\mathbf{R}^{n}}\left(x_{1}, \cdots, x_{n}\right)=$ $\left(x_{1}, \cdots, x_{n}, \sqrt{1-\sum_{i=1}^{n} x_{i}^{2}}\right)$ so

$$
\left.D \phi\right|_{\mathbf{R}^{n}}\left(x_{1}, \cdots, x_{n}\right)\left(v_{1}, \cdots, v_{n}\right)=\left(v_{1}, \cdots, v_{n}, \frac{\sum_{i=1}^{n}-x_{i} v_{i}}{\sqrt{1-\sum_{i=1}^{n}} x_{i}^{2}}\right) .
$$

Since $x_{n+1}>0, x_{n+1}=\sqrt{\left.1-\sum_{i=1}^{n} x_{i}^{2}\right)}$ and the tangent space is

$$
\begin{aligned}
T_{\left(x_{1}, \cdots, x_{n+1}\right)} S^{n} & =\left\{\left.\left(v_{1}, \cdots, v_{n}, \frac{\sum_{i=1}^{n}-x_{i} v_{i}}{x_{n+1}}\right) \right\rvert\, v_{i} \in \mathbf{R}\right\} \\
& =\left\{\left(w_{1}, \cdots, w_{n+1}\right) \mid \sum_{i=1}^{n+1} w_{i} x_{i}=0\right\}
\end{aligned}
$$

Example 5.12***. Recall that $O(n) \subset$ Mat $_{n \times n}=\mathbf{R}^{n^{2}}$ is a submanifold of dimension $\frac{n(n-1)}{2}$ which was shown in Example 3.7 ${ }^{* * *}$. Then, we claim,

$$
X \in T_{A} O(n) \subset M a t_{n \times n}
$$

if and only if $X A^{-1}$ is skew.
This computation is a continuation of Example 3.7**. Suppose $A \in O(n)$. Since $O(n)=f^{-1}(I), T_{A} O(n) \subset \operatorname{Ker}(D f(A))$. The dimension of the kernel and the dimension of $T_{A} O(n)$ are both $\frac{n(n-1)}{2}$. Therefore $T_{A} O(n)=\operatorname{Ker}(D f(A))$. It is enough to show that $\operatorname{Ker}(D f(A)) \subset\left\{X \mid X A^{-1}\right.$ is skew $\}$ since the dimension of $\left\{X \mid X A^{-1}\right.$ is skew $\}$ is the dimension of Skew ${ }_{n \times n}=\frac{n(n-1)}{2}$ (from Example 2.8d ${ }^{* * *}$). So it is enough to show that $X A^{-1}$ is skew.
Again, from Example $3.7^{* * *}$, $D f(A)(X)=A X^{T}+X A^{T}$. If $D f(A)(X)=0$, then $A X^{T}=-X A^{T}$. Since $A \in O(n), A^{-1}=A^{T}$. So,

$$
\left(X A^{-1}\right)^{T}=\left(X A^{T}\right)^{T}=A X^{T}=-X A^{T}=-X A^{-1}
$$

Therefore $X A^{-1}$ is skew.
Example 5.13***. Recall that $S p(n, \mathbf{R}) \subset M a t_{n \times n}=\mathbf{R}^{n^{2}}$ is a submanifold of dimension $\frac{n(n+1)}{2}$ which was shown in Example 3.9***. Then, we claim,

$$
X \in T_{A} S p(n, \mathbf{R}) \subset M a t_{n \times n}
$$

if and only if $J X A^{-1}$ is symmetric.
This computation is a continuation of Example 3.9**. Suppose $A \in S p(n, \mathbf{R})$.
Since $S p(n, \mathbf{R})=f^{-1}(J), T_{A} S p(n, \mathbf{R}) \subset \operatorname{Ker}(D f(A))$. The dimension of the kernel and the dimension of $T_{A} S p(n, \mathbf{R})$ are both $\frac{n(n+1)}{2}$. Therefore $T_{A} S p(n, \mathbf{R})=\operatorname{Ker}(D f(A))$. It is enough to show that $\operatorname{Ker}(D f(A)) \subset\left\{X \mid J X A^{-1}\right.$ is symmetric $\}$ since the dimension of $\left\{X \mid J X A^{-1}\right.$ is symmetric $\}$ is the dimension of $\operatorname{Sym}_{n \times n}=\frac{n(n+1)}{2}$ (from Example $\left.2.8 \mathrm{c}^{* * *}\right)$. So it is enough to show that $J X A^{-1}$ is symmetric.

Again, from Example 3.9***, $D f(A)(X)=A J X^{T}+X J A^{T}$. If $D f(A)(X)=0$, then $-A J X^{T}=X J A^{T}$. Since $A \in S p(n, \mathbf{R}), A^{-1}=J A^{T} J^{T}$. So,

$$
\begin{aligned}
\left(J X A^{-1}\right)^{T}=\left(J X J A^{T} J^{T}\right)^{T}=\left(-J A J X^{T} J^{T}\right)^{T} & =-J X J^{T} A^{T} J^{T} \\
& =J X J A^{T} J^{T} \text { as } J^{T}=-J \text { by Lemma } 3.8^{* * *} \\
& =J X A^{-1}
\end{aligned}
$$

Therefore $X A^{-1}$ is symmetric.

Remark 5.14***. Notation for Tangent vectors
The space \mathbf{R}^{n} comes equipped with a canonical basis e_{1}, \cdots, e_{n} which allows us to pick a canonical basis for $T \mathbf{R}_{x}^{n}$. For an n-manifold $M, T M_{p}$ doesn't have a natural basis. We can give coordinates on $T M_{p}$ in terms of a chart. Suppose that (U, ϕ) is a chart for a neighborhood of $p \in U \subset M$. Write $\phi=\left(\phi_{1}, \cdots, \phi_{n}\right)$ in terms of the coordinates on \mathbf{R}^{n}. Hence, $\phi_{i}=x_{i} \circ \phi$. We can import the coordinates $T \mathbf{R}_{\phi(p)}^{n}$. Let

$$
\left.\frac{\partial}{\partial \phi_{i}}\right|_{p}=\phi_{*}^{-1}\left(\left.\frac{\partial}{\partial x_{i}}\right|_{\phi(p)}\right)
$$

As a path $\left.\frac{\partial}{\partial \phi_{i}}\right|_{p}$ is the equivalence class of $\phi^{-1}\left(t e_{i}+\phi(p)\right)$. As an operator,

$$
\left.\frac{\partial}{\partial \phi_{i}}\right|_{p}(f)=\left.\frac{\partial f \circ \phi^{-1}}{\partial x_{i}}\right|_{\phi(p)}
$$

Exercises

Exercise $1^{* * *}$. Suppose $F: \mathbf{R}^{4} \rightarrow \mathbf{R}^{2}$ by

$$
F((w, x, y, z))=\left(w x y z, x^{2} y^{2}\right) .
$$

Compute F_{*} and be explicit in exhibiting the bases in the notation used in Remark 5.9***. Where is F singular?

The reader may wish to review Example 2.10** and Exercise $4^{* * *}$ from chapter 3 for the following exercise.

Exercise 2***. Let $g((x, y))=x^{2}+y^{2}$ and $h((x, y))=x^{3}+y^{2}$. Denote by G_{g} and G_{h} the graphs of g and h which are submanifolds of \mathbf{R}^{3}. Let $F: G_{g} \rightarrow G_{h}$ by

$$
F:((x, y, z))=\left(x^{3}, x y z, x^{9}+x^{2} y\right) .
$$

The reader may wish to review Example 2.10** and Exercise ${ }^{* * *}$ from chapter 3.
a. Explicitly compute the derivative F_{*} and be clear with your notation and bases.
b. Find the points of G_{g} where F is singular. What is the rank of $F_{* p}$ for the various singular points $p \in G_{g}$.

Exercise $\mathbf{3}^{* * *}$. Let $F: \mathbf{R}^{3} \rightarrow S^{3}$ be defined by

$$
F((\theta, \phi, \eta))=(\sin \eta \sin \phi \cos \theta, \sin \eta \sin \phi \sin \theta, \sin \eta \cos \phi, \cos \eta) .
$$

Use the charts from stereographic projection to compute F_{*} in terms of the bases discussed in Remark 5.9*** and Remark 5.14***.

