CHAPTER 5 TANGENT VECTORS

In \mathbf{R}^n tangent vectors can be viewed from two perspectives

- (1) they capture the infinitesimal movement along a path, the direction, and
- (2) they operate on functions by directional derivatives.

The first viewpoint is more familiar as a conceptual viewpoint from Calculus. If a point moves so that its position at time t is $\rho(t)$, then its velocity vector at $\rho(0)$ is $\rho'(0)$, a tangent vector. Because of the conceptual familiarity, we will begin with the first viewpoint, although there are technical difficulties to overcome. The second interpretation will be derived as a theorem. The second viewpoint is easier to generalize to a manifold. For instance, operators already form a vector space. It is the second viewpoint that ultimately plays the more important role.

Suppose M is an *n*-manifold. If $m \in M$, then we define a tangent vector at m as an equivalence class of paths through m. Equivalent paths will have the same derivative vector at m and so represent a tangent vector. The set of all tangent vectors at m forms the tangent space. The description and notation of tangent vectors in \mathbb{R}^n from the advanced Calculus setting and in the present setting is discussed in Remark 5.9^{***}.

Definition 5.1*.** Suppose M is a manifold. A path is a smooth map $\rho : (-\epsilon, \epsilon) \to M$, where $\epsilon > 0$.

As was mentioned, if $M = \mathbf{R}^n$, then $\rho'(0)$ is the velocity vector at $\rho(0)$. We also recall, from advanced Calculus, the relationship between the derivative map and the directional derivative,

(1)
$$D\rho(0)(1) = D_1\rho(0) = \rho'(0)$$

Definition 5.2*.** Suppose M is a manifold and $m \in M$ A tangent vector at m is an equivalence class of paths α with $\alpha(0) = m$. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m, two paths α and β are equivalent if $\frac{d\phi \circ \alpha(t)}{dt}\Big|_{t=0} = \frac{d\phi \circ \beta(t)}{dt}\Big|_{t=0}$.

Denote the equivalence class of a path α by $[\alpha]$. We can picture $[\alpha]$ as the velocity vector at $\alpha(0)$.

We next observe that the equivalence class doesn't depend on the specific choice of a coordinate chart. If (\mathcal{W}, ψ) is another coordinate neighborhood centered at m, then $\psi \circ \alpha = \psi \circ \phi^{-1} \circ \phi \circ \alpha$, and, we use formula (1),

$$\frac{d\psi \circ \alpha(t)}{dt}\Big|_{t=0} = D(\psi \circ \phi^{-1})(\phi(m)) \circ D(\phi \circ \alpha)(0)(1).$$

copyright ©2002

The diffeomorphisms $\psi \circ \phi^{-1}$ and $\phi \circ \alpha$ are maps between neighborhoods in real vector spaces, so

$$\frac{d\phi \circ \alpha(t)}{dt}\Big|_{t=0} = \left.\frac{d\phi \circ \beta(t)}{dt}\right|_{t=0} \text{ if and only if } \left.\frac{d\psi \circ \alpha(t)}{dt}\right|_{t=0} = \left.\frac{d\psi \circ \beta(t)}{dt}\right|_{t=0}$$

Therefore the notion of tangent vector is independent of the coordinate neighborhood. If $\rho: (-\epsilon, \epsilon) \to M$ is a path in M with $\rho(0) = m$, then $[\rho]$ is a tangent vector to M at m and is represented by the path ρ . Consistent with the notation for \mathbf{R}^n , we can denote $[\rho]$ by $\rho'(0)$.

Let TM_m denote the set of tangent vectors to M at m. Other common notations are M_m and T_mM .

Theorem 5.3*.** Suppose M, N, and R are manifolds.

- (1) If $\phi: M \to N$ is a smooth map between manifolds and $m \in M$ then there is an induced map $\phi_{*m}: TM_m \to TN_{\phi(m)}$.
- (2) If $\psi : N \to R$ is another smooth map between manifolds then $(\psi \circ \phi)_{*m} = \psi_{*\phi(m)} \circ \phi_{*m}$. This formula is called the chain rule.
- (3) If $\phi : M \to M$ is the identity then $\phi_{*m} : TM_m \to TM_m$ is the identity. If $\phi : M \to N$ is a diffeomorphism and $m \in M$ then ϕ_{*m} is 1-1 and onto.
- (4) TM_m is a vector space of dimension n, the dimension of M, and the induced maps are linear.

The induced map ϕ_{*m} is defined by

$$\phi_{*m}([\alpha]) = [\phi \circ \alpha].$$

Notice that if $M = \mathbb{R}^m$, $N = \mathbb{R}^n$, then we have a natural way to identify the tangent space and the map ϕ_* . We have coordinates on the tangent space so that

$$\left[\phi \circ \alpha\right] = \left.\frac{d\phi \circ \alpha(t)}{dt}\right|_{t=0}$$

and

$$\phi_{*m}([\alpha]) = D\phi(m)(\alpha'(0)).$$

The induced map ϕ_{*m} is also commonly denoted $T\phi$ or $d\phi$. These results follow for neighborhoods in manifolds since these are manifolds too. Also note that if there is a neighborhood \mathcal{U} of $m \in M$ and $\phi|_{\mathcal{U}}$ is a diffeomorphism onto a neighborhood of $\phi(m)$ then ϕ_{*m} is an isomorphism.

Proof.

(1) If $\phi : M \to N$ is a smooth map and $m \in M$ then there is an induced map $\phi_{*m} : TM_m \to TN_{\phi(m)}$ defined by $\phi_{*m}([\alpha]) = [\phi \circ \alpha]$. We need to show this map is

well-defined. Take charts (\mathcal{U}, θ) on N centered on $\phi(m)$ and (\mathcal{W}, ψ) on M centered on m. If $[\alpha] = [\beta]$, then

$$\begin{aligned} \frac{d\psi \circ \alpha(t)}{dt} \Big|_{t=0} &= \left. \frac{d\psi \circ \beta(t)}{dt} \right|_{t=0} \\ (\theta \circ \phi \circ \psi^{-1})_* \left(\left. \frac{d\psi \circ \alpha(t)}{dt} \right|_{t=0} \right) &= (\theta \circ \phi \circ \psi^{-1})_* \left(\left. \frac{d\psi \circ \beta(t)}{dt} \right|_{t=0} \right) \\ \frac{d}{dt} (\theta \circ \phi \circ \psi^{-1} \circ \psi \circ \alpha)(t) \Big|_{t=0} &= \left. \frac{d}{dt} (\theta \circ \phi \circ \psi^{-1} \circ \psi \circ \beta)(t) \right|_{t=0} \\ \frac{d}{dt} (\theta \circ \phi \circ \alpha)(t) \Big|_{t=0} &= \left. \frac{d}{dt} (\theta \circ \phi \circ \beta)(t) \right|_{t=0} \end{aligned}$$

so ϕ_{*m} is well defined on equivalence classes.

- (2) If $\phi: M \to N$ and $\psi: N \to R$ are smooth maps, then $(\psi \circ \phi)_{*m}([\alpha]) = [\psi \circ \phi \circ \alpha] = \psi_{*\phi(m)}([\phi \circ \alpha]) = \psi_{*\phi(m)} \circ \phi_{*m}([\alpha]).$
- (3) $I_{M*m}([\alpha]) = [I_M \circ \alpha] = [\alpha]$. If $\phi \circ \phi^{-1} = I_M$ then $\phi_* \circ (\phi^{-1})_* = I_{M*} = I_{TM_m}$. Also, if $\phi^{-1} \circ \phi = I_M$, then $(\phi^{-1})_* \circ \phi_* = I_{TM_m}$. Therefore ϕ_* is a bijection and $(\phi_*)^{-1} = (\phi^{-1})_*$.
- (4) Let (\mathcal{U}, ϕ) be a coordinate neighborhood centered at m. We first show that $T\mathbf{R}_{\mathbf{0}}^{n}$ is an *n*-dimensional vector space. Since \mathbf{R}^{n} requires no coordinate neighborhood (i.e., it is itself), $[\alpha]$ is equivalent to $[\beta]$ if and only if $\alpha'(0) = \beta'(0)$: two paths are equivalent if they have the same derivative vector in \mathbf{R}^{n} . Every vector \mathbf{v} is realized by a path $\alpha_{\mathbf{v}}, \alpha_{\mathbf{v}}(t) = t\mathbf{v}$. This identification gives $T\mathbf{R}_{\mathbf{0}}^{n}$ the vector space structure. We show that the linear structure is well defined on TM_{m} . The linear structure on TM_{m} is induced by the structure on $T\mathbf{R}_{\mathbf{0}}^{n}$ (where $[\alpha] + k[\beta] = [\alpha + k\beta]$ and induced maps are linear) via the coordinate maps. If (\mathcal{V}, ψ) is another chart centered at m, then the structure defined by ψ and ϕ agree since $(\phi \circ \psi^{-1})_{*}$ is an isomorphism and $(\phi \circ \psi^{-1})_{*} \circ \psi_{*} = \phi_{*}$. \Box

We can give explicit representatives for linear combinations of paths in the tangent space TM_m . In the notation of the proof of Theorem 5.3^{***} part 4,

$$k[\alpha] + c[\beta] = [\phi^{-1}(k\phi \circ \alpha + c\phi \circ \beta)]$$

Note that the coordinate chart serves to move the paths into \mathbb{R}^n where addition and multiplication makes sense.

Before we turn to the second interpretation of a tangent vector as a directional derivative, we pause for a philosophical comment. We first learn of functions in our grade school education. We learn to speak of the function as a whole or its value at particular points. Nevertheless, the derivative at a point does not depend on the whole function nor is it determined by the value at a single point. The derivative requires some open set about a point but any open set will do. If M is a manifold and $m \in M$, then let \mathcal{G}_m be the set of functions defined on some open neighborhood of m. **Definition 5.6***.** A function $\ell : \mathcal{G}_m \to \mathbf{R}$ is called a derivation if for every $f, g \in \mathcal{G}_m$ and $a, b \in \mathbf{R}$,

- (1) $\ell(af + bg) = a\ell(f) + b\ell(g)$ and
- (2) $\ell(fg) = \ell(f)g(m) + f(m)\ell(g)$

Denote the space of derivations by \mathcal{D} . The product rule which occurs in the definition is called the Leibniz rule, just as it is in Calculus.

Proposition 5.7*.** Elements of TM_m operate as derivations on \mathcal{G}_m . In fact there is a linear map $\ell: TM_m \to \mathcal{D}$ given by $v \mapsto \ell_v$.

The theorem is straightforward if the manifold is \mathbf{R}^n . If $v \in T\mathbf{R}_x^n$, then the derivation ℓ_v is the directional derivative in the direction v, i.e., $\ell_v(f) = Df(x)(v)$. On a manifold the argument is really the same, but more technical as the directions are more difficult to represent. We will see in Theorem 5.8^{***} that the derivations are exactly the directional derivatives.

Proof. If $\alpha : ((-\epsilon, \epsilon), \{0\}) \to (M, \{m\})$ represents v then define $\ell_v(f) = \left. \frac{df \circ \alpha(t)}{dt} \right|_{t=0}$. The fact that ℓ_v is a linear functional and the Leibniz rule follow from these properties of the derivative.

To show that ℓ is a linear map requires calculation. Suppose (\mathcal{U}, ϕ) is a coordinate chart centered at m. If $[\alpha]$ and $[\beta]$ are equivalence classes that represent tangent vectors in TM_m and $c, k \in \mathbf{R}$, then $\phi^{-1}((k\phi\alpha(t) + c\phi\beta(t)))$ represents $k[\alpha] + c[\beta]$. Hence,

$$\begin{split} \ell_{k[\alpha]+c[\beta]}(f) &= \left. \frac{df(\phi^{-1}((k\phi\alpha(t) + c\phi\beta(t))))}{dt} \right|_{t=0} \\ &= f_*\phi_*^{-1} \left(\left. \frac{d(k\phi\alpha(t) + c\phi\beta(t))}{dt} \right|_{t=0} \right) \\ &= f_*\phi_*^{-1} \left(\left. k \left. \frac{d(\phi\alpha(t)}{dt} \right|_{t=0} + c \left. \frac{d(\phi\beta(t))}{dt} \right|_{t=0} \right) \right. \\ &= kf_*\phi_*^{-1} \left(\left. \frac{d\phi\alpha(t)}{dt} \right|_{t=0} \right) + cf_*\phi_*^{-1} \left(\left. \frac{d\phi\beta(t)}{dt} \right|_{t=0} \right) \\ &= k \left. \frac{df(\phi^{-1}(\phi(\alpha(t))))}{dt} \right|_{t=0} + c \left. \frac{df(\phi^{-1}(\phi(\beta(t))))}{dt} \right|_{t=0} \\ &= k \left. \frac{df((\alpha(t)))}{dt} \right|_{t=0} + c \left. \frac{df((\beta(t)))}{dt} \right|_{t=0} \\ &= k\ell_{[\alpha]}(f) + c\ell_{[\beta]}(f) \end{split}$$

Lines 3 and 4 respectively follow from the linearity of the derivative and the total derivative map. Therefore ℓ is linear. \Box

The second interpretation of tangent vectors is given in the following Theorem.

Theorem 5.8*.** The linear map $\ell : TM_m \to \mathcal{D}$ given by $v \mapsto \ell_v$ is an isomorphism. The elements of TM_m are the derivations on \mathcal{G}_m .

Proof. We first note two properties on derivations.

(1) If
$$f(m) = g(m) = 0$$
, then $\ell(fg) = 0$

Since $\ell(fg) = f(m)\ell(g) + g(m)\ell(f) = 0 + 0.$

(2) If k is a constant, then
$$\ell(k) = 0$$

Since $\ell(k) = k\ell(1) = k(\ell(1) + \ell(1)) = 2k\ell(1), \ \ell(k) = 2\ell(k)$ and $\ell(k) = 0$.

We now observe that ℓ is one-to-one. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m. Suppose $v \neq 0$ is a tangent vector. We will show that $\ell_v \neq 0$. Let $\phi_*(v) = w_1 \in \mathbf{R}^n$. Note that $w_1 \neq 0$. Then $[\phi^{-1}(tw_1)] = v$ where t is the real variable. Let w_1, \dots, w_n be a basis for \mathbf{R}^n and $\pi(\sum_{i=1}^n a_i w_i) = a_1$. Then

$$\ell_v(\pi \circ \phi) = \ell_{[\phi^{-1}(tw_1)]}(\pi \circ \phi)$$
$$= \frac{d\pi(\phi(\phi^{-1}(tw_1)))}{dt}\Big|_{t=0}$$
$$= \frac{dtw_1}{dt}\Big|_{t=0}$$
$$= w_1.$$

Next we argue that ℓ is onto. Let (\mathcal{U}, ϕ) be a coordinate chart centered at m and let e_i for $i = 1, \dots, n$ be the standard basis for \mathbf{R}^n . We consider the path $t \mapsto \phi^{-1}(te_i)$ and compute some useful values of ℓ , i.e., the partial derivatives.

$$\ell_{[\phi^{-1}(te_i)]}(f) = \frac{df\phi^{-1}(te_i)}{dt}\Big|_{t=0}$$
$$= \frac{\partial f\phi^{-1}}{\partial x_i}\Big|_{\vec{0}}$$

Let $x_i(a_1, \dots, a_n) = a_i$. Suppose **d** is any derivation. We will need to name certain values. Let $\mathbf{d}(x_i \circ \phi) = a_i$. These are just fixed numbers. Suppose f is C^{∞} on a neighborhood of m. Taylor's Theorem says that for p in a neighborhood of $\vec{0} \in \mathbf{R}^n$,

$$f \circ \phi^{-1}(p) = f \circ \phi^{-1}(\vec{0}) + \sum_{i=1}^{n} \left. \frac{\partial f \circ \phi^{-1}}{\partial x_i} \right|_{\vec{0}} x_i(p) + \sum_{i,j=1}^{n} R_{ij}(p) x_i(p) x_j(p) dx_j(p) dx$$

where $R_{ij}(p) = \int_0^1 (t-1) \left. \frac{\partial^2 f \circ \phi^{-1}}{\partial x_i \partial x_j} \right|_{tp} dt$ are C^{∞} functions. So,

$$f = f(m) + \sum_{i=1}^{n} \left. \frac{\partial f \circ \phi^{-1}}{\partial x_i} \right|_{\vec{0}} x_i \circ \phi + \sum_{i,j=1}^{n} (R_{ij} \circ \phi) \cdot (x_i \circ \phi) \cdot (x_j \circ \phi).$$

We now apply **d**. By (2), $\mathbf{d}(f(m)) = 0$. Since $x_j \circ \phi(m) = 0$, the terms $\mathbf{d}((R_{ij} \circ \phi) \cdot (x_i \circ \phi) \cdot (x_j \circ \phi)) = 0$ by (1). Also, $\mathbf{d}(\frac{\partial f \circ \phi^{-1}}{\partial x_i} \Big|_{\vec{0}} x_i \circ \phi) = a_i \ell_{[\phi^{-1}(te_i)]}(f)$. Hence, $\mathbf{d} = \ell_{\sum_{i=1}^n a_i[\phi^{-1}(te_i)]}$, and ℓ is onto. \Box

Remark 5.9*.** Tangent vectors to points in \mathbb{R}^n .

The usual coordinates on \mathbf{R}^n give rise to standard coordinates on $T_p \mathbf{R}^n$. Let $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ with the only nonzero entry in the *i*-th spot. The path in \mathbf{R}^n defined by $\alpha_i(t) = te_i + p$ is a path with $\alpha_i(0) = p$. Its equivalence class $[\alpha_i]$ is a vector in $T_p \mathbf{R}^n$ and we denote it $\frac{\partial}{\partial x_i}\Big|_p$. In Advanced Calculus, the ordered basis $\frac{\partial}{\partial x_1}\Big|_p, \dots, \frac{\partial}{\partial x_n}\Big|_p$ is the usual basis in which the Jacobian matrix is usually written and sets up a natural isomorphism $T_p \mathbf{R}^n \cong \mathbf{R}^n$. The reader should notice that the isomorphism is only natural because \mathbf{R}^n has a natual basis and is not just an abstract *n*-dimensional vector space. If ρ is a path in \mathbf{R}^n , then $\rho'(0) \in T_{\rho(0)} \mathbf{R}^n$ via this isomorphism. This notation is also consistant with the operator notation (the second interpretation) since,

$$\frac{\partial}{\partial x_i}\Big|_p (f) = [f \circ \alpha_i]$$
$$= \frac{d}{dt} f(te_i + p)\Big|_{t=0}$$
$$= \frac{\partial f}{\partial x_i}\Big|_{x=p} \in \mathbf{R}^n \cong T_p \mathbf{R}^n$$

In the first line, the tangent vector $\frac{\partial}{\partial x_i}\Big|_p$ operates via the second interpretation on the function f.

Example 5.10*.** TM_x for M an n-dimensional submanifold of \mathbf{R}^k .

Suppose $M \subset \mathbf{R}^k$ is a submanifold and $i: M \to \mathbf{R}^k$ is the inclusion. Take (U_x, ϕ) a slice coordinate neighborhood system for \mathbf{R}^k centered at x as specified in the definition of a submanifold, Definition 3.2^{***} , $\phi: U_x \to U_1 \times U_2$. Under the natural coordinates of $T\mathbf{R}_x^k \cong \mathbf{R}^k$, $TM_x = \phi(U_1 \times \{0\}) \subset \mathbf{R}^k$ and i_{*x} has rank n.

To see these facts, note that $\phi \circ i \circ (\phi|_{U_x \cap M})^{-1} : U_1 \times \{0\} \to U_1 \times U_2$ is the inclusion. So, rank $(i_*) = \operatorname{rank}((\phi \circ i \circ \phi|_{U_x \cap M})_*) = n$. Under the identification $T\mathbf{R}_x^k \cong \mathbf{R}^k$, $\phi_{*x}(\mathbf{R}^n \times \{0\}) = D\phi(x)(\mathbf{R}^n \times \{0\}) \subset \mathbf{R}^k$. This is the usual picture of the tangent space as a subspace of \mathbf{R}^k (i.e., shifted to the origin) that is taught in advanced Calculus.

Example 5.11*.** TS_x^n for $S^n \subset \mathbf{R}^{n+1}$, the *n*-sphere.

This is a special case of Example 5.10***. Suppose $(x_1, \dots, x_{n+1}) \in S^n$, i.e., $\sum_{i=1}^{n+1} x_i^2 = 1$. One of the x_i must be nonzero, we assume that $x_{n+1} > 0$. The other cases are

analogous. The inclusion from the Implicit Function Theorem is $\phi|_{\mathbf{R}^n}(x_1, \dots, x_n) = (x_1, \dots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2})$ so

$$D\phi|_{\mathbf{R}^n}(x_1,\cdots,x_n)(v_1,\cdots,v_n) = (v_1,\cdots,v_n,\frac{\sum_{i=1}^n - x_i v_i}{\sqrt{1-\sum_{i=1}^n x_i^2}}).$$

Since $x_{n+1} > 0$, $x_{n+1} = \sqrt{1 - \sum_{i=1}^{n} x_i^2}$ and the tangent space is

$$T_{(x_1,\dots,x_{n+1})}S^n = \{(v_1,\dots,v_n,\frac{\sum_{i=1}^n - x_iv_i}{x_{n+1}}) \mid v_i \in \mathbf{R}\}$$
$$= \{(w_1,\dots,w_{n+1}) \mid \sum_{i=1}^{n+1} w_ix_i = 0\}$$

Example 5.12*.** Recall that $O(n) \subset Mat_{n \times n} = \mathbf{R}^{n^2}$ is a submanifold of dimension $\frac{n(n-1)}{2}$ which was shown in Example 3.7***. Then, we claim,

$$X \in T_A O(n) \subset Mat_{n \times n}$$

if and only if XA^{-1} is skew.

This computation is a continuation of Example 3.7^{***}. Suppose $A \in O(n)$. Since $O(n) = f^{-1}(I), T_A O(n) \subset \operatorname{Ker}(Df(A))$. The dimension of the kernel and the dimension of $T_A O(n)$ are both $\frac{n(n-1)}{2}$. Therefore $T_A O(n) = \operatorname{Ker}(Df(A))$. It is enough to show that $\operatorname{Ker}(Df(A)) \subset \{X \mid XA^{-1} \text{ is skew}\}$ since the dimension of $\{X \mid XA^{-1} \text{ is skew}\}$ is the dimension of $\operatorname{Skew}_{n \times n} = \frac{n(n-1)}{2}$ (from Example 2.8d^{***}). So it is enough to show that XA^{-1} is skew.

Again, from Example 3.7^{***}, $Df(A)(X) = AX^T + XA^T$. If Df(A)(X) = 0, then $AX^T = -XA^T$. Since $A \in O(n)$, $A^{-1} = A^T$. So,

$$(XA^{-1})^T = (XA^T)^T = AX^T = -XA^T = -XA^{-1}$$

Therefore XA^{-1} is skew.

Example 5.13*.** Recall that $Sp(n, \mathbf{R}) \subset Mat_{n \times n} = \mathbf{R}^{n^2}$ is a submanifold of dimension $\frac{n(n+1)}{2}$ which was shown in Example 3.9***. Then, we claim,

$$X \in T_A Sp(n, \mathbf{R}) \subset Mat_{n \times n}$$

if and only if JXA^{-1} is symmetric.

This computation is a continuation of Example 3.9***. Suppose $A \in Sp(n, \mathbf{R})$.

Since $Sp(n, \mathbf{R}) = f^{-1}(J)$, $T_A Sp(n, \mathbf{R}) \subset \operatorname{Ker}(Df(A))$. The dimension of the kernel and the dimension of $T_A Sp(n, \mathbf{R})$ are both $\frac{n(n+1)}{2}$. Therefore $T_A Sp(n, \mathbf{R}) = \operatorname{Ker}(Df(A))$. It is enough to show that $\operatorname{Ker}(Df(A)) \subset \{X \mid JXA^{-1} \text{ is symmetric}\}$ since the dimension of $\{X \mid JXA^{-1} \text{ is symmetric}\}$ is the dimension of $\operatorname{Sym}_{n \times n} = \frac{n(n+1)}{2}$ (from Example 2.8c***). So it is enough to show that JXA^{-1} is symmetric.

Again, from Example 3.9***, $Df(A)(X) = AJX^T + XJA^T$. If Df(A)(X) = 0, then $-AJX^T = XJA^T$. Since $A \in Sp(n, \mathbf{R})$, $A^{-1} = JA^TJ^T$. So,

$$(JXA^{-1})^T = (JXJA^TJ^T)^T = (-JAJX^TJ^T)^T = -JXJ^TA^TJ^T$$
$$= JXJA^TJ^T \text{ as } J^T = -J \text{ by Lemma } 3.8^{***}$$
$$= JXA^{-1}$$

Therefore XA^{-1} is symmetric.

CHAPTER 5 TANGENT VECTORS

Remark 5.14***. Notation for Tangent vectors

The space \mathbf{R}^n comes equipped with a canonical basis e_1, \dots, e_n which allows us to pick a canonical basis for $T\mathbf{R}_x^n$. For an *n*-manifold M, TM_p doesn't have a natural basis. We can give coordinates on TM_p in terms of a chart. Suppose that (U, ϕ) is a chart for a neighborhood of $p \in U \subset M$. Write $\phi = (\phi_1, \dots, \phi_n)$ in terms of the coordinates on \mathbf{R}^n . Hence, $\phi_i = x_i \circ \phi$. We can import the coordinates $T\mathbf{R}_{\phi(p)}^n$. Let

$$\left. \frac{\partial}{\partial \phi_i} \right|_p = \phi_*^{-1} \left(\left. \frac{\partial}{\partial x_i} \right|_{\phi(p)} \right)$$

As a path $\left.\frac{\partial}{\partial \phi_i}\right|_p$ is the equivalence class of $\phi^{-1}(te_i + \phi(p))$. As an operator,

$$\frac{\partial}{\partial \phi_i}\Big|_p(f) = \left.\frac{\partial f \circ \phi^{-1}}{\partial x_i}\right|_{\phi(p)}.$$

Exercises

Exercise 1*.** Suppose $F : \mathbf{R}^4 \to \mathbf{R}^2$ by

$$F((w, x, y, z)) = (wxyz, x^2y^2).$$

Compute F_* and be explicit in exhibiting the bases in the notation used in Remark 5.9^{***}. Where is F singular?

The reader may wish to review Example 2.10^{**} and Exercise 4^{***} from chapter 3 for the following exercise.

Exercise 2*.** Let $g((x,y)) = x^2 + y^2$ and $h((x,y)) = x^3 + y^2$. Denote by G_g and G_h the graphs of g and h which are submanifolds of \mathbf{R}^3 . Let $F: G_g \to G_h$ by

$$F:((x, y, z)) = (x^3, xyz, x^9 + x^2y).$$

The reader may wish to review Example 2.10^{**} and Exercise ^{***} from chapter 3.

a. Explicitly compute the derivative F_* and be clear with your notation and bases.

b. Find the points of G_g where F is singular. What is the rank of F_{*p} for the various singular points $p \in G_g$.

Exercise 3*.** Let $F : \mathbf{R}^3 \to S^3$ be defined by

 $F((\theta, \phi, \eta)) = (\sin \eta \sin \phi \cos \theta, \sin \eta \sin \phi \sin \theta, \sin \eta \cos \phi, \cos \eta).$

Use the charts from stereographic projection to compute F_* in terms of the bases discussed in Remark 5.9^{***} and Remark 5.14^{***}.