
CHAPTER 5

TANGENT VECTORS

In Rn tangent vectors can be viewed from two perspectives

(1) they capture the infinitesimal movement along a path, the direction, and
(2) they operate on functions by directional derivatives.

The first viewpoint is more familiar as a conceptual viewpoint from Calculus. If a point
moves so that its position at time t is ρ(t), then its velocity vector at ρ(0) is ρ′(0), a tangent
vector. Because of the conceptual familiarity, we will begin with the first viewpoint,
although there are technical difficulties to overcome. The second interpretation will be
derived as a theorem. The second viewpoint is easier to generalize to a manifold. For
instance, operators already form a vector space. It is the second viewpoint that ultimately
plays the more important role.

Suppose M is an n-manifold. If m ∈ M , then we define a tangent vector at m as
an equivalence class of paths through m. Equivalent paths will have the same derivative
vector at m and so represent a tangent vector. The set of all tangent vectors atm forms the
tangent space. The description and notation of tangent vectors in Rn from the advanced
Calculus setting and in the present setting is discussed in Remark 5.9***.

Definition 5.1***. Suppose M is a manifold. A path is a smooth map ρ : (−ε, ε) →M ,

where ε > 0.

As was mentioned, if M = Rn, then ρ′(0) is the velocity vector at ρ(0). We also recall,
from advanced Calculus, the relationship between the derivative map and the directional
derivative,

(1) Dρ(0)(1) = D1ρ(0) = ρ′(0)

Definition 5.2***. Suppose M is a manifold and m ∈ M A tangent vector at m is an
equivalence class of paths α with α(0) = m. Let (U , φ) be a coordinate chart centered at

m, two paths α and β are equivalent if
dφ ◦ α(t)

dt

∣

∣

∣

∣

t=0

=
dφ ◦ β(t)

dt

∣

∣

∣

∣

t=0

.

Denote the equivalence class of a path α by [α]. We can picture [α] as the velocity vector
at α(0).

We next observe that the equivalence class doesn’t depend on the specific choice of
a coordinate chart. If (W, ψ) is another coordinate neighborhood centered at m, then
ψ ◦ α = ψ ◦ φ−1 ◦ φ ◦ α, and, we use formula (1),

dψ ◦ α(t)

dt

∣

∣

∣

∣

t=0

= D(ψ ◦ φ−1)(φ(m)) ◦D(φ ◦ α)(0)(1).
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2 CHAPTER 5 TANGENT VECTORS

The diffeomorphisms ψ ◦ φ−1 and φ ◦ α are maps between neighborhoods in real vector
spaces, so

dφ ◦ α(t)

dt

∣

∣

∣

∣

t=0

=
dφ ◦ β(t)

dt

∣

∣

∣

∣

t=0

if and only if
dψ ◦ α(t)

dt

∣

∣

∣

∣

t=0

=
dψ ◦ β(t)

dt

∣

∣

∣

∣

t=0

.

Therefore the notion of tangent vector is independent of the coordinate neighborhood. If
ρ : (−ε, ε) →M is a path in M with ρ(0) = m, then [ρ] is a tangent vector to M at m and
is represented by the path ρ. Consistent with the notation for Rn, we can denote [ρ] by
ρ′(0).

Let TMm denote the set of tangent vectors to M at m. Other common notations are
Mm and TmM .

Theorem 5.3***. Suppose M , N , and R are manifolds.

(1) If φ : M → N is a smooth map between manifolds and m ∈ M then there is an

induced map φ∗m : TMm → TNφ(m).

(2) If ψ : N → R is another smooth map between manifolds then (ψ ◦φ)∗m = ψ∗φ(m) ◦
φ∗m. This formula is called the chain rule.

(3) If φ : M → M is the identity then φ∗m : TMm → TMm is the identity. If

φ : M → N is a diffeomorphism and m ∈M then φ∗m is 1-1 and onto.
(4) TMm is a vector space of dimension n, the dimension of M , and the induced maps

are linear.

The induced map φ∗m is defined by

φ∗m([α]) = [φ ◦ α].

Notice that if M = Rm, N = Rn, then we have a natural way to identify the tangent
space and the map φ∗. We have coordinates on the tangent space so that

[φ ◦ α] =
dφ ◦ α(t)

dt

∣

∣

∣

∣

t=0

and

φ∗m([α]) = Dφ(m)(α′(0)).

The induced map φ∗m is also commonly denoted Tφ or dφ. These results follow for
neighborhoods in manifolds since these are manifolds too. Also note that if there is a
neighborhood U of m ∈M and φ|

U
is a diffeomorphism onto a neighborhood of φ(m) then

φ∗m is an isomorphism.

Proof.

(1) If φ : M → N is a smooth map and m ∈ M then there is an induced map
φ∗m : TMm → TNφ(m) defined by φ∗m([α]) = [φ ◦α]. We need to show this map is
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well-defined. Take charts (U , θ) on N centered on φ(m) and (W, ψ) on M centered
on m. If [α] = [β], then

dψ ◦ α(t)

dt

∣

∣

∣

∣

t=0

=
dψ ◦ β(t)

dt

∣

∣

∣

∣

t=0

(θ ◦ φ ◦ ψ−1)∗(
dψ ◦ α(t)

dt

∣

∣

∣

∣

t=0

) = (θ ◦ φ ◦ ψ−1)∗(
dψ ◦ β(t)

dt

∣

∣

∣

∣

t=0

)

d

dt
(θ ◦ φ ◦ ψ−1 ◦ ψ ◦ α)(t)

∣

∣

∣

∣

t=0

=
d

dt
(θ ◦ φ ◦ ψ−1 ◦ ψ ◦ β)(t)

∣

∣

∣

∣

t=0

d

dt
(θ ◦ φ ◦ α)(t)

∣

∣

∣

∣

t=0

=
d

dt
(θ ◦ φ ◦ β)(t)

∣

∣

∣

∣

t=0

so φ∗m is well defined on equivalence classes.
(2) If φ : M → N and ψ : N → R are smooth maps, then (ψ ◦φ)∗m([α]) = [ψ ◦φ◦α] =

ψ∗φ(m)([φ ◦ α]) = ψ∗φ(m) ◦ φ∗m([α]).

(3) IM∗m([α]) = [IM ◦ α] = [α]. If φ ◦ φ−1 = IM then φ∗ ◦ (φ−1)∗ = IM∗ = ITMm
.

Also, if φ−1 ◦ φ = IM , then (φ−1)∗ ◦ φ∗ = ITMm
. Therefore φ∗ is a bijection and

(φ∗)
−1 = (φ−1)∗.

(4) Let (U , φ) be a coordinate neighborhood centered at m. We first show that TRn
0

is an n-dimensional vector space. Since Rn requires no coordinate neighborhood
(i.e., it is itself), [α] is equivalent to [β] if and only if α′(0) = β′(0): two paths
are equivalent if they have the same derivative vector in Rn. Every vector v is
realized by a path αv, αv(t) = tv. This identification gives TRn

0
the vector space

structure. We show that the linear structure is well defined on TMm. The linear
structure on TMm is induced by the structure on TRn

0
(where [α]+k[β] = [α+kβ]

and induced maps are linear) via the coordinate maps. If (V, ψ) is another chart
centered at m, then the structure defined by ψ and φ agree since (φ ◦ ψ−1)∗ is an
isomorphism and (φ ◦ ψ−1)∗ ◦ ψ∗ = φ∗. �

We can give explicit representatives for linear combinations of paths in the tangent space
TMm. In the notation of the proof of Theorem 5.3*** part 4,

k[α] + c[β] = [φ−1(kφ ◦ α+ cφ ◦ β)]

Note that the coordinate chart serves to move the paths into Rn where addition and
multiplication makes sense.

Before we turn to the second interpretation of a tangent vector as a directional derivative,
we pause for a philosophical comment. We first learn of functions in our grade school
education . We learn to speak of the function as a whole or its value at particular points.
Nevertheless, the derivative at a point does not depend on the whole function nor is it
determined by the value at a single point. The derivative requires some open set about a
point but any open set will do. If M is a manifold and m ∈ M , then let Gm be the set of
functions defined on some open neighborhood of m.
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Definition 5.6***. A function ` : Gm → R is called a derivation if for every f, g ∈ Gm

and a, b ∈ R,

(1) `(af + bg) = a`(f) + b`(g) and

(2) `(fg) = `(f)g(m) + f(m)`(g)

Denote the space of derivations by D. The product rule which occurs in the definition
is called the Leibniz rule, just as it is in Calculus.

Proposition 5.7***. Elements of TMm operate as derivations on Gm. In fact there is a
linear map ` : TMm → D given by v 7→ `v.

The theorem is straightforward if the manifold is Rn. If v ∈ TRn
x , then the derivation

`v is the directional derivative in the direction v, i.e., `v(f) = Df(x)(v). On a manifold
the argument is really the same, but more technical as the directions are more difficult to
represent. We will see in Theorem 5.8*** that the derivations are exactly the directional
derivatives.

Proof. If α : ((−ε, ε), {0}) → (M, {m}) represents v then define `v(f) =
df ◦ α(t)

dt

∣

∣

∣

∣

t=0

.

The fact that `v is a linear functional and the Leibniz rule follow from these properties of
the derivative.

To show that ` is a linear map requires calculation. Suppose (U , φ) is a coordinate chart
centered at m. If [α] and [β] are equivalence classes that represent tangent vectors in TMm

and c, k ∈ R, then φ−1((kφα(t) + cφβ(t))) represents k[α] + c[β]. Hence,

`k[α]+c[β](f) =
df(φ−1((kφα(t) + cφβ(t))))

dt

∣

∣

∣

∣

t=0

= f∗φ
−1
∗

(

d(kφα(t) + cφβ(t))

dt

∣

∣

∣

∣

t=0

)

= f∗φ
−1
∗

(

k
d(φα(t)

dt

∣

∣

∣

∣

t=0

+ c
d(φβ(t))

dt

∣

∣

∣

∣

t=0

)

= kf∗φ
−1
∗

(

dφα(t)

dt

∣

∣

∣

∣

t=0

)

+ cf∗φ
−1
∗

(

dφβ(t)

dt

∣

∣

∣

∣

t=0

)

= k
df(φ−1(φ(α(t))))

dt

∣

∣

∣

∣

t=0

+ c
df(φ−1(φ(β(t))))

dt

∣

∣

∣

∣

t=0

= k
df((α(t)))

dt

∣

∣

∣

∣

t=0

+ c
df((β(t)))

dt

∣

∣

∣

∣

t=0

= k`[α](f) + c`[β](f)

Lines 3 and 4 respectively follow from the linearity of the derivative and the total derivative
map. Therefore ` is linear. �

The second interpretation of tangent vectors is given in the following Theorem.
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Theorem 5.8***. The linear map ` : TMm → D given by v 7→ `v is an isomorphism.
The elements of TMm are the derivations on Gm.

Proof. We first note two properties on derivations.

(1) If f(m) = g(m) = 0, then `(fg) = 0

Since `(fg) = f(m)`(g) + g(m)`(f) = 0 + 0.

(2) If k is a constant, then `(k) = 0

Since `(k) = k`(1) = k(`(1) + `(1)) = 2k`(1), `(k) = 2`(k) and `(k) = 0.
We now observe that ` is one-to-one. Let (U , φ) be a coordinate chart centered at m.

Suppose v 6= 0 is a tangent vector. We will show that `v 6= 0. Let φ∗(v) = w1 ∈ Rn. Note
that w1 6= 0. Then [φ−1(tw1)] = v where t is the real variable. Let w1, · · · , wn be a basis
for Rn and π(

∑n
i=1 aiwi) = a1. Then

`v(π ◦ φ) = `[φ−1(tw1)](π ◦ φ)

=
dπ(φ(φ−1(tw1)))

dt

∣

∣

∣

∣

t=0

=
dtw1

dt

∣

∣

∣

∣

t=0

= w1.

Next we argue that ` is onto. Let (U , φ) be a coordinate chart centered at m and let
ei for i = 1, · · · , n be the standard basis for Rn. We consider the path t 7→ φ−1(tei) and
compute some useful values of `, i.e., the partial derivatives.

`[φ−1(tei)](f) =
dfφ−1(tei)

dt

∣

∣

∣

∣

t=0

=
∂fφ−1

∂xi

∣

∣

∣

∣

~0

Let xi(a1, · · · , an) = ai. Suppose d is any derivation. We will need to name certain values.
Let d(xi ◦ φ) = ai. These are just fixed numbers. Suppose f is C∞ on a neighborhood of

m. Taylor’s Theorem says that for p in a neighborhood of ~0 ∈ Rn,

f ◦ φ−1(p) = f ◦ φ−1(~0) +
n

∑

i=1

∂f ◦ φ−1

∂xi

∣

∣

∣

∣

~0

xi(p) +
n

∑

i,j=1

Rij(p)xi(p)xj(p)

where Rij(p) =
∫ 1

0
(t− 1) ∂2f◦φ−1

∂xi∂xj

∣

∣

∣

tp
dt are C∞ functions. So,

f = f(m) +

n
∑

i=1

∂f ◦ φ−1

∂xi

∣

∣

∣

∣

~0

xi ◦ φ+

n
∑

i,j=1

(Rij ◦ φ) · (xi ◦ φ) · (xj ◦ φ).

We now apply d. By (2), d(f(m)) = 0. Since xj ◦φ(m) = 0, the terms d((Rij ◦φ) ·(xi ◦φ) ·

(xj◦φ)) = 0 by (1). Also, d( ∂f◦φ−1

∂xi

∣

∣

∣

~0
xi◦φ) = ai`[φ−1(tei)](f). Hence, d = `P

n
i=1

ai[φ−1(tei)],

and ` is onto. �
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Remark 5.9***. Tangent vectors to points in Rn.

The usual coordinates on Rn give rise to standard coordinates on TpR
n. Let ei =

(0, · · · , 0, 1, 0, · · · , 0) with the only nonzero entry in the i-th spot. The path in Rn defined
by αi(t) = tei + p is a path with αi(0) = p. Its equivalence class [αi] is a vector in TpR

n

and we denote it
∂

∂xi

∣

∣

∣

∣

p

. In Advanced Calculus, the ordered basis
∂

∂x1

∣

∣

∣

∣

p

, · · · ,
∂

∂xn

∣

∣

∣

∣

p

is

the usual basis in which the Jacobian matrix is usually written and sets up a natural
isomorphism TpR

n ∼= Rn. The reader should notice that the isomorphism is only natural
because Rn has a natual basis and is not just an abstract n-dimensional vector space.
If ρ is a path in Rn, then ρ′(0) ∈ Tρ(0)R

n via this isomorphism. This notation is also
consistant with the operator notation (the second interpretation) since,

∂

∂xi

∣

∣

∣

∣

p

(f) = [f ◦ αi]

=
d

dt
f(tei + p)

∣

∣

∣

∣

t=0

=
∂f

∂xi

∣

∣

∣

∣

x=p

∈ Rn ∼= TpR
n

In the first line, the tangent vector
∂

∂xi

∣

∣

∣

∣

p

operates via the second interpretation on the

function f .

Example 5.10***. TMx for M an n-dimensional submanifold of Rk.

Suppose M ⊂ Rk is a submanifold and i : M → Rk is the inclusion. Take (Ux, φ) a
slice coordinate neighborhood system for Rk centered at x as specified in the definition
of a submanifold, Definition 3.2***, φ : Ux → U1 × U2. Under the natural coordinates of
TRk

x
∼= Rk, TMx = φ(U1 × {0}) ⊂ Rk and i∗x has rank n.

To see these facts, note that φ ◦ i ◦ (φ|Ux∩M )−1 : U1 × {0} → U1 × U2 is the inclusion.
So, rank(i∗) = rank((φ◦ i◦φ|Ux∩M )∗) = n. Under the identification TRk

x
∼= Rk, φ∗x(Rn ×

{0}) = Dφ(x)(Rn×{0}) ⊂ Rk. This is the usual picture of the tangent space as a subspace
of Rk (i.e., shifted to the origin) that is taught in advanced Calculus.

Example 5.11***. TSn
x for Sn ⊂ Rn+1, the n-sphere.

This is a special case of Example 5.10***. Suppose (x1, · · · , xn+1) ∈ Sn, i.e.,
n+1
∑

i=1

x2
i =

1. One of the xi must be nonzero, we assume that xn+1 > 0. The other cases are
analogous. The inclusion from the Implicit Function Theorem is φ|Rn(x1, · · · , xn) =

(x1, · · · , xn,
√

1 −
∑n

i=1 x
2
i ) so

Dφ|Rn(x1, · · · , xn)(v1, · · · , vn) = (v1, · · · , vn,

∑n
i=1 −xivi

√

1 −
∑n

i=1x
2
i )

).
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Since xn+1 > 0, xn+1 =
√

1 −
∑n

i=1 x
2
i ) and the tangent space is

T(x1,··· ,xn+1)S
n = {(v1, · · · , vn,

∑n
i=1 −xivi

xn+1
) | vi ∈ R}

= {(w1, · · · , wn+1) |
n+1
∑

i=1

wixi = 0}

Example 5.12***. Recall that O(n) ⊂ Matn×n = Rn2

is a submanifold of dimension
n(n−1)

2 which was shown in Example 3.7***. Then, we claim,

X ∈ TAO(n) ⊂ Matn×n

if and only if XA−1 is skew.

This computation is a continuation of Example 3.7***. Suppose A ∈ O(n). Since
O(n) = f−1(I), TAO(n) ⊂ Ker(Df(A)). The dimension of the kernel and the dimension

of TAO(n) are both n(n−1)
2

. Therefore TAO(n) = Ker(Df(A)). It is enough to show that

Ker(Df(A)) ⊂ {X | XA−1 is skew} since the dimension of {X | XA−1 is skew} is the

dimension of Skewn×n = n(n−1)
2 (from Example 2.8d***). So it is enough to show that

XA−1 is skew.
Again, from Example 3.7***, Df(A)(X) = AXT + XAT . If Df(A)(X) = 0, then

AXT = −XAT . Since A ∈ O(n), A−1 = AT . So,

(XA−1)T = (XAT )T = AXT = −XAT = −XA−1

Therefore XA−1 is skew.

Example 5.13***. Recall that Sp(n,R) ⊂ Matn×n = Rn2

is a submanifold of dimension
n(n+1)

2
which was shown in Example 3.9***. Then, we claim,

X ∈ TASp(n,R) ⊂ Matn×n

if and only if JXA−1 is symmetric.

This computation is a continuation of Example 3.9***. Suppose A ∈ Sp(n,R).
Since Sp(n,R) = f−1(J), TASp(n,R) ⊂ Ker(Df(A)). The dimension of the kernel and

the dimension of TASp(n,R) are both n(n+1)
2

. Therefore TASp(n,R) = Ker(Df(A)). It

is enough to show that Ker(Df(A)) ⊂ {X | JXA−1 is symmetric} since the dimension

of {X | JXA−1 is symmetric } is the dimension of Symn×n = n(n+1)
2

(from Example

2.8c***). So it is enough to show that JXA−1 is symmetric.
Again, from Example 3.9***, Df(A)(X) = AJXT + XJAT . If Df(A)(X) = 0, then

−AJXT = XJAT . Since A ∈ Sp(n,R), A−1 = JATJT . So,

(JXA−1)T = (JXJATJT )T = (−JAJXTJT )T = −JXJTATJT

= JXJATJT as JT = −J by Lemma 3.8***

= JXA−1

Therefore XA−1 is symmetric.
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Remark 5.14***. Notation for Tangent vectors

The space Rn comes equipped with a canonical basis e1, · · · , en which allows us to pick
a canonical basis for TRn

x . For an n-manifold M , TMp doesn’t have a natural basis. We
can give coordinates on TMp in terms of a chart. Suppose that (U, φ) is a chart for a
neighborhood of p ∈ U ⊂ M . Write φ = (φ1, · · · , φn) in terms of the coordinates on Rn.
Hence, φi = xi ◦ φ. We can import the coordinates TRn

φ(p). Let

∂

∂φi

∣

∣

∣

∣

p

= φ−1
∗ (

∂

∂xi

∣

∣

∣

∣

φ(p)

)

As a path ∂
∂φi

∣

∣

∣

p
is the equivalence class of φ−1(tei + φ(p)). As an operator,

∂

∂φi

∣

∣

∣

∣

p

(f) =
∂f ◦ φ−1

∂xi

∣

∣

∣

∣

φ(p)

.
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Exercises

Exercise 1***. Suppose F : R4 → R2 by

F ((w, x, y, z)) = (wxyz, x2y2).

Compute F∗ and be explicit in exhibiting the bases in the notation used in Remark 5.9***.
Where is F singular?

The reader may wish to review Example 2.10** and Exercise 4*** from chapter 3 for
the following exercise.

Exercise 2***. Let g((x, y)) = x2 + y2 and h((x, y)) = x3 + y2. Denote by Gg and Gh

the graphs of g and h which are submanifolds of R3. Let F : Gg → Gh by

F : ((x, y, z)) = (x3, xyz, x9 + x2y).

The reader may wish to review Example 2.10** and Exercise *** from chapter 3.

a. Explicitly compute the derivative F∗ and be clear with your notation and bases.
b. Find the points of Gg where F is singular. What is the rank of F∗p for the various

singular points p ∈ Gg.

Exercise 3***. Let F : R3 → S3 be defined by

F ((θ, φ, η)) = (sin η sinφ cos θ, sin η sinφ sin θ, sin η cosφ, cos η).

Use the charts from stereographic projection to compute F∗ in terms of the bases discussed

in Remark 5.9*** and Remark 5.14***.


