Calculating Submanifold Charts

Jimmie Lawson
Department of Mathematics
Louisiana State University

Spring, 2006

1 Introduction

The full-rank submanifold theorem states
Theorem 1.1 The set $Q=f^{-1}(q)$ is a submanifold of M of dimension $m-n$ for $f: M \rightarrow N$, where f is a smooth map having full rank at points of Q, M is a manifold of dimension m, N is manifold of dimension n for $n<m$, and $q \in N$ is in the image of f.

Proof. Let $p \in Q$, that is, $f(p)=q$. We seek to construct a slice chart for p. Let (V, ψ) be a centered chart for q so that $\psi(q)=0$. Let (U, ϕ) be a centered chart for p. We may assume, by restricting the chart if necessary, that $f(U) \subseteq V$. Since $D\left(\psi \circ f \circ \phi^{-1}\right)(0)$ has rank n by the full rank hypothesis, the image of $\left\{e_{1}, \ldots, e_{m}\right\}$ under $D\left(\psi \circ f \circ \phi^{-1}\right)(0)$ is a spanning set for \mathbb{R}^{n}, where $e_{i}, 1 \leq i \leq m$, is the unit vector in \mathbb{R}^{m} with $i^{\text {th }}$-entry 1 and 0 elsewhere. Recall from linear algebra that a basis may always be extracted from a spanning set; we label such a basis

$$
\left\{D\left(\psi \circ f \circ \phi^{-1}\right)(0)\left(e_{\sigma(1)}\right), \ldots, D\left(\psi \circ f \circ \phi^{-1}\right)(0)\left(e_{\sigma}(n)\right)\right\}
$$

where $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, m\}$ is a strictly increasing function $(i<$ $j \Rightarrow \sigma(i)<\sigma(j))$. We label the remaining $m-n$ unit vectors in \mathbb{R}^{m} by $\left\{e_{\tau(1)}, \ldots, e_{\tau(m-n)}\right\}$, where $\tau:\{1, \ldots, m-n\} \rightarrow\{1, \ldots, m\}$ is strictly increasing. We define the projection $\pi_{\tau}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-n}$ by

$$
\pi_{\tau}\left(x_{1}, \ldots, x_{m}\right):=\left(x_{\tau(1)}, \ldots, x_{\tau(m-n)}\right) .
$$

We define $F: \phi(U) \rightarrow \mathbb{R}^{m-n} \cong \mathbb{R}^{n} \oplus \mathbb{R}^{n}$ by $F(x)=\left(\pi_{\tau}(x),\left(\psi \circ f \circ \phi^{-1}\right)(x)\right)$; the first $m-n$ coordinates are given by $\pi_{\tau}(x)$ and the last n by $\left(\psi \circ f \circ \phi^{-1}\right)(x)$. The derivative at 0 is computed coordinatewise to obtain

$$
D F(0)(u)=\left(\pi_{\tau}(u), D\left(\psi \circ f \circ \phi^{-1}\right)(0)(u),\right.
$$

where the derivative in the first coordinate follows from the fact that π_{τ} is linear. Suppose that $\operatorname{DF}(0)(u)=0$, where $u=\left(u_{1}, \ldots, u_{m}\right)$. Then $\pi_{\tau}(u)=$ 0 , so $u_{\tau(i)}=0, i=1, \ldots, m-n$, and thus $u=\sum_{i=1}^{n} u_{\sigma(i)} e_{\sigma(i)}$. It follows that

$$
0=D\left(\psi \circ f \circ \phi^{-1}\right)(0)(u)=\sum_{i=1}^{n} u_{\sigma(i)} D\left(\psi \circ f \circ \phi^{-1}\right)(0)\left(e_{\sigma(i)}\right),
$$

and the fact that the $D\left(\psi \circ f \circ \phi^{-1}\right)(0)\left(e_{\sigma(i)}\right), i=1, \ldots, n$, form a basis for \mathbb{R}^{n} implies that each $u_{\sigma(i)}=0$. Hence $u=0$, we conclude the kernel of $D F(0): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is trivial, and therefore $D F(0)$ is an isomorphism.

From the Inverse Function Theorem we conclude that F is a diffeomorphism on some neighborhood of $\phi\left(U_{1}\right)$ of 0 , where U_{1} is open, $p \in U_{1} \subseteq U$. Hence $\left(U_{1}, F \circ \phi\right)$ is a centered chart at p since $F \circ \phi$ is a diffeomorphism and hence a chart and $F(0)=0$. We observe for $x \in U_{1}$ that $F \circ \phi(x)$ is equal to 0 in the last n coordinates if and only if

$$
0=\left(\left(\psi \circ f \circ \phi^{-1}\right) \circ \phi\right)(x)=\psi(f(x))
$$

if and only if $f(x)=q$, that is, $x \in Q$. Hence the chart $\left(U_{1}, F \circ \phi\right)$ is a slice-chart at p. Since p was an arbitrary point of Q, the proof is complete.

The construction in this proof can frequently be adapted in an algorithmic fashion to calculate an atlas of charts for a submanifold.

2 The case $N=\mathbb{R}$

We begin with the fairly simple, but important, case that $N=\mathbb{R}$. Suppose we have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, q \in \mathbb{R}$, and $Q=f^{-1}(q)$. Then for $x \in \mathbb{R}^{n}$, the Jacobian $\mathrm{Jf}(\mathrm{x})$ is the transposed gradient vector $\nabla f(x)^{T}=\left[\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$ thought of as a linear operator $J f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by multiplying the row vector $\nabla f(x)^{T}$ by any column vector $u \in \mathbb{R}^{n}$, or alternatively, by taking the dot product $\nabla f(x) \cdot u$.

Step 1. The rank condition in this setting is the condition that $J f(x)$ has rank one on Q, which is equivalent to its not being the 0 or null vector for all $x \in Q=f^{-1}(q)$. We must check this condition to make sure that Q will indeed by a submanifold.

We fix $x \in Q$, and seek a slice-chart (U, F) where U is an open subset containing x and $F: U \rightarrow \mathbb{R}^{n}$ is a coordinate map satisfying for all $y \in U$,

$$
F(y) \in \mathbb{R}^{n-1} \times\{0\} \Leftrightarrow y \in U \cap Q
$$

Step 2. We take the chart $\psi: \mathbb{R} \rightarrow \mathbb{R}$ centered at q and defined by $\psi(t)=t-q$. (We observe that this single chart is an atlas for the usual differentiable structure on \mathbb{R}.) The last coordinate of F is then given by $\psi \circ f$, i.e., $F(y)=(? ?, \psi(f(y))=(? ?, f(y)-q)$.

We now turn to the problem of finding the formula for the first $n-1$ coordinates. For a general M we would need to work in a chart around x. However, since $M=\mathbb{R}^{n}$, we simply take the chart to be the identity on \mathbb{R}^{n} and henceforth can ignore the chart ϕ and work in \mathbb{R}^{n}, thought of both as the manifold and the chart image.

Step 3. We next identify a standard unit vector $e_{i} \in \mathbb{R}^{n}$ whose image under the Jacobian map $J f(x)=\nabla f(x)^{T}$ spans. In this case it simply means the image is nonzero (since \mathbb{R} is one-dimensional), i.e., $\nabla f(x) \cdot e_{i} \neq$ 0 , which occurs if and only if $\frac{\partial f}{\partial x_{i}}(x) \neq 0$. We then take the projection $\pi_{\neq i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ that deletes the $i^{\text {th }}$-coordinate. The chart is then given by $F(y)=\left(\pi_{\neq i}(y), f(y)-q\right)$

Step 4. Restrict F to some open set U around x such that (i) F is one-to-one on U and (ii) $\frac{\partial f}{\partial x_{i}}(y) \neq 0$ for all $y \in U$. Repeat the procedure for other $x \in Q$ until enough such (U, F) are found to form an atlas for Q.

3 A specific example

Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x^{2}+y^{2}-z^{2}$, and let $q=1 \in \mathbb{R}$. Then $Q=\left\{(x, y, z): x^{2}+y^{2}-z^{2}=1\right\}$ is a hyperboloid of one sheet with axis of symmetry the z-axis.

Step 1. We have $\nabla f(x, y, z)^{T}=[2 x, 2 y,-2 z]$, which is never the 0 -vector for any point in Q; thus the full rank condition is satisfied.

Step 2. We define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $F(x, y, z)=\left(?, ?, x^{2}+y^{2}+z^{2}-1\right)$. Note that $F(x, y, z)=(?, ?, 0)$ if and only if $(x, y, z) \in Q$, one of the slice chart conditions for Q to be a submanifold.

Step 3. Let $(x, y, z) \in Q$ such that $y \neq 0$. Then $\nabla f(x, y, z) \cdot e_{x}=$ $2 x(0)+2 y(1)-2 z(0)=2 y \neq 0$ on this open set. We choose for our projection the projection into the $x z$-plane. We then define $F(x, y, z)=\left(x, z, x^{2}+y^{2}-\right.$ $\left.z^{2}-1\right)$.

Step 4. If we restrict to the set $U^{+}=\{(x, y, z): y>0\}$, then as we saw in step 3 that the image of e_{2} under the Jacobian spans. Suppose that we choose $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in U^{+}$with $F\left(x_{1}, y_{1}, z_{1}\right)=F\left(x_{2}, y_{2}, z_{2}\right)$. By looking at the first and second coordinates of the images, we conclude that $x_{1}=x_{2}$ and $z_{1}=z_{2}$. Since in the third coordinates $x_{1}^{2}+y_{1}^{2}-z_{1}^{2}-1=x_{2}^{2}+y_{2}^{2}-z_{2}^{2}-1$, we conclude that

$$
y_{1}^{2}=1-x_{1}^{2}+z_{1}^{2}=1-x_{2}^{2}+z_{2}^{2}=y_{2}^{2} .
$$

Since $y_{1}, y_{2}>0$, we conclude that $y_{1}=y_{2}$. Therefore F is also one-to-one on U^{+}. Hence $\left(U^{+}, F\right)$ is a chart for \mathbb{R}^{3} that is also a submanifold chart for Q. If we consider the open set U^{-}for which $y<0$, we can obtain a second chart by restricting F to this set. For the open sets V^{+}with $x>0$ and V^{-}with $x<0$, we need to modify the definition of F to $G(x, y, z)=\left(y, z, x^{2}+y^{2}-z^{2}-1\right)$. Then G restricted to V^{+}and V^{-}are also charts that satisfy the submanifold condition. We thus obtain four charts of \mathbb{R}^{3} whose restrictions to Q form an atlas for Q (note that it is impossible for both x and y to be 0 at any point of Q).

We are done and our theory guarantees that $\left(U^{+}, F\right)$, etc. are charts for \mathbb{R}^{3}, but we can verify this directly by noting that F is C^{∞}, one-to-one on U^{+}, and has invertible Jacobian:

$$
J F(x, y, z)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
2 x & 2 y & 2 z
\end{array}\right)
$$

which has non-zero determinant if $y \neq 0$, and hence is invertible.

4 Exercises

Exercise 4.1 Use the preceding method outlined for the example of the hyperboloid to find a slice chart for the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ for $a, b, c \neq 0$. How many such slice charts are needed in order to extract an atlas for the ellipsoid?

Exercise 4.2 The 2×2 real matrices of determinant 1, the so-called special linear group $S L(2, \mathbb{R})$, is a submanifold of the linear space of all 2×2 matrices Mat ${ }_{2 \times 2}$, which may be identified with \mathbb{R}^{4} :

$$
\left(\begin{array}{ll}
x_{1,1} & x_{1,2} \\
x_{2,1} & x_{2,2}
\end{array}\right) \leftrightarrow\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right) .
$$

(Indeed this correspondence defines a chart which is an atlas for $M_{1} t_{2 \times 2}$.)
(i) Show that the determinant mapping det: $\mathbb{R}^{4} \rightarrow \mathbb{R}$ defined by

$$
\operatorname{det}\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right)=x_{1,1} x_{2,2}-x_{1,2} x_{2,1}
$$

has full rank 1 at all points of $S L(2, \mathbb{R})$, and hence is a submanifold by the full-rank submanifold theorem.
(ii) Compute the Jacobian matrix for $\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right) \mapsto\left(x_{1,2}, x_{2,1}, x_{2,2}, x_{1,1} x_{2,2}-\right.$ $x_{1,2} x_{2,1}-1$) and show that its determinant is non-zero if $x_{2,2} \neq 0$ (and hence the Jacobian is invertible). What is the projection map from \mathbb{R}^{4} to \mathbb{R}^{3} given by the first 3 coordinates?
(iii) Show that $\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right) \mapsto\left(x_{1,2}, x_{2,1}, x_{2,2}, x_{1,1} x_{2,2}-x_{1,2} x_{2,1}-1\right)$ is a slice chart for the open set $x_{2,2} \neq 0$.
(iv) Find one other slice chart that suffices to construct an atlas for the submanifold $S L(2, \mathbb{R})$.
Exercise 4.3 (i) Consider the map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}+x_{2}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{2}\right) .
$$

Show that f restricted to $Q=f^{-1}(0,1)$ has rank 2 at every point of M, and hence that Q is a submanifold. (Hint: Show that the two rows of the Jacobian matrix $J f(x)$ are linearly independent for $x \in Q$.)
(ii) For $x_{3} \neq 0$, show that the map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{4}, x_{1}^{2}+x_{2}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{2}-1\right)
$$

has invertible Jacobian $J F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and has value 0 in the last two coordinates precisely on Q.
(iii) On the open set $x_{3}>0$, show that F is injective. Conclude that F restricted to this open set a slice-chart. Note that F restricted to the open set $x_{3}<0$ is also a slice-chart.
(iv) Repeat steps (ii) and (iii) for the cases $x_{1}>0$ and $x_{4}>0$. Observe that since $x_{2} \neq 0$ iff $x_{1} \neq 0$, six slice-charts suffice to obtain an atlas for Q.

