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1 Introduction

The full-rank submanifold theorem states

Theorem 1.1 The set Q = f−1(q) is a submanifold of M of dimension
m − n for f : M → N , where f is a smooth map having full rank at points
of Q, M is a manifold of dimension m, N is manifold of dimension n for
n < m, and q ∈ N is in the image of f .

Proof. Let p ∈ Q, that is, f(p) = q. We seek to construct a slice chart for p.
Let (V, ψ) be a centered chart for q so that ψ(q) = 0. Let (U, φ) be a centered
chart for p. We may assume, by restricting the chart if necessary, that
f(U) ⊆ V . Since D(ψ◦f ◦φ−1)(0) has rank n by the full rank hypothesis, the
image of {e1, . . . , em} under D(ψ ◦f ◦φ−1)(0) is a spanning set for R

n, where
ei, 1 ≤ i ≤ m, is the unit vector in R

m with ith-entry 1 and 0 elsewhere. Recall
from linear algebra that a basis may always be extracted from a spanning
set; we label such a basis

{D(ψ ◦ f ◦ φ−1)(0)(eσ(1)), . . . , D(ψ ◦ f ◦ φ−1)(0)(eσ(n))}

where σ : {1, . . . , n} → {1, . . . , m} is a strictly increasing function (i <
j ⇒ σ(i) < σ(j)). We label the remaining m − n unit vectors in R

m by
{eτ(1), . . . , eτ(m−n)}, where τ : {1, . . . , m − n} → {1, . . . , m} is strictly in-
creasing. We define the projection πτ : R

m → R
m−n by

πτ (x1, . . . , xm) := (xτ(1), . . . , xτ(m−n)).
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We define F : φ(U) → R
m−n ∼= R

n⊕R
n by F (x) = (πτ (x), (ψ◦f◦φ

−1)(x));
the first m−n coordinates are given by πτ (x) and the last n by (ψ◦f◦φ−1)(x).
The derivative at 0 is computed coordinatewise to obtain

DF (0)(u) = (πτ (u), D(ψ ◦ f ◦ φ−1)(0)(u),

where the derivative in the first coordinate follows from the fact that πτ is
linear. Suppose that DF (0)(u) = 0, where u = (u1, . . . , um). Then πτ (u) =
0, so uτ(i) = 0, i = 1, . . . , m− n, and thus u =

∑n

i=1 uσ(i)eσ(i). It follows that

0 = D(ψ ◦ f ◦ φ−1)(0)(u) =

n
∑

i=1

uσ(i)D(ψ ◦ f ◦ φ−1)(0)(eσ(i)),

and the fact that the D(ψ ◦ f ◦ φ−1)(0)(eσ(i)), i = 1, . . . , n, form a basis for
R

n implies that each uσ(i) = 0. Hence u = 0, we conclude the kernel of
DF (0) : R

m → R
m is trivial, and therefore DF (0) is an isomorphism.

From the Inverse Function Theorem we conclude that F is a diffeomor-
phism on some neighborhood of φ(U1) of 0, where U1 is open, p ∈ U1 ⊆ U .
Hence (U1, F ◦φ) is a centered chart at p since F ◦φ is a diffeomorphism and
hence a chart and F (0) = 0. We observe for x ∈ U1 that F ◦ φ(x) is equal to
0 in the last n coordinates if and only if

0 = ((ψ ◦ f ◦ φ−1) ◦ φ)(x) = ψ(f(x))

if and only if f(x) = q, that is, x ∈ Q. Hence the chart (U1, F ◦ φ) is a
slice-chart at p. Since p was an arbitrary point of Q, the proof is complete.

The construction in this proof can frequently be adapted in an algorithmic
fashion to calculate an atlas of charts for a submanifold.

2 The case N = R

We begin with the fairly simple, but important, case that N = R. Suppose
we have f : R

n → R, q ∈ R, and Q = f−1(q). Then for x ∈ R
n, the Jacobian

Jf(x) is the transposed gradient vector ∇f(x)T = [ ∂f

∂x1

, . . . , ∂f

∂xn

] thought of
as a linear operator Jf(x) : R

n → R given by multiplying the row vector
∇f(x)T by any column vector u ∈ R

n, or alternatively, by taking the dot
product ∇f(x) · u.
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Step 1. The rank condition in this setting is the condition that Jf(x) has
rank one on Q, which is equivalent to its not being the 0 or null vector for
all x ∈ Q = f−1(q). We must check this condition to make sure that Q will
indeed by a submanifold.

We fix x ∈ Q, and seek a slice-chart (U, F ) where U is an open subset
containing x and F : U → R

n is a coordinate map satisfying for all y ∈ U ,

F (y) ∈ R
n−1 × {0} ⇔ y ∈ U ∩Q.

Step 2. We take the chart ψ : R → R centered at q and defined by
ψ(t) = t − q. (We observe that this single chart is an atlas for the usual
differentiable structure on R.) The last coordinate of F is then given by
ψ ◦ f , i.e., F (y) = (??, ψ(f(y)) = (??, f(y) − q).

We now turn to the problem of finding the formula for the first n − 1
coordinates. For a general M we would need to work in a chart around x.
However, since M = R

n, we simply take the chart to be the identity on R
n

and henceforth can ignore the chart φ and work in R
n, thought of both as

the manifold and the chart image.
Step 3. We next identify a standard unit vector ei ∈ R

n whose image
under the Jacobian map Jf(x) = ∇f(x)T spans. In this case it simply
means the image is nonzero (since R is one-dimensional), i.e., ∇f(x) · ei 6=
0, which occurs if and only if ∂f

∂xi

(x) 6= 0. We then take the projection

π 6=i : R
n → R

n−1 that deletes the ith-coordinate. The chart is then given by
F (y) = (π 6=i(y), f(y)− q)

Step 4. Restrict F to some open set U around x such that (i) F is one-
to-one on U and (ii) ∂f

∂xi

(y) 6= 0 for all y ∈ U . Repeat the procedure for other
x ∈ Q until enough such (U, F ) are found to form an atlas for Q.

3 A specific example

Consider f : R
3 → R given by f(x, y, z) = x2 + y2 − z2, and let q = 1 ∈ R.

Then Q = {(x, y, z) : x2 + y2 − z2 = 1} is a hyperboloid of one sheet with
axis of symmetry the z-axis.

Step 1. We have ∇f(x, y, z)T = [2x, 2y,−2z], which is never the 0-vector
for any point in Q; thus the full rank condition is satisfied.

Step 2. We define F : R
3 → R

3 by F (x, y, z) = (?, ?, x2 + y2 + z2 − 1).
Note that F (x, y, z) = (?, ?, 0) if and only if (x, y, z) ∈ Q, one of the slice
chart conditions for Q to be a submanifold.
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Step 3. Let (x, y, z) ∈ Q such that y 6= 0. Then ∇f(x, y, z) · ex =
2x(0)+2y(1)−2z(0) = 2y 6= 0 on this open set. We choose for our projection
the projection into the xz-plane. We then define F (x, y, z) = (x, z, x2 + y2 −
z2 − 1).

Step 4. If we restrict to the set U+ = {(x, y, z) : y > 0}, then as we saw in
step 3 that the image of e2 under the Jacobian spans. Suppose that we choose
(x1, y1, z1), (x2, y2, z2) ∈ U+ with F (x1, y1, z1) = F (x2, y2, z2). By looking at
the first and second coordinates of the images, we conclude that x1 = x2 and
z1 = z2. Since in the third coordinates x2

1 + y2
1 − z2

1 − 1 = x2
2 + y2

2 − z2
2 − 1,

we conclude that

y2
1 = 1 − x2

1 + z2
1 = 1 − x2

2 + z2
2 = y2

2.

Since y1, y2 > 0, we conclude that y1 = y2. Therefore F is also one-to-one on
U+. Hence (U+, F ) is a chart for R

3 that is also a submanifold chart for Q. If
we consider the open set U− for which y < 0, we can obtain a second chart by
restricting F to this set. For the open sets V + with x > 0 and V − with x < 0,
we need to modify the definition of F to G(x, y, z) = (y, z, x2 + y2 − z2 − 1).
Then G restricted to V + and V − are also charts that satisfy the submanifold
condition. We thus obtain four charts of R

3 whose restrictions to Q form an
atlas for Q (note that it is impossible for both x and y to be 0 at any point
of Q).

We are done and our theory guarantees that (U+, F ), etc. are charts for
R

3, but we can verify this directly by noting that F is C∞, one-to-one on
U+, and has invertible Jacobian:

JF (x, y, z) =





1 0 0
0 0 1
2x 2y 2z



 ,

which has non-zero determinant if y 6= 0, and hence is invertible.

4 Exercises

Exercise 4.1 Use the preceding method outlined for the example of the hy-
perboloid to find a slice chart for the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 for
a, b, c 6= 0. How many such slice charts are needed in order to extract an
atlas for the ellipsoid?
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Exercise 4.2 The 2× 2 real matrices of determinant 1, the so-called special
linear group SL(2,R), is a submanifold of the linear space of all 2×2 matrices
Mat2×2, which may be identified with R

4:
(

x1,1 x1,2

x2,1 x2,2

)

↔ (x1,1, x1,2, x2,1, x2,2).

(Indeed this correspondence defines a chart which is an atlas for Mat2×2.)

(i) Show that the determinant mapping det: R
4 → R defined by

det(x1,1, x1,2, x2,1, x2,2) = x1,1x2,2 − x1,2x2,1

has full rank 1 at all points of SL(2,R), and hence is a submanifold by
the full-rank submanifold theorem.

(ii) Compute the Jacobian matrix for (x1,1, x1,2, x2,1, x2,2) 7→ (x1,2, x2,1, x2,2, x1,1x2,2−
x1,2x2,1 − 1) and show that its determinant is non-zero if x2,2 6= 0 (and
hence the Jacobian is invertible). What is the projection map from R

4

to R
3 given by the first 3 coordinates?

(iii) Show that (x1,1, x1,2, x2,1, x2,2) 7→ (x1,2, x2,1, x2,2, x1,1x2,2 − x1,2x2,1 − 1)
is a slice chart for the open set x2,2 6= 0.

(iv) Find one other slice chart that suffices to construct an atlas for the
submanifold SL(2,R).

Exercise 4.3 (i) Consider the map f : R
4 → R

2 defined by

f(x1, x2, x3, x4) = (x2
1 + x2, x

2
1 + x2

2 + x2
3 + x2

4 + x2).

Show that f restricted to Q = f−1(0, 1) has rank 2 at every point of M , and
hence that Q is a submanifold. (Hint: Show that the two rows of the Jacobian
matrix Jf(x) are linearly independent for x ∈ Q.)
(ii) For x3 6= 0, show that the map F : R

4 → R
4 defined by

F (x1, x2, x3, x4) = (x1, x4, x
2
1 + x2, x

2
1 + x2

2 + x2
3 + x2

4 + x2 − 1)

has invertible Jacobian JF (x1, x2, x3, x4) and has value 0 in the last two
coordinates precisely on Q.
(iii) On the open set x3 > 0, show that F is injective. Conclude that F
restricted to this open set a slice-chart. Note that F restricted to the open
set x3 < 0 is also a slice-chart.
(iv) Repeat steps (ii) and (iii) for the cases x1 > 0 and x4 > 0. Observe that
since x2 6= 0 iff x1 6= 0, six slice-charts suffice to obtain an atlas for Q.
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