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1. Introduction

B. DE SAINT-VENANT [13] proposed in 1856 that among all prismatic shafts
with given cross-sectional area that the greatest torsional rigidity is obtained by a
shaft with circular cross-section. This proposition was proved by G. PoLya [11],
who, with A. WEINSTEIN, extended this result to multiply connected cross sec-
tions [12]. In this treatment we consider prismatic shafts with given cross-sectional
area reinforced with fibers of greater stiffness. We suppose that the fibers are im-
perfectly bonded to the shaft and that the joint area of fiber cross sections is fixed.
Subject to these conditions we investigate the problem of finding the shaft and fiber
cross sections that yield the maximum torsional rigidity. The answer is shown to
depend upon the magnitude of a distinguished parameter “Rc;”. This parameter
has dimensions of length and measures the influence of the imperfect bond. Before
stating the results we provide the necessary background and a description of the
parameter R;.
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Imperfect bonding or partial adhesion between matrix and fiber is often caused
by interfacial damage due to service or as a consequence of the surface properties
of the fiber and matrix materials. Imperfect bonds are characterized by the loss of
continuity in the displacement across the fiber-matrix interface. In this treatment
partial adhesion is modeled by an interfacial surface across which the tangential
components of the displacement are discontinuous. The traction is assumed contin-
uous across the interface and the relative tangential displacement is proportional to
the tangential traction. No interpenetration between matrix and fiber is allowed and
the normal component of the displacement is continuous across the interface. The
stiffness of the interface is characterized by the parameter c, relating the tangential
traction to the relative tangential displacement. This parameter has dimensions of
shear stiffness per unit length and ranges between zero and infinity. The limiting
case @ = 00, corresponds to perfect bonding for which the displacement is con-
tinuous across the interface. The case of no adhesion along directions parallel to
the interface is captured in the limit &« = 0. This interface model was used by
LENE & LEGUILLON [4] in their treatment of the softening of effective moduli
arising from damage. Flexible interface models similar to the type treated here can
be found in the work of JONES & WHITTER [8]. A comprehensive treatment of
interface models as they relate to imperfect bonding is provided in the recent book
of ABouDI [1].

We suppose that the shaft is a cylinder of constant cross section of length s
with generators parallel to the x3 axis. The cylinder cross section is denoted by
Q and is a simply connected domain with Lipschitz continuous boundary in the
(x1, X2)-plane. We suppose that all fibers run the length of the shaft and that each
fiber is a cylinder of constant cross section with generators parallel to the x3 axis.
The boundary of each fiber is assumed to be Lipschitz continuous. Both matrix
and fibers are assumed to be made from linearly elastic isotropic materials. The
shear moduli of the fibers and matrix are denoted by G¢ and Gy, respectively. The
fibers are assumed to provide reinforcement and so we set G¢ > Gm. The elastic
deformation inside the shaft is given by the displacement field, u = (u1, ua, u3)
and the associated 3 x 3 stress tensor is denoted by o;;. We fix coordinates so
that the base of the shaft lies on the x3 = 0 plane and the x3 axis lies within the
shaft. The sides of the shaft are kept traction-free and we fix u; = u2 = 0 and
o33 = 0 on the base of the shaft. The shaft is subjected to a twist of angle 6 per unit
length. At x3 = h we have u; = —6hxy, up = 0hx), with o33 = 0. We denote a
configuration of N fibers with cross sections X;,i = 1,... , N by A. Here, A C Q
and A = Uﬁ:{v %;. The torsional rigidity is the ratio between the resultant torsional
moment over the cross section 2 and the twist per unit length 8. Denoting the
torsional rigidity by T(A, &, o) we have:

0T(A, Q2,a) = / (x1093 — x2013) dx. (L.
Q

Here dx = dxldxz.
We naturally expect that the torsional rigidity of an imperfectly bonded fiber-
reinforced shaft is less than that of a perfectly bonded shaft. However, equality
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holds for a circular shaft reinforced with a single centered fiber with circular cross-
section: see Section 4. Indeed, when the shaft radius is R and fiber radius is a, the
torsional rigidity is given by

1nGm(R* — a*) + }7Gia®; (1.2)

this is computed in Section 4.

Formula (1.2) shows that the torsional rigidity for this configuration is indepen-
dent of the tangential interfacial stiffness «. This is due to the fact that the traction
vanishes at the matrix-fiber interface; see Section 4. We find that the rigidity given
by (1.2) holds even for the extreme case when there is a complete loss of adhesion
in the direction tangential to the interface; see Section 7. We see from (1.2) that
the rigidity for the concentric circular fiber-shaft configuration is strictly increasing
with the fiber radius.

To understand how imperfect bonding influences the torsional rigidity, we define
the parameter

ol

¥ 1.3
Gm 1 —G¢! (13)

Ry =
This parameter has dimensions of length and is a measure of the relative influence
between the interfacial compliance and the mismatch between matrix and fiber
compliance. We show that Ry sets the length scale at which the effects of partial
interfacial adhesion spoil the effects of a stiff reinforcement.

The first result that we present applies to shafts with circular cross section
reinforced with a single fiber with circular cross section. For a shaft of radius R we
choose coordinates so that the shaft cross section is a disk centered at the origin.
We denote this cross section by Do(R). The fiber cross section is a disk of radius
a with center denoted by X and we denote the fiber cross section by Dj(a). The
torsional rigidity for this configuration is written

T(Dz(a), Do(R), @), 1.4)
and we have

Theorem 1.1. If the fiber cross-sectional radius is less than or equal to Re;, then
the maximum torsional rigidity is obtained by centering the fiber inside the shaft;
otherwise the maximum torsional rigidity is given by moving the fiber “off-center”,
ie,ifa S Rg, then

T(Ds(a), Do(R), @) £ 37G(R* — a*) + 7 Gya* 1.5)
and if a > Ry, then
T(Ds(a), Do(R), @) > 1nGu(R* —a*) + §nGea®  for X£0.  (1.6)

This result is proved in Section 5. We remark that (1.6) holds in the perfect bonding
limit @ = 00; see Section 7. To understand the physical significance of Theorem
1.1 we consider a single fiber reinforcement of circular cross section and allow
the parameter Re; to change. Indeed, (1.5) shows that, for sufficiently large Rer,
the centered fiber configuration is optimal. For this case we see that the interfacial
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compliance is large with respect to the relative compliance between the matrix and
fiber. Therefore the most rigid design is the centered fiber configuration where the
interface does not support any traction. When Ry, is sufficiently small, the effect of
the compliant interface is reduced and inequality (1.6) shows that the fiber is best
utilized by placing it off-center.

Next we consider configurations that correspond to a shaft of circular cross
section of radius R, reinforced with N identical fibers of circular cross section.
The common radii of the fibers is denoted by a and the center of the i™ fiber is
denoted by x;, 1, ..., N. The cross section of the t fiber is a disk of radius a and
is denoted by Dy, (a). We examine the situation when the common fiber radius is

precisely Re;.

Theorem 1.2. If the common cross-sectional radius of the N fibers is equal to Rer,
then the torsional rigidity is precisely that of a single centered circular fiber of
radius N1/*R¢; centered at the origin. This result is independent of the location of
the N fibers, i.e.,

TN, D;,(Rer), Do(R), @) = 1mGr(R* — NRE) + imGeNRE.  (17)

Here T(U{V= 1 Dx;(Rer), Do(R), @) denotes the torsional rigidity of N identical
fibers with common cross-sectional radius R;. For N identical fibers with common
cross section a we have

Theorem 1.3. If a £ Ry, then the torsional rigidity is less than or equal to the
rigidity associated with a single centered circular fiber of radius N /4Ry, and if
a > Ry, the torsional rigidity is strictly larger. This result is independent of the
location of the N fibers, i.e., ifa S Rer,

T(UY., D, (@), Do(R), @) < 17G(R* — NRY) + 3nGeNRG,; (1.8)
otherwise,
N 1 4 _NR4y4+ L 4
T(UY_, D;,(a), Do(R), @) > 3mGn(R* — NRE) + 37GeNR,. (1.9)

We address the more general case of shafts with arbitrary cross section rein-
forced with at most N fibers, each with circular cross-section. Here we assume that
the cross-sectional radius of each fiber may be different. We consider all shafts with
given cross-sectional area and prescribed joint cross-sectional area of fibers. From
this class we seek the shaft cross section and fiber configuration that produce the
maximum torsional rigidity. The answer to this question is shown to depend upon
the parameter Rer. We state

Theorem 1.4. Consider all shafts with cross-sectional area 7t R? reinforced with
at most N circular fibers with prescribed joint area of fiber cross sections. We
suppose that the joint area of fiber cross sections lies below NR?X. Of all such
fiber-reinforced shafts, the shaft with circular cross section reinforced with a single
centered fiber of circular cross section has the maximum torsional rigidity.
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When the joint area of fiber cross sections lies above mRZ, it is evident from
Theorem 1.1 that a single circular fiber placed off-center in a circular shaft does
better than the centered fiber configuration. Thus no assertion of the type given in
Theorem 1.4 can be made when the joint cross-sectional area of fibers lies above
Jngr.

We may extend our analysis to include a larger class of admissible fiber cross
sections. We allow the fiber cross section to be any convex shape with analytic
boundary provided that the maximum radius of curvature on the boundary lies
below Rey.

Theorem 1.5. Consider all shafts with cross-sectional area R? reinforced with at
most N fibers with prescribed joint area of fiber cross sections. The fiber cross sec-
tions are assumed to be convex with analytic boundary. Suppose that the joint area
of fiber cross sections lies below nRgr and that the maximum radius of curvature on
the boundary of each fiber cross section lies below Rer. Of all such fiber-reinforced
shafts, the shaft with circular cross section reinforced with a single centered fiber
of circular cross section has the maximum torsional rigidity.

Theorems 1.4 and 1.5 are consequences of an isoperimetric inequality that
is derived in this paper. Before giving the isoperimetric inequality, we identify a
quantity intrinsic to the fiber cross-section referred to here as the surface traction
to bulk stress quotient. It provides a measure of the magnitude of the in-plane stress
generated in the fiber cross section due to a prescribed traction on the fiber boundary
parallel to the generators of the fiber. We denote a fiber cross section by ¥ and its
boundary by 8%. The traction on the fiber boundary parallel to the generators
of the fiber is written as (0, 0, g3) and we suppose further that g3 = gs(x1, ¥2)
with f o5 &3dl = 0. Here d! is the element of arc length along the boundary. The
fiber is assumed to be linearly elastic with unit shear stiffness. On the top and
bottom faces of the fiber we set the in-plane displacements and normal traction
to zero. The resulting stress inside the fiber is denoted by 7;;, and 9;7;; = O in
the fiber. On the fiber boundary parallel to the generators, n denotes the outward
directed unit normal, 7jjn; = 1,jnj = 0 and t3;n; = g;. Solution of the traction
boundary-value problem shows that the stress tensor depends only on the (x1, x2)
coordinates and the only non-zero components of the stress tensor are 73; and
137. The ratio of surface traction to bulk stress for the fiber cross section is given
by fi = min{[,5(g:)?dl/(f5 (2 + 15)dx)}, where dx = dxidx;. Here the
minimum is taken over all tractions g; such that f a3, 83dl = 0. For our purposes we
find it convenient to express B; in terms of stress potentials. For a given in-plane
stress (731, 732), we introduce the harmonic function ¢ for which (2¢, —319) =
(731, 132). Direct substitution shows that

3 ¢|%dl
— min fazl 9| ’
e fz |Vgo|2dx

where 9, indicates tangential differentiation along the boundary of the fiber cross
section. The admissible class of trials %4 is given by

B (1.10)

26 = {¢| @ is harmonic in X, the trace of ¢ on X lies in HQD), fa): @dl = 0}.
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Here H!(3X) is the space of all functions defined on 3 X that are square-integrable
and have square-integrable tangential derivitaves on 30X, i.e., faz ¢*dl £ oo and
f I 18: ¢|%dl < oco. From its definition we see that B is the largest constant C for
which the inequality

/ |a,¢|2dlgcf |Vo|%dx (1.11)
X az

holds for all ¢ in the space %4.

This quantity (1.10) was introduced in the study of DC electrical conductivity
properties of particulate composites; see LIPTON [7]. In that context 8 is referred to
as the “ratio of surface to volume dissipation.” In two dimensions the ratio of surface
traction to bulk stress is identical to the second Stekloff eigenvalue associated with
the fiber cross section. (This is shown in Section 3.) For a fiber with circular cross
section of radius a the ratio of surface traction to bulk stress is precisely a .

We now present an isoperimetric inequality for a large class of fiber-reinforced

shafts.

Theorem 1.6 (Isoperimetric inequality). Consider all shafts with cross-sectional
arean R?, reinforced with at most N fibers. The fibers have simply connected cross
sections. Suppose that the ratio of surface traction to bulk stress of each fiber cross
section lies above R‘;1 and that the joint area of fiber cross sections lies below nRgr.
Of all such fiber-reinforced shafts with given cross-sectional area and prescribed
joint area of fiber cross sections, the shaft with circular cross section reinforced
with a concentric fiber of circular cross section has the maximal torsional rigidity,
ie.,

T(A, 2, @) £ inGn(R* — a*) + 17 Gsa®. (1.12)

Here a? is the joint area of the fiber cross sections.

We see that Theorem 1.6 is in the same spirit as the well-known proposition
of SAINT-VENANT for prismatic shafts made from homogeneous isotropic elas-
tic material. The proposition of SAINT- VENANT was established using Steiner
symmetrization by G. PoLYA [11] in 1948.

Next we present a tight upper bound on the torsional rigidity. We consider any
shaft with cross-sectional area 7 R2, reinforced with at most N fibers. The fibers
have simply connected cross sections, X1, X2, ... , Ly and the area occupied by
the i™ fiber cross section is denoted by | X;|.

Theorem 1.7 (Optimal design). If the ratio of surface traction to bulk stress of each
fiber cross section lies above Rc_rl, then the rorsional rigidity is less than or equal
to the torsional rigidity of a concentric circular fiber-shaft configuration where the

radius a of the circular fiber is given by

na? = /ISI + |2 + -+ [Zw 2 (1.13)



Optimal Fiber Configurations for Maximum Torsional Rigidity 85

It is evident from (1.13) and the inequality v/|Z112 + | D22 +--- + |Zn ]2 <
[Z(|4+1Z2]+- - -+| x| that the cross-sectional area of the circular fiber is less than
or equal to the joint cross-sectional area of the fiber configuration. This theorem
represents the extension of inequality (1.8) of Theorem 1.3 to fiber cross sections
of general shape.

We consider the extreme case @ = 0, which corresponds to loss of adhesion
in the direction tangential to the fibers. In this case we have R3! = 0 and we
expect an isoperimetric inequality of the kind given in Theorem 1.6 to apply to any
fiber-reinforced shaft. This is shown in Theorem 7.1. On the other hand, we do not
have an isoperimetric inequality of the type given in Theorem 1.6 for the perfectly
bonded case, i.e., & = 00. To see this, we consider a shaft with circular cross section
reinforced with a single fiber with circular cross section. When the fiber radius lies
above Ry, we recall that the centered fiber configuration is suboptimal. Therefore
as we pass to the extreme case & = 00, we find that R;; = 0 and we expect the
centered circular fiber in a circular shaft to be suboptimal for every choice of fiber
radius. This is shown rigorously in Section 7 by passing to the limit ¢ = o0 in
inequality (5.1) of Theorem 5.1. Similar remarks hold for Theorem 1.7 and are
established in Section 7.

The results of this analysis apply when there is partial adhesion in directions
both normal and tangential to the interface. For this case we consider an imperfect
interface model similar to the type introduced in the work of J. D. ACHENBACH
& H. Znvu [2]. In addition to a discontinuity in the tangential displacements, we
suppose that material points on either side of the interface are allowed to separate
and move away from each other in the normal direction, the displacement being
proportional to the traction normal to the interface. When material points on either
side of the interface are in contact, the normal component of the traction is directed
into the fiber. We apply these nonlinear interface conditions and solve for the dis-
placement inside the shaft to find that the displacement and stress are identical to
the displacement and stress obtained using the previous linear interface model. This
shows that imperfect adhesion normal to the fiber-matrix interface does not affect
the torsional rigidity of the shaft. These results are presented in Section 8.

The paper is organized as follows. In Section 2 we obtain the form of solution
for the torsion boundary-value problem. The solution is given in terms of a discon-
tinuous warping function. Here we introduce the stress potential and formulate the
torsional rigidity in terms of it. In Section 3 we derive inequalities for the torsional
rigidity that are the essential ingredients in the proofs of Theorems 1.1 through
1.7. The upper inequality for the rigidity is given in terms of the ratio of surface
traction to bulk stress. In Section 4 we find the stress potential for the circular
shaft reinforced with a single concentric circular fiber. We obtain an analytic ex-
pression for the stress potential for a shaft with circular cross section of radius R
reinforced with circular fibers with common radius equal to R¢;. In Section 5 we
prove Theorems 1.1, 1.3. In Section 6 we prove the optimal design theorem, the
isoperimetric inequality, and two of its consequences given by Theorems 1.4 and
1.5. The extreme cases @ = 0 and & = oo are addressed in Section 7. In Section
8 we examine imperfect interfaces for which there are discontinuities in both the
normal and tangential components of the displacement across the interface. We
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give a sketch of the proof for the existence and uniqueness of a solution for the
torsion boundary-value problem in the Appendix.

2. The Torsion Boundary-Value Problem and the Torsional Rigidity

In this Section we formulate the interface conditions and the equations of me-
chanical equilibrium for the elastic displacement. It is shown that the displacement
along the axis of the shaft is characterized by a discontinuous warping function.
We consider a shaft reinforced with N fibers each with cross section denoted by
%;,i =1,..., N.The union of all fiber-matrix interfaces is written as I". The jump
in a quantity g across I is denoted by [¢] = g — gm, Where g is the trace of the
quantity on the fiber side and gy, is the trace on the matrix side. On the interface, the
elastic deformation is decomposed into normal and tangential components given
by u, = u-nand u, = u — (u - n)n, where n is the unit normal pointing out of the
fiber domain into the matrix. The stress tensor inside the composite shaft is denoted
by o;; and on the interface the traction is decomposed into normal and tangential
components given by o, = ojjnin; and (0;); = oijn; — (Owneny)n;. Inside each
phase we have the equilibrium condition

9,01 =0, @.1)

and on the fiber-matrix interface we have the imperfect bonding conditions de-
scribed by

[un)] =0 onT, 2.2)
[oijn]=0 onT, (2.3)
oy = —cfu;] onTl. 2.4)

The constitutive law is given by 0 = &e(u), where e(u) is the strain matrix
given by e(u) = %(Vu + Vu') and & is the isotropic elasticity tensor taking
different values in each phase. The elasticity tensor is specified by bulk and shear
moduli ¢ and Gy inside the fibers and in the matrix by «m and Gp,. The equilibrium
condition (2.1) together with the constitutive law, interface conditions (2.2)~(2.4),
and boundary conditions given in Section 1 constitute a well-posed boundary-value
problem for the elastic displacement. The solution is easily seen to be unique up
to a constant translation parallel to the axis of the shaft. Existence of a solution to
this problem follows easily from its variational formulation. A short outline of the
existence proof is given in the Appendix.

We may proceed as in the perfectly bonded case to find that the solution is of
Saint-Venant type. That is, the displacement in the shaft is given by

uy = —0x3xz, uz = 0x3x1, (2.5)

uz = Qw(xy, x7). (2.6)
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The function w(x;, x3) is analogous to the warping function appearing in the
torsion problem with perfectly bonded interfaces. However, unlike the perfectly
bonded case the warping function introduced here can be discontinuous across the
fiber-matrix interface. To make this precise we consider the union of all fiber cross
sections UlNz , Zi and denote the boundary of the union of all fiber cross sections by
J. We allow the warping function to have jump discontinuities across J. The set
of all points in 2 not on J is denoted by €2 \ J. The warping function is assumed
to belong to the space of square integrable functions with square-integrable first
derivitaves on the region € \ J. This space is denoted by H(€2\ J).

Equations (2.5) and (2.6) imply that the only nonzero components of the strain
tensor are given by

e13 = 20(3w —x2), e3=130(w+x1) InQ\J. Q@7
The nonzero components of the stress tensor are
o013 =60G(x)(3y,w — x2), 013 = 0G(x)(0x,w +x1) InQ\J. 2.8)

Here G(x) is the piecewise constant shear modulus taking the values Gy, and Gt in
the matrix and fiber, respectively. Substitution of (2.5) and (2.6) into the interface
conditions (2.2) and (2.3) gives

o, =0 onlJ, 2.9
[Gx)(Vw +73)-r]=0 onlJ, (2.10)
Gi(Vw +0);-n=—afw] onl. 2.11)

Here Vw = (3w, dx,w)', ¥ = (—x2, x1)}, and n = (n1, n2)" is the unit normal
pointing from the fiber into the matrix. The traction-free condition on the sides of
the shaft gives

hw=—n-v ondL2, (2.12)
and the equilibrium condition 9;0;; = 0 gives
Aw=0inQ\ J. (2.13)

Equations (2.10)—(2.13) determine the warping function up to an additive constant.

We introduce the harmonic function ¢ conjugate to the warping function w on
the region 2\ J. This function is defined uniquely up to an additive constant inside
each fiber and in the matrix. The stress potential & is defined as

® = Gx)(¢ — 3(x? +x2)). (2.14)
We easily calculate for all points in 2\ J that
V& = —RG(x)(Vw + 1) (2.15)
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where R is the rotation matrix associated with a clockwise rotation of % radians.
Relations (2.14) and (2.15) allow us to recover the boundary-value problem for the
stress potential from that of the warping function. From (2.14) we obtain

Glx)ad =-2 inQ\J. (2.16)
Application of (2.10) and (2.15) gives
0=[GXx)(Vw+7?)-n]=[RVP-n] onlJ 2.17)

and we find that
[0:2]1=0 onlJ. (2.18)

Here 9, indicates tangential differentiation along the interface. It follows from
(2.18) that adjustment by a constant in each fiber (if necessary) gives [#] = O
across the fiber-matrix interface. Thus the gradient of @ is square-integrable over
the whole domain €2, and @& lies in the Sobolev space H 1(Q). From (2.12) we find
that 3, = 0 on 92, and so & is a constant on 352. We fix the last constant at
our disposal to set @ = 0 on 352. Lastly, we recover the transmission conditions
satisfied by the derivatives of the stress potential across the interface. We return to
equation (2.15) and apply standard trace theorems to find that

[G~18,8] = —[R(Vw + D) -n] onJ. (2.19)

Noting that R~! = —R and Rn = t where 7 is the unit tangent to J, we have

[G718,0] = [3,w] onJ. (2.20)
On the other hand from, (2.11) we have
Gt(Vw + 0)f-n = —a[w] onJ 2.21)

and, since RV®Ps - n = Gf(Vw + ¥)¢ - n on J, we obtain
—0; P = —a(wf — wy) onlJ. (2.22)

(Here we recall from (2.18) that the tangential derivative of @ is continuous across
J.) When J is sufficiently regular, we may differentiate (2.22) and apply (2.20) to
find the desired transmission condition:

a 1320 = [G18,9]. (2.23)

Collecting our results we find that the transmission condition [¢] =0 on J, (2.16)
and (2.23) together with the boundary condition ¢ = 0 on 352 provide a well-posed
boundary-value problem for the stress potential. Existence and uniqueness follows
from an application of the Lax-Milgram Lemma; this is established in the work of
PuaMm Huy & SANCHEZ-PALENCIA [10].

The torsional rigidity can be expressed in terms of the stress potential. Substi-
tution of the stress potential into equation (1.1) gives

T(A, Q,a) = f G lx)| VP |%dx + a7} f |8, ®|2dl. (2.24)
Q J
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To proceed with the analysis we formulate the torsional rigidity in terms of the
following variational principle. We write

T(A,Q,a) = —2E(A, 2, x) (2.25)
where

E(A, Q,q)

1
= min [—(/G—l(X)|V¢|2dx +a_1/|3r(p]2d1> _2/ ¢dx}_(2.26)
peH} () 2\ Jq | A

Here the minimizer is precisely the stress potential. For future reference we write
a second variational principle for the torsional rigidity given by

T(A,Q,a) = min f G(x)|Vw + 9)%dx + o f ([w])?dl. 227
weHY (Q\J)JQ J

Here the minimizer is precisely the warping function in the shaft.

3. Inequalities for the Torsional Rigidity

In this Section we introduce the tools used in proving Theorems 1.1 through
1.7. We fix the cross section  of the shaft and investigate the effects of adding a
reinforcement fiber to an already existing fiber configuration. We denote the cross
section of the existing fiber configuration by A and the cross section of the fiber to
be added by 2. We suppose that the additional fiber is placed so as not to come into
contact with other fibers and that its boundary does not touch the boundary of the
shaft. The torsional rigidity of the original configuration is denoted by T(4, Q, «).
The rigidity associated with the added fiber is written as T(A U Z, Q, ). Next we
introduce the torsional rigidity S(X) of the fiber cross section ¥ filled with elastic
material of unit shear stiffness. Here S(X) is given in terms of the stress potential
¥ by

S() = / |V [2dx, 3.1
z

where the stress potential satisfies
AV =-2 inZ, 3.2)

and ¥ = 0 on 8. We denote the ratio of surface traction to bulk stress associated
with the fiber cross section X by 1(X) and state

Theorem 3.1 (Upper rigidity inequality).. If
Ai(Z) 2R, (33)

then
TAUZ, Q,a) ST, Q, a) + (Gf — Gr)S(X). 34
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Theorem 3.1 is established with the aid of the variational principle given by
(2.26). We remark that the methods used to establish this inequality obtain when
the fiber cross section is multiply connected. The idea of the proof is to estimate
the quantity E(A, €2, ) in terms of the energy E(AU X, €2, «) associated with the
additional fiber. We let & (x) denote the piecewise constant shear modulus for the
configuration A U 3. We regroup terms in the variational principle (2.26) and write

E(A4,Q,a)

1
= min {-(f 9-1(x)|v¢|2dx+a—1/ |ar¢|2dz) —2/ pdx
veHl@ 12 \Ug JAUIT Q

1 _
+§(f (G~ ! — G | Vo|%dx — a 1/ |a,<p|2dz) } (3.5)
) ax

We obtain an estimate for E(A, 2, «) by substitution of a suitable trial field into
(3.5). We introduce the stress potential & for the configuration A U 2. The trial
field ¢ is chosen to match & outside the fiber cross section T but inside we require
that Ag = —2Gp,. In other words, we choose ¢ = @ + & where § satisfies

Ad = —-2(Gyn —Gf) inX, (3.6)

8§ =0ondX, and 8§ = O outside of the fiber cross section. This choice of § ensures

that ¢ is an admissible trial for the variational principle. We observe that 9, ¢ = 9; P
on 3% and that substitution of ¢ into (3.5) gives

E(4, R, o) < 1(] 9—1(x)|v43|2dx+/ L71(x) |V + V|%dx
2\ Jass )

+a”1f ‘8rd3|2dl) —2/ 43dx—2/ sdx (3.7)
3AUBE Q z

1 .
+ —(f (Gm~! = G | VoPdx — ™! f |a,<1>|2d1).
2\Js Iz

We expand the second term on the right-hand side of (3.7) to find

/ F 1)V + V5|%dx = G~} f |V |%dx + G~} f IV8|%dx + 4/ Sdx.
x % x z
(3.8)
Substitution of (3.8) into (3.7) yields
1
E(4,R,0) SE(AUE, Q,a)+ EGf—‘ / |V3[2dx
z

(3.9)
+l</(Gm—1 —Gf-1)1v¢|2dx—a—1f |a,q3|2d1).
2\ Jg s
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Next we simplify the third term on the right-hand side of (3.9). We decompose
the trial ¢ into two parts: ¢ = r + g, where the function r satisfies

Ar=0 in%, r=9& ondZ, (3.10)
and q satisfies
Agq=-2G, in¥, g=0 ondk. (3.11)

We observe from the linearity of the torsion problems (3~.2), (3.6), and (3.11) that
8§ = (Gm — Gp)¥ and ¢ = G ¥. Noting that 8,r = 9; P on the fiber surface and
substitution into (3.9) gives

E(A,Q,0) SEAUS, Q,0) + %(Gf — Gm)S(Z)

. (3.12)
+—(/ (Gm™ ! = G¢ H|Vr|2dx — ™! / |a,r12dz).
2\Jz s
Since the function r is harmonic in %, it is evident from (1.11) that
f G =G H|Vr2dx —a”! f 18r1%dl £0 (3.13)
T s

provided that 81(X) = RZ!, and the theorem follows.

Cr ?
In order to give the second inequality we introduce the stress potential @4

for a fiber configuration with cross section A. As before, we let X represent the
cross section of the fiber to be added. We note that the methods used here place no
constraint on the connectivity of the cross section X. In fact, 3 can be the cross
section for a union of fibers with multiply connected cross sections. We state

Theorem 3.2 (Lower rigidity inequality).
T(AUZ, Q,a) 2 T(A, Q, a) + (G — Gn)S(Z)
(3.14)
—@! f |8:ul?dl — (G ™' — Gt ™) f |Vul?dx),
3T p)
where u is harmonic inside ¥ andu = ®4 on 3%,

To prove the theorem, we let G(x) denote the piecewise constant shear moduli
inside the shaft associated with the configuration of fibers with cross section A.
Rearranging terms gives

E(AUX,Q,a)

= min {%(/ é(x)—1|v¢|2dx+a~1/ |a,¢|2dz)—2/ dx (3.15)
peH} @) Q A Q

+ (a-‘ f 9.2l — (Gt — GF™Y) f |V¢|2dx)}.
ax x
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‘We make the choice of trial function ¢ € Ho1 (2) given by ¢ = P4 + v where
Av=—-2(Gf—Gy) InE, v=0 ondk, v=0 onQ\X. (3.16)

For this choice we have A¢ = —2G; in T and ¢ = @4 on dX. Substitution of ¢
into (3.15) gives

E(AUZ, Q,a)

1
<E@4,Q, =G —1/ Vv|2d
< E( a)+2 m >:| v[*dx 3.17)

1
+ = <a_1/ 18; P 42dl — (G~ —Gf-l)f |V<p|2dx>.
2 F)> z

We expand the last term in (3.17) by decomposing ¢ into two parts ¢ = w + u,
where

Au=0 inX, u=¢o, ondk, (3.18)

Aw=-2G; inX, w=0 ondX. (3.19)
Substitution into (3.17) gives:
E(AUE, Q,a)

1
<E(A,Q, )+ 5 (Gm-l f [Vo|?dx + —(Gn "} — Gf‘l)/ |Vw]2)
z )

1
+= (a_l / 13;u?dl — (Gp~! — Gs™1) f |Vu|2dx).
2 > >

Next we observe that v = (G¢ — G)¥ and w = G¢¥. Substitution into (3.20)
gives

E(AUZ, Q,a)

(3.20)

< E(A, Q, ) — 3(Gr — Gn)S(T)

1
+= (a—l f |0cul*dl — (Gn™' — Gt ™) / IVulzdx>,
2 Iz by

and the theorem follows.

(3.21)

In order to carry out the proof of Theorem 1.5 we shall need estimates for the
ratio of surface traction to bulk stress of a fiber cross section. For the purposes of
this analysis, several useful estimates and isoperimetric inequalities already exist
for the second Stekloff eigenvalue for two-dimensional domains; see [9]. For planar
domains we show that the second Stekloff eigenvalue agrees with the ratio of surface
traction to bulk stress. We denote the second Stekloff eigenvalue associated with a
cross section ¥ by po. This number is the first nonzero eigenvalue for the problem
[14]:

Af=0 in3, 8,f=pf ond=. (3.22)
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Theorem 3.3. For any two-dimensional domain % with Lipschitz boundary,
B1 = p2. (3.23)

To establish the theorem we introduce the Rayleigh quotient

. faz |anvlzdl
= 20 - 3.24
P27 %R [; [VoPdx 629
where
K={U|Av=0 in X, / va’l=0}. (3.25)
axr

We denote the minimizer of the Rayleigh quotient (1.10) by @. The unit normal n
and unit tangent 7 on the boundary are related by © = Rn, where R is the matrix
associated with a clockwise rotation of % radians. The harmonic function conjugate
to @ is denoted by %, and

_ Ly lopPd _ fyg e
J5 IV@i2dx [5 |Vil2dx

and so B1 2 p. On the other hand, we may start with the Rayleigh quotient for p;
and argue as above to find p2 2 81 and the theorem follows.

B (3.26)

It should be noted that Theorem 3.3 does not hold for domains in three di-
mensions. Indeed for a sphere of radius a, separation of variables gives B = 2/a
and p» = 1/a. More generally for domains with sufficiently regular boundaries
we have the estimate 81 < vi/p,, where vy is the first nonzero eigenvalue of the
Laplace-Beltrami operator on the boundary of the domain. Equality is seen to hold
for any sphere.

4. Torsional Rigidity for Special Fiber Configurations

We consider a shaft with circular cross section of radius R reinforced with a~
single fiber with circular cross section of radius a. The fiber is centered inside the
shaft, i.e., the cross sections of the fiber and shaft are concentric circles. Calculation
shows that the stress potential for this configuration is given by

fx), x outside the fiber, @)
B f(x)+v(x), xinthe fiber, -
where
f(x) = —1Gulx|* + LG R?, (4.2)
v(x) = —4(G¢ — G)|x|* + $(G¢ — Gm)a?, (4.3)

where |x|2 = xl2 + x%. The associated warping function for this configuration is

w(x1, x3) = constant. 4.4)
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It is evident that the traction vanishes at the fiber-matrix interface and that the dis-
placement is continuous everywhere in the shaft. Furthermore, we see that the stress
potential and displacements are independent of the interfacial tangential stiffness a.
A straightforward calculation shows that the torsional rigidity for this configuration
is given by (1.2).

Next we establish Theorem 1.2. The theorem follows from the calculation of
the potential for a system of N fibers with common radius Re;. To start, we consider
N fibers with common radius a and fiber centers %;,i = 1, ..., N and look for a
solution of the form,

fx), x outside the fiber,
B [ fx)+vi(x), x inside the i™ fiber @

where f(x) is given by (4.2) and where
vi(x) = —X(Gt — Gm)lx — %>+ 3(Ge = Gm)a®, i=1,...,N. (46)

The potential ¥ is in Ho1 (£2) and satisfies the equilibrium conditions: G 'AY =
—2 in the matrix and G ! Ay = —2 in the fibers. The final condition to be satisfied
is the transmission condition (2.23). Calculation shows that on the it fiber,

o192y — (G718, ¥]
-1
=a"1G, (“Tx cx=E)+ G =G hx - (x — xi)) (4.7)

+ a1 (Gs — Gu)lx — .

‘We find that the right-hand side vanishes for the choice @ = Ry, and so (2.23) is
satisfied for this value of fiber radius. We conclude that the stress potential is given
by

[ —1Gulx|? + 3GuR?, x outside the fibers,

Fx) — 2(Gt — Gm)lx — 2i® + 3(Gt — Gm)RZ,  x inside the i fiber.
(4.8)

Substitution of (4.8) into (2.24) gives the torsional rigidity (1.7), and Theorem 1.2
follows.

5. Fiber Size and Optimal Configurations
for Maximum Torsional Rigidity

In this section we focus on shafts of circular cross section reinforced with fibers
of circular cross section. The cross-sectional radius of each fiber may be different
and the radius of the i® fiber is denoted by a;. For N fibers with centers X; the
region occupied by fibers is written, Uf‘f__ Dz, (a;), where Dy, (a;) isa disk of radius
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a; centered at X; and represents the cross section of the i th fiper. The torsional rigidity
associated with this configuration is T(U{"= 1Dz, (a;), 2, @). The following theorem
gives a lower bound on the torsional rigidity that depends upon the configuration
of the fibers.

Theorem 5.1 (Lower bound on the torsional rigidity).

T(U,N_—_]D)?, (ai)’ Q’ (¥)

2 ZGmR* + (Gt — Gm)

1

N

n 4

7%
= (5.1)

N
— ((Gm-‘ —Gr™ ) 7Gm’ail 8 Rer — a,-)) :
i=1

Remark. It is interesting to note that if all fibers have the same cross-sectional radius

a and if a = Ry, then the lower bound is largest for configurations with sphere
centers placed as far away from the center of the shaft as possible.

To prove this theorem we apply the energy dissipation inequality given in The-
orem 3.2 with the convention that the “cross section” to be added is the union of
all fiber cross sections va= 1Dz, (a;) and the original configuration is the unrein-
forced shaft. The stress potential inside the unreinforced shaft made of homoge-
neous isotropic elastic material with shear stiffness Gy, is —%Gm x? + %Gm RZ.
Its torsional rigidity is 5 Gm R*. Appealing to Theorem 3.2 gives

T(UN, D;, (ai), 2, @)

= %GmR4 + (Gf — Gm)S(Ug\,:IDx,- (@)

- (a—l f 18;u|2dl — (Gn™ ! — Gs™H) f |Vu|2dx).
D) x

Here u is harmonic inside the union U?_’__ 1Dz;(ai)andu = —%Gm]xl2 + %GmR2 on
the matrix-fiber boundary. It is easily seen that inside each fiber u = — %Gm(lx |2 -
lx — %1% + 1Gm(R? — a?). We have

5.2)

N N
SUI, D @) =Y S(Dg @) =) 34 53)

i=1 i=1

Finally, we substitute # into (5.2) to obtain (5.1) and the theorem follows.
From Theorem 5.1 it is evident that we have

Corollary 5.1. If the fiber centers and radii satisfy

N
) ail&iPRa —a) £0, (5.4)

i=1
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then the torsional rigidity satisfies

N
T(UY D5, (@), 2,0) 2 ZGnR* + (G — Gm) Y _ %4}, (5.5)

i=1
where (5.5) holds with strict inequality when (5.4) does.

We consider a single fiber configuration and establish Theorem 1.1. The upper
energy dissipation inequality (Theorem 3.1) is applied to establish the first part of
Theorem 1.1. To use the theorem we note that the fiber to be added has a cross
section given by a disk of radius @ with center ¥ and that its surface to volume
dissipation is a~!. The original configuration is simply the unreinforced shaft filled
with pure matrix material with shear stiffness G,. When a"l> Rc_r1 , Theorem 3.1
implies that

T(D;(a), Do(R), @) £ ZGmR* + (Gt — Gm)S(D3(a)). (5.6)

The first part of Theorem 1.1 follows by noting that S(Dz(a)) = %a“. The second
part of Theorem 1.1 is a statement of the case N = 1 given in Corollary 5.1.

‘We now establish Theorem 1.3. It is evident that inequality (1.9) of Theorem 1.3
is an immediate corollary of Theorem 5.1. To establish (1.8) we apply Theorem 3.1
iteratively. Recalling that each fiber cross section is a disk of radius a with center X;
we write the union of fiber cross sections as U{‘_’__ 1D3; (@) In the context of Theorem
3.1wesetA = Uf’;llD,;i (a) and & = Dy, (a). We suppose thata < R, and apply
Theorem 3.1 to obtain

T(UIL; D;,(a), Do(R), @) £ T(U};' Dy, (@), Do(R), @) + (Gt — Gm)S(Dsy, (a)).
5.7

We then apply Theorem 3.1 to the term T(va= _llD,;‘. (a), Dy(R), ) to obtain a
similar estimate. Proceeding iteratively we obtain

N
T(UY, Dz, (a), Do(R), &) < T(®, Do(R), @) + (Gt — Gm) Y _ S(D5, (a)).
i=1

(5.8)

Here T(@, Do(R), «) is the torsional rigidity of the unreinforced shaft filled with
isotropic material with shear stiffness Gy,. The theorem follows recalling that
T(@, Do(R), @) = G R* and S(D;, (a)) = Fa*.

6. An Isoperimetric Inequality and an Upper Bound
for the Torsional Rigidity

In this section we prove Theorems 1.6, 1.4, and 1.5. A minor modification of
the proof of Theorem 1.6 gives Theorem 1.7. The proof of Theorem 1.6 proceeds in
two steps. The first step is an iterative application of Theorem 3.1 to obtain an upper
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bound on the torsional rigidity. The upper bound is given in terms of the torsional
rigidity of the unreinforced shaft and the torsional rigidity of each fiber. We apply
the proposition of Saint Venant (established by PoLyA [11]) to the torsional rigidity
of each fiber to complete the proof.

We recall that each fiber cross section is denoted by £;, where i = 1,... , N,
To apply Theorem 3.1 we set A = vaz _11 3; and X = L. From our hypothesis we
have B1(Zn) 2 R;‘rl and we apply Theorem 3.1 to find that

TUY, %, Q,0) STUYS'S, Q,0) + (Gr — Gn)S(Ev). (6.1

Noting that 8(Zx_1) = Rc_r1 we obtain a similar estimate for T(U,{\_l___llz,-, Q, ).
We iterate these arguments to find

N
TN, %, @, @) ST, @, @) + (Gr — Gm) D _, S(Z0). (6.2)

i=1

Here T(@, 2, @) is the torsional rigidity of the unreinforced shaft filled with material
with shear stiffness G, and S(X;) is the torsional rigidity of the i th fiber filled with
material of unit shear stiffness.

We apply PoLyA’sresult {11] to the quantities: T(@, 2, ), S(X1), ..., S(ZwN)
to obtain

G
T@, Q,a) < nTmR4,

at
SE)Sat i=1...,N,

where the area of §2 is 7 R? and the area of ¥; is naiz. Application of these inequal-
ities to (6.2) gives

TUY, %, Q,¢) £ EGnR* + (Gt — Gm) ) _ 34} 6.3)

i=1

The joint cross-sectional area of the fibers is & }:,Nzl a?. We consider a single
circular fiber of radius a having the same area as the joint cross-sectional area of
the fibers, i.e., 7a2 = vazl aiz. It follows immediately that at > Zf\_’__l a;‘ and
we obtain

T(UY, 5, @, @) £ ZGuR* + (Gf — Gm) Za*. (6.4)

The theorem follows noting that the right-hand side of (6.4) is precisely the torsional
rigidity of a concentric circular fiber in a circular shaft.

Theorem 1.5 follows from Theorem 1.6 with the aid of an isoperimetric in-
equality on the second Stekloff eigenvalue obtained by PAYNE [9].

Theorem 6.1 (PAYNE). If D is a convex domain with analytic boundary whose
curvature is denoted by «, then py(D) 2 kmin. Equality holds only for the circle.
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Here kmin is the minimum value of the curvature on the boundary. In Section 3
the ratio of surface traction to bulk stress was shown to be identical to the second
Stekloff eigenvalue. We denote the maximum radius of curvature by ayax. From
PAYNE’s isoperimetric inequality we find that amax 2 B8] ! and Theorem 1.5
follows from Theorem 1.6. It is evident that Theorem 1.4 is an immediate corollary
of Theorem 1.5. It is also easy to see that Theorem 1.4 follows directly from
Theorem 1.6 by means of elementary arguments.

To prove Theorem 1.7 we return to inequality (6.3) and consider a single circular
fiber of radius & such that a* = 2,.1\; laf’. Substitution of & into (6.3) gives

TUYL, %, Q, @) S 2GR + (Gt — Gm)58%, (6.5)

and the theorem follows.

7. The Extreme Cases of No Tangential
Interfacial Adhesion and Perfect Bonding

It is shown here that the extreme cases of complete loss of adhesion and perfect
bonding are given by the limits « — 0 and @ — o0 respectively. With these
stability results in hand, we argue for the existence of an isoperimetric inequality
of the type given in Theorem 1.6 for the case o« = 0. We show that there is no such
isoperimetric inequality for the case « = oo.

We consider first the extreme case of total loss of adhesion in the directions
tangential to the fibers. This behavior corresponds to the loss of tangential stiffness,
i.e., @ = 0. The torsional rigidity for this case is denoted by T(A, €2, 0). It is given
by the variational formulation

T(4,9,0)= min fG(x)le+17|2dx. (1.1)
weHY(Q\J) Jo

Here A is the union of all fiber cross sections, i.e., A = UY_ ;. The minimizer

corresponds to the warping function inside the shaft. Taking the first variation of

(7.1) gives the boundary-value problem for the warping function w(x1, x2):

Aw=0 on\J, (7.2)
Gn(Vw+10)-n=0 ondg, (7.3)
Gu(Vw+ ) -n=Ge(Vw+D)¢-n=0 onlJ. a4
The associated stress potential ¢ satisfies
Gm~'A® = —2, outside the fibers, (7.5)
G 'A® = —2, inside the fibers, (7.6)
®=c¢; ondE;, ®=0 ondQ. (1.7

Herec;, i =1,..., N, are constants and 8X; denotes the boundary of the i th fiber
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cross section. The torsional rigidity is given in terms of the stress potential by
T(A, 2,0) =/ G~ 1)V |*dx. (7.8)
Q

The limiting behavior as the interfacial shear stiffness tends to zero is expressed
by the following stability result:

Theorem 7.1.

lin%)T(A, Q,a) =T(A, Q,0). (7.9)
a—>

We give a proof. It is evident from its variational formulation that T(A, 2, &)
decreases monotonically as « tends to zero. From (2.27), (7.1), and monotonicity,
we have that the limit of T(A, , &) exists as « tends to zero and

limOT(A,Q,oz) 2 T(A, 2,0). (7.10)
a—>
On the other hand, from (2.27) we have

T(A, Q,a) < (f G(x)]Vw+ﬁ|2dx+af([w])2dl), (7.11)
Q J

for any w in H L(Q \ J). Passing to the limit @ = 0 in (7.11) and subsequently
minimizing over w gives

lim T(4, 2, @) < T(4, 2,0, (7.12)
a—

and the theorem is proved.

Next we investigate the asymptotic behavior of the torsional rigidity in the
« = oo limit. The torsional rigidity for a perfectly bonded composite is denoted by
T(A, 2, 00). It is given by the well-known variational formulation

T(A, , 00) = —2E(A, Q, 00) (7.13)
where
E(A4,Q,00) = min {1</ G‘1|V1//|2dx>—2f wdx]. (7.14)
verl@ 12 \Ua Q

The minimizer is the stress potential in the shaft.
The limiting behavior as « tends to oo is expressed by the following stability
result:

Theorem 7.2.

lim T(A,Q,a) =T(A, 2, ). (7.15)
a—>00

The proof of this result follows the same lines as the proof given for Theorem
7.1. Here use is made of the variational formulation given by equation (2.26).
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Collecting our results we have
T(A,Q,00) 2 T(A, Q,@) 2 T(A,2,0) (7.16)

for 0 < a < o00. This expresses the intuitive notion that shafts with perfectly
bonded fibers are more rigid than ones with imperfectly bonded fibers and that
the rigidity of a bar reinforced with partially adhesive fibers is greater than when
there is no tangential adhesion at the interface. An extreme case corresponds to a
shaft with circular cross section reinforced with a concentric circular fiber. For this
configuration the stress potential is independent of the interfacial shear stiffness over
the complete range 0 < o < 00. In turn, the torsional rigidity for this configuration
is independent of the tangential shear stiffness in this range and is given by (1.2).

We apply the stability results given in Theorems 7.1 and 7.2 to investigate the
existence of isoperimetric inequalities for the extreme cases @ = 0 and o = 0.
The first result is an isoperimetric inequality for the extreme case when there is a
loss in the adhesion tangential to the fiber.

Theorem 7.3 (Isoperimetric inequality for the case « = 0). When there is no
adhesion tangential to the fibers, then of all fiber-reinforced shafts with given cross-
sectional area w R* and given joint cross-sectional area of fibers wa?, the shaft with
circular cross section reinforced with a concentric circular fiber has the maximum
torsional rigidity, i.e.,

T(A, 2,0) < (2Gn(R* — a*) + £Gsa?). (7.17)
2 2

We start with a heuristic proof of this theorem based on the stability result given
in Theorem 7.1. We observe that as « tends to zero, the parameter R;! tends to
zero. Thus the class of admissible fiber cross sections treated in the hypothesis
of Theorem 1.6 increases to include all fiber cross sections in the & = 0 limit.
Applying Theorem 7.1 to inequality (1.12) gives (7.17) for all fiber cross sections.
We now give a rigorous proof based on the formulation of the torsional rigidity as
given by equation (7.8). Integration by parts in (7.8) and application of equations
(7.5), (1.6), and (7.7) shows that

N N
T(4,9,0) = (2Zc,-|2,~1+2/ ¢dx+2Z/ (¢—c,-)dx>. (7.18)
Q\A i

i=1 i=1

Here2 va=1 cilZi|+2 |, \4 ®dx is the torsional rigidity of the multiply connected
domain 2 \ A filled with material of shear stiffness G, and 2 f):i (@ —ci)dx is

the torsional rigidity of the i fiber made from material of shear stiffness Gs.
Application of POLYA’a [11] result to each fiber gives

N N
2y / (@ — ci)dx £y 3Gral. (7.19)
i=17% i=1
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Here the area of each cross section X; is Jraiz. Application of the of the PoLyA &
WEINSTEIN [12] result for the torsional rigidity for shafts with multiply connected
CTOSs section gives

N
2 el %l +2 f ®dx < ZGp(R* — a*), (7.20)
Q\A

i=1

where 7 R? is the cross-sectional area of the shaft and wa? is the joint area of the
fibers. Noting that wa? = = ZlN= , a? we have a* > va=1 a; as before. Collecting
our results we discover that

T(A, 2,0 < (5Gn(R* — a*) + 3Gta®), (7.21)

and Theorem 7.3 follows.

We show that the isoperimetric inequality given in Theorem 1.6 does not persist
in the perfect bonding limit. To see this we consider the case of a shaft with circular
cross section reinforced with a single fiber of circular cross section. From Theorem
1.1 we have that the concentric fiber and shaft configuration is strictly suboptimal
when the fiber radius lies above R.;. Observing that R, tends to zero as « tends to
infinity we invoke Theorem 7.2 and pass to the limit in inequality (5.1) of Theorem
5.1 to find that

T(D3(a), Do(R), 00) > (3Gm(R* — a*) + §Gra®) (1.22)

for all fibers with centers ¥ == 0. Thus for & = oo the concentric circular fiber and
shaft configuration is suboptimal for any fiber radius a. This example shows that
an isoperimetric inequality of the kind given in Theorem 1.6 does not hold in the
limit of perfect bonding.

Similar remarks hold for Theorem 1.7 in the extreme cases & = 0 and & = 00.
Inequality (7.22) shows that there is no upper bound of the kind given by Theorem
1.7 in the @ = 00 case. On the other hand when there is complete debonding in the
directions tangential to the fiber-matrix interface we have

Theorem 7.4 (Optimal design theorem for the @ = O case). Consider any fiber-
reinforced shaft with given cross-sectional area w R%and N fibers X1, X3, ... , ZN.
If there is no adhesion tangential to the fiber-matrix interface, then the torsional
rigidity is less than or equal to that of the shaft with circular cross section reinforced
with a concentric circular fiber with radius & given by

7a? = \[IZ1P + |52 + - [Zn 2, (7.23)
ie.,
T(4,2,0) < (36a(R* — &) + §Gri*). (7.24)

To prove Thorem 7.4 we return to inequality (7.19) and choose & such that it =
i=1a?' It is evident that 732 < wa? where wa? is the joint fiber cross-sectional
area, and the theorem follows immediately from (7.18), and the substitutions of a

for ¥ a? in (7.19) and & for a in (7.20).
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8. Maximum Torsional Rigidity in the Presence of Partial Adhesion
Normal to the Fiber-Matrix Interface

In this Section we allow for partial adhesion in the direction normal to the

fiber-matrix interface as well as in the tangential direction. We recall that u,{ LU

denote the displacements normal to the fiber-matrix interface evaluated on the
fiber and matrix sides of the interface respectively. We suppose that there is no
interpenetration of material points on the interface, i.e., uf —u™ < 0. We replace
the perfect adhesion condition normal to the fiber boundary given by (2.2) with the

partial adhesion conditions:

If ufl —u™=0, then o, £0; (8.1)
if uf —u® <0, then 0, = —y(u,f1 —um. 8.2)

Here y has units of shear stiffness per unit length. These conditions do not allow
for interpenetration at the interface but do allow for material points on either side
of the interface to separate, their relatave displacements being proportional to the
normal traction. Condition (8.1) shows that the normal traction is directed into the
fiber when points on either side of the interface are in contact. When material points
are separated, (8.2) shows that the normal traction is directed away from the fiber.
The interfacial conditions (8.1), (8.2) together with the conditions on the relative
tangential displacement given by (2.4) are similar to those given by ACHENBACH &
ZHU [2]. These interface conditions, together with the torsion boundary conditions
and the equlibrium equation given in Section 2, deliver a boundary-value problem
that uniquely determines the elastic displacement inside the shaft. This is proved in
the second section of the Appendix. Inspection shows that the displacement given
by (2.5) and (2.6) satisfies the interfacial transmission conditions (8.1) and (8.2).
Indeed we have

o ~h

w—u=0, o0,=0 (8.3)

on every interface. The associated warping function is precisely the one obtained in
Section 2. Thus, the displacement inside a shaft subject to torsion, does not depend
on whether there is perfect or partial adhesion in the direction normal to the fiber-
matrix interface, i.e, whether condition (2.2) or conditions (8.1), (8.2) hold. It is
evident that the same holds true for the torsional rigidity, and we state

Theorem 8.1. Theorems 1.1 through 1.7 hold true for the torsional rigidity, whenin
addition to partial adhesion in the directions tangential to the fiber-matrix interface,
there is partial adhesion in the direction normal to the fiber-matrix interface as
described by equations (8.1) and (8.2).

A. Appendix

We provide a short outline of the proof of existence of solution to the torsion
boundary-value problem. The methods used are standard and can be found in the
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work of DuvAUT & Li1oNs [3]. Existence follows from the variational formulation
of the problem given by

min F(2) (A1)
where
F(v) = f & (e) : e(v)dx +« / ([v<])%ds, (A2)
B\T r

V={veH1(B\F)3| [v-nlr=0, v =vy=00nx3=0,

v] = —8hxy, vy =0hx;onx; = h,/ v3dx = O}.
B
(A.3)

Here I represents the fiber-matrix interface, B is the shaft domain given by B =
{(x1,x2) € ©, 0 < x3 < h}. Standard continuity properties of the trace operator
show that F(v) is lower semicontinuous with respect to weak convergencein H 1B\
I')3. Thus we need only establish the coercivity of F(v) to show existence of a
minimizer.

We establish the necessary coercivity property given by:

Theorem A.1. There exist positive constants a and b such that

allv|| — b S F(v) forallelementsvinV. (A4)

Here || - || is the H! norm on the domain B \ T.

We let @ be any function in HY(B\ I‘)3 for which[@ -n] =0,®1 =P, =0
on x3 = 0 and &1 = —6hxy, ®3 = 6hx1 on x3 = h, and [ P3dx = 0. Then any
element v in the space V can be written as v = w 4 ¢ where w lies in the closed
subspace Vy of H1(B \ T")3 given by '

Vo= {weHl(B/l")3| [w-nlp =0, w;=w;=0o0nx3=0,

(A.5)
wi=wy =0, on x3 =h,f widx =O}.
B
We suppose that there exists a constant K > 0, such that
lwj| £ KF(w) forallwin Vp. (A.6)

This inequality is established in the sequel. Writing any element v of V as v = w+&
and estimating gives

ol £ llwll + 1 £ KF(w) + |9} (A.T)
Noting that
F(w)=F(v—®) S 2(F(v) + F(®)) (A-8)
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we apply (A.7) to find that
1 1
— — — ||| — F(®) £ F(v), A9
Tl 2z | = F(®) £ F(v) (A.9)

and the coercivity follows. It remains to show (A.6). The proof of this inequality
follows arguments identical to those given in the work of LENE & LEGUILLION
[4]. We introduce the form ||v|| = [, |e(v)|2dx+f3c Ivlzdx+fr([vr])2ds, where
B_ is the domain exterior to the fibers. LENE & LEGUILLION [4] show that {f - ||
is equivalent to the standard H' norm. To complete the proof we show that there
exists a constant C > 0

flwl] < CF(w) such that for any w in V. (A.10)

This is equivalent to showing the Poincaré-like inequality |, B, lw|?dx < CF (w).
To prove this we argue by contradiction. Suppose for each positive integer N there
exists an element wy in Vj such that

f lwy2dx = NF(wy). (A.11)
B,
Setuy = wN(ch ]lezdx)ﬁl/z. Then f5 lun|?dx = 1 and

N-12> / Fe(uy) : e(un)dx +a f ([uy.1)%ds. (A.12)
B r

Since & > 0, there exists a subsequence also denated by uy converging weakly
in H! to an element  in V. By weak lower semicontinuity we have [z - n]r = 0,
[#-T]r = 0,and e(u) = Oin B\T'. Thus we conclude that # = 0 almost everywhere
in B. However this contradicts the fact that [ B, |#|?dx = 1 and the Poincaré-like
inequality is proved.

B. Uniqueness Theorem for the Torsion Boundary-Value Problem

We establish uniqueness of solution when there is partial adhesion in both
normal and tangential directions to the fiber-matrix interface. Uniqueness for the
case of partial adhesion in the tangential direction and perfect bonding in the normal
direction follows from the estimate (A.6) and arguments identical to the ones given
below. We introduce the bilinear form defined on H(B/I')? given by

a(v,u) = / F(x)e(v) : e@)dx +a / (o<1 [uclds + v f [0a)(un1ds,
B/T r T
B.1)
and the convex set K given by
K= {v € HY(B/T)Y|[v,1£00nT, vi=v,=00nx3 =0,

(B.2)
v; = —0Ohxy, vp =0hx; onx3=h, and / v3dx = O}.
: B
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The solution & of the torsion boundary-value problem with partial interfacial ad-
hesion in both tangential and normal directions satisfies the equivalent variational
inequality

a(@,v—u)20 foralvinKk. (B.3)

This follows easily from standard considerations; see, DUVAUT & LIONS [3].
Arguments identical to those of the last section show that there exsists a positive
constant C for which

a(w, w) Z Cliw]| (B.4)

for all functions w in the space #% given by

Sy = [w e H(B/T)}| w1 =wy;=00nx3 =0,
(B.5)

w1=0,w2=00nx3=h,f

widx = 0}.
B

We suppose the existence of a second solution # and set v = u in (B.3) to obtain
a(i,u—a) 20. (B.6)
Since u is a solution, we choose v = & to find
a(u,it —u) 2 0. B.7)
Adding inequalities (B.6) and (B.7) gives
—a(u—i,u—ia)y20. (B.8)

Since u — & lies in F#%, it is evident from (B.4) that # — & = 0 and uniqueness is
established.
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