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Highlights

e Well-posedness of a general nonlinear state based peridynamic models.

A priori numerical convergence rate for finite difference approximations of state based peridynamic models.

Numerical verification of convergence rate for samples with growing cracks.

Simulations of multiple cracks for samples subject to bending load.

Numerical experiments demonstrating that the increase in peridynamic energy of the evolving damaged region is the same
as the classical Griffith energy release rate.

Abstract

In this work, we study the finite difference approximation for a class of nonlocal fracture models. The nonlocal model is
initially elastic but beyond a critical strain the material softens with increasing strain. This model is formulated as a state-based
peridynamic model using two potentials: one associated with hydrostatic strain and the other associated with tensile strain.
We show that the dynamic evolution is well-posed in the space of Holder continuous functions C 0.7 with Holder exponent
y € (0, 1]. Here the length scale of nonlocality is €, the size of time step is Ar and the mesh size is . The finite difference
approximations are seen to converge to the Holder solution at the rate C; At + Csh? /62 where the constants C; and Cy are
independent of the discretization. The semi-discrete approximations are found to be stable with time. We present numerical
simulations for crack propagation that computationally verify the theoretically predicted convergence rate. We also present
numerical simulations for crack propagation in pre-cracked samples subject to a bending load.
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1. Introduction

In Silling [1] and Silling et al. [2] a self consistent non-local continuum mechanics is proposed. This formulation
known as peridynamics has been employed in the computational reproduction of dynamic fracture as well as offering
dynamically based explanations for features observed in fracture, see e.g., [3—10]. These references are by no means
complete and a recent review of this approach together with further references to the literature can be found in [11].

The peridynamic formulation expresses internal forces as functions of displacement differences as opposed to
displacement gradients. This generalization allows for an extended kinematics and provides a unified treatment of
differentiable and non-differentiable displacements. The motion of a point x is influenced by its neighbors through
non-local forces. In its simplest formulation forces act within a horizon and only neighbors confined to a ball of
radius € surrounding x can influence the motion of x. The radius € is referred to as the peridynamic horizon.
When the forces are linear in the strain and when length scale of nonlocality € tends to zero the peridynamic
models converge to the linear elastic model [12—15]. If one considers non-linear forces associated with two point
interactions that are initially elastic and then soften after a critical strain, then the dynamic evolutions are found
to converge to a different “limiting” dynamics associated with a crack set and a displacement that satisfies the
balance of linear momentum away from the crack set and has bounded elastic energy and Griffith surface energy,
see [16—18]. A numerical analysis of this two-point interaction or bond based peridynamic model is carried out
in [18,19]. In these works the a-priori convergence rates for finite difference and finite element methods together
with different time stepping schemes are reported.

This article focuses on the numerical analysis of a state based peridynamic fracture model governed by forces
that are initially elastic and then soften for sufficiently large tensile and hydrostatic strains. Attention is given to
the prototypical state-based peridynamic model proposed in [20]. The analysis performed here provides a-priori
upper bounds on the convergence rate for a numerical scheme that applies the finite difference approximation in
space and the forward Euler discretization scheme in time. The state based peridynamic model treated here has two
components of non-local force acting on a point. The first force is due to tensile strains acting on x by its neighbors
y, while the second force is due to the net hydrostatic strain on x associated with the change in volume about x. In
this article we analyze the convergence of the numerical scheme for two different cases of constitutive law relating
non-local force to strain. For the first case we take both tensile and hydrostatic forces to be initially linear and
increasing with the strain and then after reaching critical values of tensile and hydrostatic strain respectively the
forces decrease to zero with strain, see Figs. 1(b) and 2(b). For the second case we choose the hydrostatic force
to be a linear function of the hydrostatic strain (see dashed line Fig. 2(b)) while the tensile force is initially linear
and then decreases to zero after a critical tensile strain is reached, see Fig. 1(b). The choice of the two constitutive
models studied here is motivated by the prospect of simulating materials that exhibit failure due to extreme local
tensile stress or strain or materials that fail due to extreme local hydrostatic stress or strain. Here the quadratic
potential function for the dilatational strain can be associated with materials that fail under extreme local tensile
loads while the convex—concave dilatational potential function can be associated with materials in which fail under
extreme local hydrostatic loads.

The primary new contribution of this paper is that a-priori convergence rates are established for numerical
schemes used for simulation using these prototypical state based peridynamic models. As mentioned earlier the
constitutive behavior is non-linear, non-convex and material properties can degrade during the course of the
evolution. We consider the class of Holder continuous displacement fields and show the existence of a unique Holder
continuous evolution for a prescribed Holder continuous initial condition and body force, see Theorem 1. To obtain
a-priori bounds on the error, we develop an L? approximation theory for the finite difference approximation in the
spatial variables and the forward Euler approximation in time, see Section 4. We show that discrete approximations
converge to the exact Holder continuous solution uniformly over finite time intervals with respect to the L? norm.
The a-priori rate of convergence in the L? norm is given by (C, At 4+ C,h" /€?), where At is the size of the time
step, h is the size of spatial mesh discretization, y € (0, 1] is the Holder exponent, and € is the length scale of
nonlocal interaction relative to the size of the domain, see Theorem 3. The constant C; depends on the L? norm
of the time derivatives of the solution, C; depends on the Holder norm of the solution and the Lipschitz constant
of peridynamic force. We point out that the convergence results derived here can be extended to general single
step time discretization using arguments provided in [18]. Although the constitutive law relating force to strain is
nonlinear we are still able to establish stability for the semi-discrete approximation and it is shown that the energy at
any given time ¢ is bounded above by the energy of the initial conditions and the total work done by the body force
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Fig. 1. (a) The potential function f(r) for tensile force. Here C* and C~ are the two asymptotic values of f. (b) Cohesive tensile force.

Fig. 2. (a) Two types of potential function g(r) for hydrostatic force. The dashed line corresponds to the quadratic potential g(r) = Br2/2.
The solid line corresponds to the convex—concave type potential g(r). For the convex—concave type potential, there are two special points

r; and r at which material points start to soften. C;7 and C are two extreme values. (b) Hydrostatic forces. The dashed line corresponds

to the quadratic potential and solid line corresponds to the convex—concave potential.

up to time ¢, see Theorem 2. We provide the connection between the non-dimensionalized dynamics used in the
a-priori convergence analysis and the simulated dynamics using dimensional quantities, see Section 5. The numerics
are carried out for Plexiglass. Our numerical simulations are consistent with the theoretical studies, see Section 6.
In the simulations we introduce a straight crack and it propagates in response to applied boundary conditions. For
these simulations we use piecewise constant interpolants and record the rate of convergence with respect to mesh
size while keeping the horizon fixed. Our results show that convergence rate remains above the a-priori estimated
rate of 1 during the simulation. For illustration we also present numerical simulations for a pre-cracked samples
subject to a bending load.

It is pointed out that there is now a significant number of investigations examining the numerical approximation
of singular kernels for non-local problems with applications to nonlocal diffusion, advection, and continuum
mechanics. Numerical formulations and convergence theory for nonlocal p-Laplacian formulations are developed
in [21,22]. Numerical analysis of nonlocal steady state diffusion is presented in [23-25]. The use of fractional
Sobolev spaces for nonlocal problems is investigated and developed in [26]. Quadrature approximations and stability
conditions for linear peridynamics are analyzed in [27,28]. The interplay between nonlocal interaction length and
grid refinement for linear peridynamic models is presented in [29]. Analysis of adaptive refinement and domain
decomposition for the linearized peridynamics are provided in [30-32]. This list is by no means complete and the
literature continues to grow rapidly.

The paper is organized as follows. In Section 2, we describe the nonlocal model and state the peridynamic
equation of motion. The Lipschitz continuity of the peridynamic force and global existence of unique solutions are
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presented in Section 3. The finite difference discretization is introduced in Section 4. We demonstrate the energy
stability of the semi-discrete approximation in Section 4.1. In Section 4.2 we give the a-priori bound on the error
for the fully discrete approximation, see Theorem 3. The equivalence between the dynamics formulated in terms of
quantities with dimensions and the non dimensional dynamics is established in Section 5. The numerical simulations
are described and presented in Section 6. In Section 7 we summarize our results.

2. Nonlocal dynamics

We now formulate the nonlocal dynamics. Here all quantities are non-dimensional. In Section 5 we illustrate
how to take the equations of dynamics formulated in terms of dimensional quantities and recover the equivalent
nonlocal dynamics in dimensionless form. Let D C RY denote the material domain of dimension d = 2,3 and
let the horizon be given by € > 0. We make the assumption of small (infinitesimal) deformations so that the
displacement field u : D x [0, T] — R? is small compared to the size of D and the deformed configuration is the
same as the reference configuration. We have u = u(x, r) as a function of space and time but will suppress the x
dependence when convenient and write u(¢). The tensile strain S between two points x, y € D along the direction
ey_y is defined as

uly, ) —ux, 1)

ly — x|
where e,_, = ‘i i is a unit vector and “-” is the dot product. Let H.(x) be the ball of radius € centered at x in
dimension d and let w; = |H,(0)| be the volume (area) of unit ball (circle). It follows that |H.(x)| = € w,.

The spherical or hydrostatic strain at x is a measure of the volume change about x and is given by

S(y, x, u(t)) = €y x, (1)

—X

O(x,u(t)) = / o(NJ(|ly —xDS(y, x,u))|y —x|dy, 2
He(x)

eda)d
where J¢(]y — x|) is an influence function and it measures the influence of point y on x. Only points inside the
horizon can influence x so J(|y — x|) is nonzero for |y — x| < € and zero otherwise. We take J€ to be of the
form: Jé(ly — x|) = J(@) with J(r) =0forr >1and 0 < J(r) < M < oo for r < 1.

In Eq. (2), we have introduced the boundary function w(x) providing the influence of the boundary on the
non-local force. In the interior, all the point in x € D at least ¢ away from boundary d D, w(x) takes the value 1.
As x approaches d D from the interior, w(x) smoothly decays from 1 to 0 on dD and is extended by zero outside
D. The boundary function w : D — [0, 1] is introduced to make the initial boundary value problem well posed.
We point this out in Section 3 where existence of solution is presented.

2.1. The class of nonlocal potentials

Motivated by potentials of Lennard-Jones type, the force potential for tensile strain is defined by

1
WES(y, x, u(1)) = ox)o(y)J(ly — xl)mf(v ly —x[S(y, x, u(1))) 3
and the potential for hydrostatic strain is defined as
9 ’
VeO(x, u) = w(x)w “

where W€(S(y, x, u(t))) is the pairwise force potential per unit length between two points x and y and
V€(O(x, u(t))) is the hydrostatic force potential density at x. They are described in terms of their potential functions
f and g, see Figs. | and 2.

The potential function f represents a convex—concave potential such that the associated force acting between
material points x and y are initially elastic and then soften and decay to zero as the strain between points increases,
see Fig. 1. The first well for W€(S(y, x, u(t))) is at zero tensile strain and the potential function satisfies

f©0) = f'(0)=0. &)
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The behavior for infinite tensile strain is characterized by the horizontal asymptotes limg_, o, f(S) = C* and
lims_, _o f(S) = C~ respectively, see Fig. 1. The critical tensile strain S} > 0 for which the force begins to
soften is given by the inflection point 7™ > 0 of f and is

e
Y ®
The critical negative tensile strain is chosen much larger in magnitude than S and is
e — )
Viy=x]

with 7~ <O and r* <« |r7|.

We assume here that all the potential functions are bounded and have bounded derivatives up to order 3. We
denote the ith derivative of the function f by f@, i =1,2,3. Let Cl:f for i =0, 1,2, 3 denote the bounds on the
functions and derivatives given by

¢y =suplfr)l, ¢ =sup|fO(r) fori=12,3, ®)

and C/ < oo fori=0,1,2,3.

We will consider two types of potentials associated with hydrostatic strain. The first potential we consider is a
quadratic potential characterized by a quadratic potential function g with a minimum at zero strain. The second
potential we consider is characterized by a convex—concave potential function g, see Fig. 2. If g is assumed to be
quadratic then the force due to spherical strain is linear and there is no softening of the material. However, if g
is convex—concave the force internal to the material is initially linear and increasing but then becomes decreasing
with strain as the hydrostatic strain exceeds a critical value. For the convex—concave g, the critical values 0 < 6"
and 6 < 0 beyond which the force begins to soften is related to the inflection point ;% and r_ of g as follows

0F =rt 0" =r_. )

c * 7 c *

The critical compressive hydrostatic strain where the force begins to soften for negative hydrostatic strain is chosen
much larger in magnitude than 6, i.e. 6 < |0|. When g is convex—concave we assume it is bounded and has
bounded derivatives up to order three. These bounds are denoted by Cig <oofori=0,1,2,3 and,

Cs == sup|g(r)l, Ct:=sup|g”(r)| fori=1,2,3. (10)
2.2. Peridynamic equation of motion

The potential energy of the motion is given by

1
// ly —x W (S(y, x, u(t))) dydx
D J He(x)

Wq

PD(u) =

ed
(11)
+f VEO(x, u(r)))dx.

D

In this treatment the material is assumed homogeneous and the density p is constant. We denote the body force by
b(x, t) and define the Lagrangian

P ]
LG, 1, ) = Sl 0, = PO+ [ b ud,
where it = % is the velocity and ||i|, 2 p.ga, denotes the L* norm of the vector field & : D — R?. Applying the
principal of least action gives the nonlocal dynamics
pii(x,t) = Lu)(x,1) + b(x, 1), forx € D, (12)
where

L) (x, 1) = L5)(x, 1) + L) (x, 1). (13)
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Here L5(u) is the peridynamic force due to the tensile strain and is given by

Lo @)X, 1)
2 J€ —
- / ( )w(x)w(y)Masﬂ\/ Y — XISy, x, u(®))ey_x dy. (14)
He(x

ey ly — x|
and L5, (u) is the peridynamic force due to the hydrostatic strain and is given by
Ly u)(x, 1)
Sy —xD

1
= — / oX)o(y)———F—[0s8(0(y, u(?))) + 980 (x, u(t))]ey_x dy. (15)
€“wyg He(x) €

The dynamics is complemented with the initial data
u(x,0) =uo(x), du(x,0) = vo(x), (16)
and we prescribe zero Dirichlet boundary condition on the boundary d D
ux)=0 Vx € 0D. (17)
The zero boundary value is extended outside D by zero to R?. Last we note that since the material is homogeneous
we will divide both sides of the equation of motion by p and assume, without loss of generality, that p = 1.
3. Existence of solutions

Let C%7(D;RY) be the Holder space with exponent y € (0, 1]. We introduce Cg’V(D) = C%"(D) N Cy(D)
where Cy(D) is the closure of continuous functions with compact support on D in the supremum norm. Functions
in Co(D) are uniquely extended to D and take zero values on 3D, see [33]. In this paper we extend all functions
in CJ” (D) by zero outside D. The norm of u € CJ” (D; R?) is given by

llullcoy p.ray = sug lw(x)| + [u]coy p.ray s
xXe

where [#]co.yp.gay i the Holder semi norm and given by

S L1C) Bt 10)]
cY%Y(D;R%) ~— ’
( ) x#£y, lx — yl”
x,yeD

and Cg’y(D; R?) is a Banach space with this norm. Here we make the hypothesis that the domain function @ belongs
0.y
to Cy" (D; [0, 1]).
We consider the first order system of equations equivalent to Eq. (12). Let y,(f) = u(?), y2(t) = v(t) with
v(t) = 1(t). We form the vector y = (y1, y»)” where y;, y; € Cg’y(D; RY) and let F€(y, 1) = (F{(y, 1), F5(y,t))T
with

Fi(y,t) =y (18)
F5(y, 1) = L(1(0) + b(@). (19)
We point out here that the domain function w insures that F¢(y, t) maps into Cg’y(D; R%) x Cg’y(D; R?). The initial

boundary value associated with the evolution equation (12) is equivalent to the initial boundary value problem for
the first order system given by

d
Ey = FG(% [)7 (20)

with initial condition given by y(0) = (o, vo)” € Cy” (D; RY) x Cy”7 (D; RY).
We next show that F€(y, t) is Lipschitz continuous.

Proposition 1 (Lipschitz Continuity and Bound). Let X = Cg’V(D; RY) x Cg’V(D; RY). We suppose that the
boundary function w belongs to Cg’y(D; [0, 1]). Let f be a convex—concave potential function satisfying Eq. (8)
and let the potential function g either be a quadratic function or be a convex—concave function satisfying Eq. (10),
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then the function F€(y,t) = (Ff, F;)T, as defined in Eqgs. Eq. (18) and (19), is Lipschitz continuous in any bounded
subset of X. We have, for any y,z € X and t > 0,

||F€(yﬂ t) - FG(Z7 t)HX

- Lid + llollcon)d + lIylix + llzllx)
- e2+aly)

Iy — zllx. @21)

where L, is independent of u,v and €, and depends on f, J, and g. The exponent a(y) is O if y > 1/2 and is

1/2 —y if y < 1/2. Furthermore, for any y € X and any t € [0, T], we have the bound

Lr(1 + llollcor )1+ 1[yllx)
2

where b = sup, |b(1)||co.y p.ray and Ly is independent of y.

IF<(y,Dllx <

+ b, (22)

We easily see that on choosing z = 0 in Eq. (21) that £°(u) is in CYv(D; R%) provided that u belongs
to C%7(D; R?). Moreover since L(u) takes the value 0 on 9D we can conclude that £¢(u) also belongs to
Cov}’(D. Rd)

0 ) .
The following theorem gives the existence and uniqueness of solution in any given time domain Iy = (-7, T).

Theorem 1 (Existence and Uniqueness of Holder Solutions Over Finite Time Intervals). Let f be a convex—concave
function satisfying Eq. (8) and let g either be a quadratic function or a convex—concave function satisfying Eq. (10).
For any initial condition xy € X = Cg’y(D; RY) x Cg'V(D; RY), time interval Iy = (=T, T), and right hand side
b(t) continuous in time for t € Iy such that b(t) satisfies SUP; ¢/, 16()|lcoy < 00, there is a unique solution
y(t) € C'(lo; X) of

t
Yo =x+ [ FOm. D 23)
0
or equivalently
Y(t) = F(y(@), 1), with y(0) = xo, (24)
where y(t) and y'(t) are Lipschitz continuous in time for t € I.

The proof of this theorem follows directly from Proposition 1 and is established along the same lines as the
existence proof for Holder continuous solutions of bond based peridynamics given in [Theorem 2, 18].

We conclude this section by stating the following result which shows the Lipschitz bound of peridynamic force
in L? norm for functions in L3(D; RY). Here L3(D; R?) denotes the space of functions u € L*(D; R?) such that
u =0 on 9D. We assume that functions in L}(D; R?) are extended to R? by zero.

Proposition 2 (Lipschitz Continuity of Peridynamic Force in L?). Let f and g satisfy the hypothesis of Proposition 1,
then for any u, v € L(z)(D; R?) we have

Ls
£ (u) — Eé(”)”y(p;ﬂ@) = 6_2”“ — V|l 2(p:Rd)s (25)

where the constants L3 and Ly are independent of €, u and v. Here L3 = 4(C1fJ_1 +C5 J_Oz), for convex—concave g,
and L3 = 4(leJ1 + g”(O)JOZ), for quadratic g. Here J, = a}—d le(o) J(EDIEITdE.

The proofs of Propositions 1 and 2 are provided in Appendix A. We now describe the finite difference scheme
and analyze the rate of convergence to Holder continuous solutions of the peridynamic equation of motion.

4. Finite difference approximation

In this section we consider the discrete approximation to the dynamics given by finite differences in space and the
forward Euler discretization in time. Let # denote the mesh size and D, = DN(hZ)? be the associated discretization
of the material domain D. In this paper we will keep the horizon length scale € fixed and assume that the spatial
discretization length satisfies # < € < 1. Let i € Z¢ be the index such that x; = hi € D, see Fig. 3. Let U; be
the cell of volume h“ corresponding to the grid point x;. The exact solution evaluated at grid points is denoted
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Fig. 3. (a) Typical mesh of size h. (b) Unit cell U; corresponding to material point x;.

by (u;(?), v;(¢)). Given any discrete set {i;}; x,ep,where i is index representing grid point of mesh, we define its
piecewise constant extension as

ax) =) iy, (). (26)

i,x;eD

In this way we have representation of the discrete set as a piecewise constant function.
We now describe the L?-projection of the function u : D — R? onto the space of piecewise constant functions
defined over the cells U;. We denote the average of u over the unit cell U; as u; and

1
u; = o ’ u(x)dx 27)

and the L? projection of u onto piecewise constant functions is & given by

(x) =Y dixy,(x). (28)

i,x,-ED

Lemma 1. Letu € Cg’y(D; R?) and let @ be its L* projection defined in Eq. (28), then we have
la(x) —u(x)| < [¢”|ullcor B, Vx €D,
() - u)l,2 < [ VDI o | 17, 29)
where ¢ = N2 for d =2 and ¢ = /3 for d = 3.

This lemma can be demonstrated easily by substituting Eq. (28) for & and using the fact that u € Cg’y(D; RY).
We also note that first line of Eq. (29) remains valid of x in a layer of thickness 2¢ surrounding D.

4.1. Stability of the semi-discrete approximation

We first introduce the semi-discrete boundary condition by setting #;(t) = 0 for all 7 and for all x; ¢ D. Let
{t1; (t)}i x,ep denote the semi-discrete approximate solution which satisfies the following, for all 7 € [0, 7] and i
such that x; € D,

(1) = LE@0))(x;) + bx;, 1), (30)
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where (r) is the piecewise constant extension of discrete set {&;(r)}; and is defined as
> witxy, (v,
w(x,t) = {ixeD (31)
0, forx ¢ U x,epU;.

The scheme is complemented with the discretized initial conditions #@;(0) = uy(x;) and v;(0) = vo(x;).
The total kinetic and potential energy is given by

1
Eu)(1) = Enamniz + PD(u(1)),

and we introduce the augmented energy given by

- 1
E@)t) = Eu)(1) + zllu(l)lliz- (32)

We have the stability of the semi-discrete evolution.

Theorem 2 (Energy Stability of the Semi-Discrete Approximation). Let {it;(t)}ix,ep be the solution to the
semidiscrete initial boundary value problem Eq. (30) and u(t) denote its piecewise constant extension. Similarly let
I;(x, 1) denote the piecewise constant extension of {b(x;, )} x,ep. If f and g are convex—concave type functions
satisfying Eq. (8) and (10), then the total energy E€(ut)(t) satisfies,

p 2
Em)() < <\/55(ﬁ)(0) + tE—E +f ||l;(s)||L2dS> , Vtel0,T], (33)
0

and the constant C is independent of € and h. .
If f is a convex—concave type function satisfying Eq. (8) and g is quadratic then the augmented energy E€(@)(t)
satisfies,

EC@)(t) < exp[3(Ca/e* + t] (éf(ﬁxm

T CZ R
+ / (o + b)) expl=3(Ca/e’ + 1)s]ds>, Vi €0, T], (34)
0
where the constants Cy and C, are independent of € and h.

We provide proof of Theorem 2 in Appendix B. We now discuss the fully discrete scheme.
4.2. Time discretization

Let At be the size of the time step and [0, T] N (AtZ) be the discretization of the time domain. We denote
the fully discrete solution at (t" = kAt,x; = ih) as (ftf, f)f) and the exact solution as (uf , v¥). We enforce the
boundary condition &' = 0 for all x; ¢ D and for all k. The piecewise constant extension of {@t} }; ;¢ and {b}}; .z
is denoted by a* and ¥ respectively. The L2-projection of u* and v* onto piecewise constant functions is denoted
by @* and #* respectively.

The forward Euler time discretization, with respect to velocity, and the finite difference scheme for (ﬁf, f)f) is
written

Akt gk

i u; ak+1
Ll /R 35
At Vi (35)
Skl ok
LA = % o)) + B (36)

The initial condition is enforced by setting ﬁ? = (up); and f)? = (9¢);. We note that the forward difference scheme
for the system reduces to the central difference scheme for the second order differential equation Eq. (12) on
substitution of Eq. (35) into Eq. (36).
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4.2.1. Convergence of approximation

In this section we provide an upper bound on the convergence rate of the fully discrete approximation to the
Hoélder continuous solution as measured by the L? norm. The L? approximation error E K attime t*, for 0 < t* < T,
is given by

k

N
EF = ||a" —u

~k
ot — o]

LX(D:RY) LX(D:RY)

The following theorem gives an explicit a-priori upper bound on the convergence rate.

Theorem 3 (Convergence of Finite Difference Approximation (Forward Euler Time Discretization)). Let € > 0
be fixed. Let (u, v) be the solution of peridynamic equation Eq. (20). We assume u,v € C*([0, T]; Cg’V(D; R?)).
Then the finite difference scheme given by Eq. (35) and (36) is consistent in both time and spatial discretization
and converges to the exact solution uniformly in time with respect to the L*>(D; RY) norm. If we assume the error
at the initial step is zero then the error E* at time t* is bounded and satisfies

hY
sup Ef<O0 (CtAt + CS—2> , (37
0<k<T/At €

where constants Cy and C, are independent of h and At and C, depends on the Holder norm of the solution and
C, depends on the L* norms of time derivatives of the solution.

Here we have assumed the initial error is zero for ease of exposition only.

We remark that the explicit constants leading to Eq. (37) can be large. The inequality that delivers Eq. (37) is
given by

sup  E* <exp [T(l + L3/62)] T [CtAt + (Cs/ez)hy] , (38)
0<k<T/At

where the constants L3, C; and C, are given by Egs. (60), (63), and (64). The explicit constant C, depends on
the spatial L2 norm of the time derivatives of the solution and C, depends on the spatial Holder continuity of the
solution and the constant L3. The constant L3 is bounded independently of horizon €. Although the constants
are necessarily pessimistic they deliver a-priori error estimates. We provide the connection between the non-
dimensionalized dynamics used in the a-priori convergence analysis and the simulated dynamics using dimensional
quantities in Section 5. We carry out numerical simulations for different values of the horizon € in Section 6. We
find that the convergence rate for piecewise constant finite difference interpolation functions is greater than or equal
to y = 1 for simulations lasting in the tens of microseconds. These results are seen to be consistent with the a-priori
estimates given in Theorem 3.

4.2.2. Error analysis
We split the error between (ﬁk, f)k)T and (&%, v©)T in two parts as follows
k ~k k ~k k
Ef=|u" —u"||2+ |00 — 0|2

< [0 = bl 18 = 0l ]+ [0 = @ 415 - 502 (39)

In Section 4.2.3 we will show that the error between the L? projections of the actual solution and the discrete
approximation for both forward Euler and implicit one step methods decay according to

R . - hY
sup (||u" — ik 4 9 — vk||L2) -0 <At 1 —2> . (40)
0<k<T/At €

And using Lemma 1 we have

~k k ~k k
sup<||u —u|2+ v = ||L2>
k

tel0,T] t€[0,T]

= c"VID| [ sup [[u(t)||cor + sup ||v(t)llco,r:|hy~

We now study the difference a* — @* and * — o*.
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4.2.3. Error analysis for approximation of L? projection of the exact solution
Let the differences be denoted by e*(u) := 4" — @* and ¢ v) == ?* — 7* and their evaluation at grid points are
ef(u) = ﬁf‘ - ftf‘ and ef(v) == f)f - f)f . We have the following lemma for the evolution of the differences in the

discrete dynamics.
Lemma 2. The differences ef(u) and ef(v) discretely evolve according to the equations:

e (u) = ef(u) + Atef ! (v) + Artf(u) 41)
and

et (v) = ef(v) + At (th(v) + ol ) + o} (v))

+ At (cf(f/‘)(x,») - Lf(ﬁ")(x,-)) : 42)
Here rl." (u), rl." (v) and a[k (u), aik(v) are consistency error terms and are defined as
) Jaktl gkt _ gk
Tl' (u) = l _ ! i ,
~k =kl Afk
Tik(v) = 8& /. )
ot At
ot ) = (L @) — £ W)
vk 9k
ko) = —L — —, 43
o (v) ot ot “43)

To prove this we start by subtracting (itf-‘+1 - ftf-‘)/At from Eq. (35) to get

Akl Ak kbl s~k
i W u U

A
phtt M T Wi

i At

=kt P Y S L
— Pl gkl g <5l_<+1 _ ) + (a”i _uW T
1 l 1 :
ot ot At

Taking the average over unit cell U; of the exact peridynamic equation Eq. (20) at time ¢X, we will get f)f“ -
dut !
3’[ = 0 and we recover Eq. (41).
Next, we subtract (f)f“ - f)f)/ At from Eq. (36) and add and subtract terms to get
skl Ak skl =k k ko o=kl =k
v, —v, v — N ¢ 0V av; v, —;
— =L@)x)+b; — —+ | — - ——+
At At @) + b, ot ( at At )
R vk
= L@ + b — —F
N avk o — @t N vk 9wt 4
ot At ot ar |-
Note that from the exact peridynamic equation, we have
avk
s = L. (45)

Combining Egs. (44) and (45), gives

vk gk vk 9k
K1) = e Al — -4 )4 Ar | L - —
@ W=ea@+ ( ot At + ot ot

+ At ([Zé(ftk)(xi) — /f(uk)(xi))
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vk P — gk vk 9k

k i i i i i
=)+ Ar|—L - ——— L)+ Ar [ —L - —
¢ ) ( ot At ot ot

A (L8 @) — @)
+ At (Ee(llk)(x,-) - Eé(uk)(xi))

and the lemma follows on applying the definitions given in Eq. (43).

4.2.4. Consistency

In this section we provide upper bounds on the consistency errors. This error is measured in the L? norm. Here
the upper bound on the consistency error with respect to time follows using Taylor’s series expansion. The upper
bound on the spatial consistency error is established using the Holder continuity of nonlocal forces.

Time discretization: We apply a Taylor series expansion in time to estimate tik (u) as follows

Koy — Lf <8u"“(x> - u"“(x)—u’%x))
0 =G U, dt At dx

2 k+1
Z%/(22Ll9m+mmwﬁw.
Ui

2 0t

We form the L? norm of tik(u) and apply Jensen’s inequality to get

At aZuk—H
k <= O((Ar)?
I @), < o e ((Ar)*)
At %u(t)
< = O((Ar)?).
S e R
A similar argument gives
At 3%v(1)
k 2
||1: (v)”L2 = sup o |, + O((Ar)).

Spatial discretization: From Eq. (43) one can write

. vk At avk(x) 8T (xy)
ofv)= — - — = - .
ot ot ot ot
Applying Lemma 1 gives

k

ov(r)
at

|aik(v)| <c'h? < c”h? sup

C0~V t

cOy

Taking the L? norm and using the estimates given above yields the inequality

lo*@)|,» < h”c” /D] sup H 81;(;)
t

We now estimate |0ik(u)|. Since L€ = L5 + L5,, we have from Eq. (43)
lof )] < 1£5@") ) — L5+ 1£5@) o) — L5 @h)x))]
=1+ b. (46)

cOy

To expedite the calculations we employ the following notation for & € H;(0),

_ £
&
w(x) = w(x + €§)w(x),
Ug(x) = u(x + €&) — u(x). 47

sg = €l&], eg:
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We also write hydrostatic strain (see Eq. (2)) as follows

Wd

1 _
i = [ ot + eI Dig(x) - exds. (48)
Hi(0)
In our calculations we will also encounter various moments of influence function J therefore we define following
term
1 —o
Jy = — J(IEDIEIT"dE, for o € R. (49)
@d JHy

Recall that J(|&|) = 0 for & ¢ H{(0) and 0 < J(|&]) < M for & € H;(0).
Applying the notation, L5 becomes
. 2 JUED ., -
L) (x) = — wg (x) NG fag(x) - eg//sg)esd§. (50

€Wd JH(0) St
On choosing u = u* and u = a* in L5 given by Eq. (50) we get
J(I§)

2 1= /o=
W2 o o B0 WD e/ ) = S @) ) Spg

f
<2z TS0 2k ey — e e, (51)
€Wd JH ) SE

where we have applied Eq. (8) and used the fact that | f/(r1) — fl(r)] < C2f|r1 —ry and 0 < w(x) < 1. We use
Lemma 1 to estimate |it’§(x[) — ﬁ]g(x,-)l as follows

g (i) — ag(x;)| < | (x; + &) — u (i + €8)] + | (x;) — ub(x))|

<2 [lu(t)l| cor 7 < 2¢7 sup [|u(®)]| o B . (52)
t
From this we get
acler
I < |:2€—2l sup ||”(f)||co-y:| h”, (53)
t
where J, for « € R is defined in Eq. (49). Clearly,
4cf ¢ J,\/ID] ?
>l < | 2 sup u(®) oy | B (54)
) € t
i,x;jeD

We now estimate I, in Eq. (46). We will consider g of convex—concave type satisfying C{ < oo fori =0, 1,2, 3
where C§ = sup|g(r)| and C¥ = sup|g®(r)| for i = 1,2, 3. It is noted that the upper bound for the choice of
quadratic g is also found using the steps presented here. We can write £9,(u)(x) (see Eq. (15)) as follows

L w)(x) =

/H o wg(x)J(1EDIE'O(x + €&; ) + g'(0(x; u))legd§. (55)

ezwd

Using this expression we have the upper bound

5 / wg(x))J(1EDS O(x; + €&; ")) + g'(O(x;: &)
€°Wd JH©)

— g(O(x; + €&; uh)) + ¢/ (O(x;; ub))lesd

=
eza)d

+1g'(O(x;; ")) — g'(O(x;; ub))dE

/ JUEN(E O(x; + €& ")) — g'(O(x; + €&; u"))|
Hy(0)



PK. Jha and R. Lipton / Computer Methods in Applied Mechanics and Engineering 351 (2019) 184-225 197

8
= 52 / JIEDO(x; + €&; d*) — 0(x; + €&; ub)|
€°Wa JHy(0)
+10Gx;; @) — 0(x;; ub)|)dE. -

We proceed further as follows using expression of 8 in Eq. (48)

0(x; + €&; i*) — 0(x; + €&; ub)|

1
L / (x: + €& + em) I (n)GE (x; + €& + )
H(0)

Wq

—uf(x; + €& +en) — i (x; + €&) + u(x; +€§)) - eydy

1 -
< — [ JnD(a"(x; + €€ + em) — ut(x; + €& + en)]
@d JH,0)
+ i (x; + €8) — ub(x; + €&))dn
< 2¢7RY sup |u(®)lco.r Jo (57)
t
where we used Lemma 1 in last step. We combine above estimate in Eq. (56) to get
4C§c)’ 1_02 v
L < e s lu(@®llcoy | A (58)
t
and
- 2
4C5c? J3/1D
3wl < [ZC—ZOH sup ||u(t)||co,y:| n2. (59)
. € t
i,x;eD

Applying Egs. (54), (59) and (46) gives

[P 5\/2 hd112+\/ > nin3

i,x,-eD i,x,-eD

<

|:4(C§J_02 + ¢! J)er D]
62

sup |Iu(t)||c0.y} h”.
t
Here we define the constant

fy g 72 _
Li— { 4C{ 1 +C505), for g convex—concave (60)

4(C1fJ_1 + g”(O)J_Oz), for g quadratic

this is also the Lipschitz constant related to Lipschitz continuity of peridynamic force in L2, see Proposition 2.
Thus, we have shown for g convex—concave that

Lsc”/|D
lo* @)z < [SCG—QH sup IIu(t)IIco,y] h”. (61)

The same arguments show that an identical inequality holds for quadratic g using the other definition of L3 and
this completes the estimation of the consistency errors.

4.2.5. Stability
In this subsection we establish estimates that ensure stability of the evolution and apply the consistency estimates
of the previous subsection to establish Theorem 3. Let e be the total error at the kth time step. It is defined as

et = ”ek(u)“Lz + ”ek(v)”Lz.
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To simplify the calculations, we collect all the consistency errors and write them as
. k k k k
= sup (| @] o + [ @) o + ot @] + [ @] 2)
t

and from our consistency analysis, we know that to leading order in Af and 4 that

Cy
T < A+ Sh 62)
€
where,
1 Bzu(l‘) 1 33u(t)
Cri==sup| =52|  +osup| 2| 63
’ 2Sl,1p‘ o |, 2% e |, ©y
d%u(t
C, = c"/|D| |:e2 sup g ) + L3 sup ||u(t)||Co_y:| . (64)
t 8t CO'V t

We take the L2 norm of Eqgs. (41) and (42) and add them. Using the definition of T we get

K <k + At ”ekH(v)HLZ(D;]Rd) + Att

+ A > R

i,x;eD

L@ ) — L@ @] 65)

It now remains to estimate the last term in the above equation. We illustrate the calculations for convex—concave
g noting the identical steps apply to quadratic g as well. Let

H = Zhd

2

L@ x;) — L@ ) (xr)

i,xjeD
2
< | D0 L@ — L5@(x)
i,xjeD
2
+ | Y L@ ) — L)
i,xjeD
= H] + Hz. (66)

Choosing u = a* and u = @* with L5 given by Eq. (50) we get

HE < Y hf

i,x;eD

2
, (67)

2¢9 J(ED .
T /H o8 k() — afx)ldg

where li’g(x) = 0" (x + €&) — " (x).
We will make use of the following inequality in the sequel. Let p(§) be a scalar valued function of § and @ € R

then
C J
/ (|§|)p(§)dﬁ

wa Ju,0) 1§1°

C\? JOEN 7
: <_> / f UED T4, g peapagan
@a) Jmo Jmo & Il

2 2 2
< (£> / / J(Iil) J(Ilil) p&)”+ p(n) dEdn
@d H{(0) J H,(0) &] [n] 2

Ju J
/] (IEI)p(E)QdS. 68)

wa Ju,0) 1§

2
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f _ _
On applying Eq. (68) in Eq. (67) with C = 23, a = 1, p(/&]) = |k (x;) — (x| we get
2l \ I, J (&) 2
Hr< Y pd (22 —/ ke — el d
! lezeD ( 2 ) oa o 1EIF “e

2¢] Jl / J(1&)
“\e mo &l

37 R e+ ek) — e + €8+ |8k ) — @) | dé

i,x;eD
2¢] Jl / J(&D
“\ e ) w mo &l

3 h2(let )i + e8)” + el | dé, (69)

i,x;eD
where we substituted definition of zxtléf and l:l]g and used inequality (a + b)> < 2a® + 2b? in third step, and identified

terms as e*(u) in last step. Since efu)(x) = Zi,xieD ef(u)XU,. (x), we have

AR
Hf < 26 ﬁ/ TUED 4oy 2, dE,
€2 g Ju,0 1§l

aciiy
H; < E—ZIIe @)l 2. (70)

SO

We now estimate H,. Note that for I, = |£ (ﬁk)(x ) — EeD(uk)(x )|, we have the inequality glven by Eq. (56) We
now use Eq. (56) but with it replaced by @ a* and ut replaced by u it together with the identity 6(x; & N—b(x; ") =
0(x; il* — i) = 6(x; ek (u)), to see that

g 2
-y hd( : / ()J(IEl)(IG(xi—l-eE;ek(M))l+|9(xi;ek(u))|)d§)- an
Hi (0

i,x;jeD
We use inequality Eq. (68) with C = C5 /€%, & =0, and p(§) = |0(x; + €&; e“(w))| + 10(x;; e (u))| to get

CEN L
Hy < ) (—;) = / JUENUO(x; + €& € )| + [0(x; e* ()] d&
H

ix;eD € d JH(0)

i\ T
< (—;) —Of J(ED
€ @a JH©0)

3 h2(16Gx; + €& e @)l + 100 e @)) | de. (72)

i,x;jeD

where we used inequality (a + b)> < 2a” +2b? in the second step. We now proceed to estimate the first sum in the
last line of Eq. (72),

3 hl6Gx; + €& eyl

i,x;eD

DR

i,x;eD

/ J(nDo(x; +€§ +€n)
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2
(e (u)(x; + €& + en) — e (u)(x; + €£)) - e,dn

1 2
= hd(— / TN @i + €€ + em| + et ), +6§)|)d17> , (73)
; @d JH(©0)

where we used expression of 6 from Eq. (48) in first step, and used 0 < w(x) < 1 in the second step. The second
summation on the last line of Eq. (72) is also bounded above the same way. We apply inequality Eq. (68) with
C=1,a=0,and p(n) = |e"w)(x; + €& + en)| + |e*(u)(x; + €&)| to get

37 hl0Gx; + ek et @)’

i,x,-eD

J
< ) = / TN ) + €& + em| + ek w)x, + e§))dn
H;(0)

i,x;eD @d
J_() 2 2
<= J(h2 D h(e w)xi + €& + em)|” + e w)xi + &) Ddy
@d JH(0) ix;€D
jO k 2
<= J(ub4le @)l dn
@d JH©)
= 4J5 e wl;

2, (74)

where as before we have used the Cauchy inequality. We next apply the estimate Eq. (74) to Eq. (72) to see
that

2 21k 2 C§ 2j0
Hy < 16J5llewl» | =) — J(1&)d§,
€ @a JH(0)

d
o)
g 2
Hy < =2 |le" @)l 2. (75)
Finally, we apply the inequalities given by Eqgs. (70) and (75) to Eq. (66) and obtain
2
H= | Y hd|L@ ) x) — L@ )xs)
i,x;eD
<H +H
4 gy + CEI2)
< 220k
€
< [Ejetwi, 2 (76)
—= 62 L 3

where L; = 4(C{ Ji + Cs J_Oz) for convex—concave g. For the case of quadratic g we have the same inequality but
with Ly = 4(C{ J, + ¢"(0)J2).
Applying the inequality given by Eq. (76) to Eq. (65) gives
Ls
A< o AL [ )] o, + ArT + 8173 e @)] 2 p oy
k+1 Ly & : ; :
We now add Atle" ™ (u)|l ;2(p.ray + At—2||e (Wl L2(p;gray to the right side of the equation above to get
; p ;
L
K<+ At—;)ek + At + Arr
€

1+ AtL;/€?) At
k+1 ( 3 k
=e = —A ¢ T1-a”
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We now recursively substitute ¢/ as follows
1+ AtL;/€?) At
k+1 ( 3 k
¢ = 1—Ar ¢ 1— At
2\ 2 2
- <(1 + AtLsz/e )) 1y At . (1 (14 AtLs/e ))

- 1— At 1 — At 1 — At
(4 AL/ At G+ AtLs/e)\
S( 1— At e+1—AtTJZ:; 1— At ' a7

Since 1/(1 — At) = 1 + At + At? + O(Ar3), we have
(14 AtLs/€?)
1= Ar

Now, for any k < T /At and using the identity (1 4 a)k < explka] for a < 0, we have
1+ AtLy/e2\*
(5725)
< exp[k(1 + L3/€)) At + k(1 + L3 /€*)At* + kO(L3/€*)O(A)]
<exp[T(+ L3/e*) + T(1 + L3/e?) At + O(T L3 /e*)O(Ar?)].

<14+ L3/eHAt + (1 + L3/e>)Ar? + O(L3/e?)O(Ar).

We write above equation in more compact form as follows
1+ AtLsy/e2\*
1 — At
<exp[T(1+ L3/e*)(1 + At + O(A))].
We use above estimate in Eq. (77) and get following inequality for e
T < exp [T (1 + Ly/e))(1 + At + O(A*)] (° + (k + DT At/(1 — Ar))
<exp[T(1 + Ls/e))(1 + At + O(A*)] (e° + Tt(1 + At + O(At?))
where we used the fact that 1/(1 — At) = 1 + At + O(Ar?).

Assuming the error in initial data is zero, i.e. ¢® =0, and noting the estimate of t in Eq. (62), we have

sup ek < exp [T(l + L3/62)] Tt
k

and we conclude to leading order that

sup e < exp [T(l + L3/€2)] T [CtAt + (Cs/ez)hy] . (78)
k

Here the constants C, and Cy are given by Eqgs. (63) and (64). This shows the stability of the numerical scheme.
We note that constant L3 = 4(C1fJ_1 + C§J2), where sz = sup|f"(r)|, C5 = sup|g”(r)|, corresponds to the case
when g is convex—concave type. For quadratic g the constant is given by L3 = 4(C lf Ji+ g”(O)J_Oz).

Next we establish the relation between the nondimensional peridynamic equation analyzed so far to the
peridynamic equation with the dimensional quantities. We also estimate the total error incurred for Plexiglass
material and the maximum allowed simulation time based on the convergence analysis in Theorem 3.

5. Quantifying the error

In this section we show how to apply the a-priori error bound to numerical simulations carried out using quantities
with dimensions. As an example we consider the numerical simulation of a propagating crack in Plexiglass at room
temperature. Here the dynamics is modeled in terms of quantities with dimensions. We show how to transform the
peridynamic equation of motion for Plexiglass into an equivalent evolution in terms of non dimensional quantities
Eq. (12). We then apply our a-priori error bounds to the equivalent non dimensional peridynamics Section 4.2. In
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this way obtain the dimensionless simulation time for which the error remains within an acceptable limit. One can
then transform the dimensionless time back to the actual time of the fracture propagation given in micro-seconds for
which the a-priori simulation error is acceptable. We find that the acceptable simulation time predicted by a-priori
analysis is smaller than can be seen in the numerical experiments. This is to be expected as a-priori estimates are
naturally pessimistic. We explain the reasons for this difference in the last part of this section. To keep the following
presentation simple, we will assume that the dimension is 2, the potential function g =0 and b = 0.

Suppose D is the material domain with characteristic length scale Ly and suppose ¥ € D are coordinates with
dimensions of length. Let T denote the simulation time with dimensions of time and 7 € [0, T]. Let € denote the
size of horizon with units of length. The displacement field is #(x, 7) and has units of length. The influence function
J(&) = a(1 —€) is non dimensional and its argument £ = |X — y|/é is also non dimensional. The non dimensional
parameter a > 0O is a fixed positive constant. Last we note that the boundary function w is dimensionless and its
argument is also dimensionless.

To fix ideas we consider an explicit potential function f(i) = C(1 —exp[—B72]) where 7 has units of /length, C
has units of force/length, and B has units of 1/length. Let the bulk modulus K, density /5, and critical energy release
rate G correspond to Plexiglass at room temperature. Following Eqgs. (94), (95), and (97) of [20], the parameters
C, B are given by

- G - A
C= T =,
2w /w2)M (1/4HCM
where w; = 2, w, = m. Here the Lamé parameter is related to K by A = 3K /5. For JE) =a(l —&), M =a/l2.
Substituting, we have

1
M = /O J(£)E2dE, (79)

e 3nG . 48K 80)
T ooa 57G
and also

144

CB=—K. 81)
Sa

The solution u satisfies
pu(x, 1) = LS (@)%, ), Y(x,7) e D x [0, T]. (82)

The solution u takes the boundary condition u(t) = 0 for all x € 9D and the initial condition #(0) = #,, ﬁ(O) = .
5.1. Nondimensionalization

Now we associate a local wave speed for the peridynamic material and an associated local time scale given by

Vg = —_, TO = —. (83)
vo

The change to non-dimensional variables is given by

X t € u(x,1
s=X =l e=f uep="%D (84)
L() T() LO LO
From above it is easy to see that S(x, y, 1) = % gf); = S(x, y, t). We write

£ =35 =VLoy/lx —y|S=Lor. (85)

where r = /[x — y[ S. The non-dimensional potential function f is related to f by

F(VL 1
fy=TYED L e exp—Lofr). (36)
Lopv; Lopvd

It is now clear that the dimension of f is the same as Lo,év(z) and therefore f is non-dimensional. We have,
f'WLor) 2CPr

—~ = ———exp[—LoBr’]. (87)
«/Lo,ovg pv(z) 0

flor) =
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Collecting results we now see that the peridynamic equation (82) is equivalent to the non-dimensional equation
of motion (12) with density p =1, i.e.,

= 2 = 2
(&) B = pogpin = Lo(@)(F) = <&> L5 )(x), (88)
L() LO
SO
i = L5 u)(x). (89)

5.2. Lipschitz continuity constant and bound on error

The exact solution is in u € Cg’l(D; R?), and the bound on the spatial discretization error is given by, see
Eq. (78),

supe® < exp[T(1 + L3/e*)]| T(C,/€*)h, (90)
k
where
T /" T 1
Ly=4C{J;, ¢ =swplf'(). Ji=— JUED/IEIdE,  wr = |H|(0)| =7
r @2 JH ()
and
92u(t
C, =+/2Lg |:62 sup ‘ g ) + L3 sup ||u(t)||co.yi|
t at cO.y t

~ L3v/2/Losup [[u(t)] oy,
t

where we have ignored the order €2 term.
For f(r) = ——C(1 — exp[—LoBr?]) and J(r) = a(l — &), it can be seen that

L(),5‘U(2)

N o

We have CB = ,51)5 from Eq. (83). So

_8a

Ly=—5. 92)
€

The upper bound on error is given by
8a 8a
supek <+2Lgexp[(l + e_Z)T]Te_Z sup ||u(t)||co.yh/62,
k '
and the a-priori upper bound on the relative error is denoted by o where

8a Th
o = +/2Lgexp[(1 + e_Z)T]Sae_Z' 93)
5.3. Numerical value of o

Weset Lo =1, =1/10,h = 1/100 and we fix @ = 0.001 and vy = ,/%. The material properties of Plexiglass
at room temperature are given by the density p = 1200 kg/m?, the bulk modulus K = 25 GPa, and the critical
energy release rate G = 500 Jm~2. We then have

o = exp[1.87]0.012T. 94

Here the relative error upper bound o < 1/10 when the non-dimensional time T ig = 1.111. Therefore the

<
o =1
actual time in seconds of the simulation can be T = Ty x T < (Lo/vg) x 1.111 = 1.433 us.
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5.4. Discussion on error accumulation in the numerics

Fracture in notched Plexiglass samples can last up to several hundred microseconds. From the previous subsection
we see that error increases by factor 1/10 every 1.433 us for nonlinear peridynamic material. This gives us about
5 us of simulation time till the a-priori bound on the relative error is about 1/2. However, from the numerical
experiments conducted in the following section we find that the discrete simulation is stable and converges with i
at a linear rate for a larger amount of time than predicted by the a-priori estimates.

To explain this we first note that the region where nonlinearity is strong is always restricted to a very small
region, with area Ly x 2€ in 2-d for a single crack see [16,20]. For points in the region away from the crack the
deformation is smooth. We can argue that in this region the material behaves like a linear elastic material up to a
small error of the order of O(€). This has been shown for this model when the solution is sufficiently smooth and
using [Proposition 6, 34] we write

L (u)(x) = V - CEu(x) + 0(e), (95)
where
1
Eu(®) = S(VaE) + Va®"), (96)
8ikdi1 + 818
Ciju = 2=~ =25 4 38380, 97)
f_‘//(o) /1 5 __a
A=u= J dé =CB—, 98
p=g | J@FE=Chg 98)
where last equation is for d = 2 and for J(§) = a(l — &). We now observe that for the non-dimensional function
fr)= L(); ~C(1 — exp[—LoBr?]), f"(0) = 2. Using this we can write
Y0
_ CB N
Fam = Loy Ceuw) + 0@, (99)
Lo 48

where C is given by Eq. (97) for the choice A = u = 1.
Substituting Eq. (95) into Eq. (89) we get

~~2
L5 (u)(x) = (%) V- CEu(x) + 0@), (100)
0
with

. |CB
=115 = \/;. (101)

where we have used the relation Eq. (81) and A = u and vy is the s-wave speed in Plexiglass.

It follows from Eq. (100), that for regions where nonlinearity is negligible then the solution should be an approx-
imation to the solution of the linear elastic wave equation. This is shown for smooth solutions in [Theorem 5, 34]
so the total error accumulated at each time step is far less than in the nonlinear region. The error due to the truly
nonlinear peridynamic interaction is restricted to a region of small area 2L¢e. This explains why simulations in the
next section exhibit a linear rate of convergence in 4 for a longer time than predicted from the a-priori estimates.

6. Numerical results

In this section, we present numerical simulations that support the theoretical upper bound on the convergence
rate. We also show the sharp crack propagation in the sample under the bending load. We specify the density
p = 1200 kg/m?, bulk modulus K = 25 GPa, and critical energy release rate G. = 500 Jm~2. The pairwise
interaction and the hydrostatic interaction are characterized by potentials f(r) = c(1—exp[— Br?]) and g(r)=Cr?/2
respectively. The influence function is J(r) = 1 — r. We present results when hydrostatic force is active (when
Poisson’s ratio v = 0.245) and when hydrostatic force is inactive (when v = 0.25). Egs. (94), (95), and (97) of [20]
relate parameters c, 8, C to the Lame parameters A, u and the critical energy release rate G.. In Table 1 we list



PK. Jha and R. Lipton / Computer Methods in Applied Mechanics and Engineering 351 (2019) 184-225 205

Table 1
Peridynamic material parameters assuming bulk modulus K = 25 GPa and critical
energy release rate G. = 500 J/m~2. Density is p = 1200 kg/m>.

Parameters Poisson’s ratio
v =0.245 v =0.25
c 4712.4 4712.4
c —1.0623 x 10'2 0
B 1.7533 x 108 1.5279 x 108
_ 1 -5 -5
r¥ = N 5.3402 x 10 5.7206 x 10

the values of parameters. The critical bond strain between material point y and x is S, = r*//]y — x| where
r*=1/J28.

We note that the mesh nodes near the boundary suffer from reduced stiffness due to lack of bonds. This is known
as the surface effect. To counter the surface effect, the parameters c, B, C have to be adjusted for the nodes closer to
the boundary so that the stiffness of the volume represented by the nodes near the boundary is same as the stiffness
of volumes represented by the interior nodes. In the numerical implementation same value of parameters are used.
For the type of problems considered in this work, the damage is only seen near pre-crack and during the evolution
new damage zones are created in the interior. Looking at the damage profile Figs. 5 and 9 we can see that surface
effects are not visible and no damage is seen near the boundary. This suggests that the surface effect does not play
a major role in the simulations considered in this work.

We consider the central difference time discretization described by Eqs. (35) and (36) on a uniform square mesh
of mesh size 4. We place nodes at the center of each square cell. Area represented by each node is simply 72, We
can write the peridynamic force L€ (ﬁk)(x[) as follows

L@ x;) = / (wi(y, x;) + wa(y, x;))dy, (102)
He(x;)

where w; and w; can be determined from expression of £¢ in Eq. (13). In the simulation we approximate Eé(ﬁk)(x,-)

as below

L@Yx)~ Y (i, x0) + wa(xs, )V, Vi, (103)

ijDhﬂf-le(xi)

where V; = h? is the area (volume in 3-d) represented by node x ;. The area (volume in 3-d) correction |72 ; is the
ratio of part of the area V; which is within the horizon of x; and the area V;. The numerical results are presented
in the following section.

6.1. Crack propagation: Fracture energy and numerical convergence study

We consider a 2-d domain D = [0, 0.1 m]? (with unit thickness in the third direction) with a vertical pre-crack
of length 0.02 m. We use a uniform square mesh of size 4. The boundary conditions are described in Fig. 4. The
simulation time is 7 = 34 us and the time step is Ar = 0.004 us. In what follows we run the simulations for three
different horizons € = 8 mm, 4 mm, 2 mm. For the coarsest horizon ¢ = 8 mm, the number of mesh nodes are
(approximately) 0.9 x 10?, 3.5 x 10, 13.7 x 10° for h = 4, 2, 1 mm respectively. The memory consumed are 10 MB,
16 MB, 95 MB respectively. For the finest horizon, € = 2 mm, the number of nodes is 11 x 103,44 x 103, 174 x 10°
for h = 1, 0.5, 0.25 mm respectively. The memory consumed are 16.4 MB, 99.4 MB, 1126.4 MB respectively. All
computations were performed on a single workstation in parallel using 20 threads.

6.1.1. Fracture energy of crack zone
The extent of damage at a material point x is given by the function Z(x)

Z(x) = max M

104
yeH(x)ND Se (104)
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.

0.1m

0.1m

0.02m

Te

Fig. 4. Material domain D = [0, 0.1 m)? with crack of length 0.02 m. The x-component of displacement is fixed along a collar of thickness
equal to the horizon on top. On the bottom the velocity v, = £1 m/s along x-direction is specified on either side of the crack to make
the crack propagate upwards.

5.0e+00!

Fig. 5. (a) Color plot of damage function Z on deformed material domain at time r = 34 ps. Dark blue represents undamaged material
Z <1, Z =1 is yellow at crack tip, red is softening material. The plot is for a horizon € =2 mm and # = €/8. Here, the displacements
are scaled by 100 and damage function is cut off at 5 to highlight the crack zone. The maximum displacement is 4.4 mm and the maximum
value of Z(x) is 82 at + = 34 us. (b) View near the crack tip. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We define the crack zone as the set of material points which have Z > 1. We compute the peridynamic energy of
crack zone and compare it with the Griffith’s fracture energy. For a crack of length /, the Griffith’s fracture energy
(G.E.) will be G.E. = G, x [. The peridynamic fracture energy (P.E.) is given by

1
P.E.:/ [d / Iy—xIWG(S(y,x,u))dy}dx,
xeD, €Wy He(x)

Z(x)>1
where W¢(S(y, x, u)) is the bond-based potential, see Eq. (3). For the choice of f(r) and g(r), only bond-based
potential f contributes to the fracture energy, therefore P.E. is computed only from bond-based interaction.

Fig. 5 shows the plot of Z at time t = 34 us for horizon € =2 mm and # = 0.25 mm. The figure on the right
shows the Z field near a crack tip. In Fig. 6 we plot the peridynamic and Griffith’s fracture energy as a function
of crack length. The absolute error between the peridynamic and Griffith’s fracture energy remains below 5% for
simulation time up to 34 us.

6.1.2. Convergence rate

Consider a fixed horizon € and three different mesh sizes h; = €/2,h, = €/4, h; = €/8. We compute the
convergence rate as follows. Let u;, u,, us be approximate solutions corresponding to meshes of size hy, hy, hs,
and let u be the exact solution. We suppose for i’ < h that Ch® < ||luj, — uy|| = Ch® with C < C and « > 0, and
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Fig. 6. Crack length vs peridynamic fracture energy (P.E.) and Griffith’s fracture energy (G.E.). G.E. is simply G.x[ where G, = 500 Jm~2.
Plot is for € =2 mm.

—*— c¢=8mm

e=4mm

—— c¢=2mm

Time (us)

Fig. 7. Convergence rate with respect to mesh size for different fixed size of horizons.

fix the ratio of mesh size hy/h, = hy/hs = r. A straight forward calculation gives

o < log(llui — usl|) — log(|luz — u3|) + log(C) — 10g(£), (105)
log(r)
so an upper bound on the convergence rate is at least as big as
b log(||u, —u2||)—10g(||u2—u3||)' (106)
log(r)

We calculate the convergence rate estimate b for mesh sizes h = €/2, €/4, €/8 and plot it for every 2 us for
times up to 34 us, see Fig. 7. It is seen that the convergence rate is at least 1 up to the final time of 34 us. These
numerical results show a convergence at a rate that is at least as good as the linear a-priori convergence rate obtained
in Theorem 3.
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0
Applied force at time ¢
f(z)
fm(}..’l; X t
l | |
! 0.05m ! 0.05m
0.05m
uy, =0 u, =0
L
Ie | 0.015m €
€' € €' €
0.25m

Fig. 8. Material domain D = [0, 0.25 m] x [0, 0.05 m] with single vertical crack of length 0.015 m at midpoint of bottom edge. We apply
linear in time distributed load, along negative y-direction, on part of the top edge. At any time 7, the load is zero at the end points of
loading line (red line) and is fiqx X ¢ at the midpoint. We take constant f,,c = —2.5 X 10, We fix a vertical displacement on two support
regions shown in the figure. Horizon is € = 0.75 mm. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

6.2. Bending test with pre-crack

We consider a 2-d material domain (with unit thickness in third direction) D = [0, 0.25 m] x [0, 0.05 m] with
single and double vertical cracks. We fix horizon to € = 0.75 mm and mesh size 4~ = 0.25 mm. The boundary
conditions are described in Fig. 8 for single crack. For the double crack problem, the two vertical cracks are
symmetrically located at distance 0.02 m along x-axis from the midpoint x = 0.125 m, y = 0. With time step
At = 0.0035 us we run simulations up to time 7 = 350 us. Material properties correspond to the Poisson’s ratio
v = 0.25, see Table 1.

In Fig. 9 damage profile at various times is shown for both single and double crack problem. The material
exhibits a sharp crack propagation. In Fig. 10 we plot the fracture energy as a function of total crack length. The
error in energy remains below 5% till 220.5 us for single crack problem and 245 ps for double crack problem.

7. Conclusions

In this article, we present an a-priori convergence analysis for a class of nonlinear nonlocal state based
peridynamic models. We have shown that the convergence rate applies, even when the fields do not have well-defined
spatial derivatives. The results are valid for two different classes of state-based peridynamic models depending on
the potential functions associated with the dilatational energy. For both models the potential function characterizing
the energy due to tensile strain is of convex—concave type while the potential function for the dilatational strain can
be either convex—concave or quadratic. The convergence rate of the discrete approximation to the true solution in
the mean square norm is given by C(At +h? /€?). Here the constant depends on the Holder and L? norm of the true
solution and its time derivatives. The Lipschitz property of the nonlocal, nonlinear force together with boundedness
of the nonlocal kernel plays an important role. It ensures that the error in the nonlocal force remains bounded when
replacing the exact solution with its approximation. This, in turn, implies that even in the presence of mechanical
instabilities the global approximation error remains controlled by the local truncation error in space and time. We
have described the connection between the non-dimensionalized dynamics used in the a-priori convergence analysis
and the simulated dynamics using dimensional quantities. The numerics are carried out for Plexiglass. The a-priori
estimates predict a simulation time of a few microseconds before the relative error grows too large. On the other
hand the numerical simulation with crack propagation looks to be stable and one can control the error by choosing
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— 5.0e+00

(a) t =168 us (b) t =189 us

(c) t =210ps (d) t =238 pus

00e+00
0.0e+00

(e) t =224 us (f) t = 266 us

Fig. 9. Damage profile under bending load. Plots on left are for single crack and plots on right are for double crack. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

500« pE. (Single crack)

»— P.E. (Double crack)

—=— G.E.

Energy (J)

0.4 0.6 0.
Length (m)

oo

1.0

Fig. 10. Crack length vs peridynamic fracture energy (P.E.) and Griffith’s fracture energy (G.E.). Here crack length and fracture energy of
single crack and double crack are normalized by crack length L = 0.0386 m at time ¢ = 220.5 ps and crack length L = 0.0706 m at time
t = 245 us respectively.

the time step and spatial discretization sufficiently small. The simulation shows a linear convergence rate with
respect to mesh size for simulation times ten times larger than predicted by the a-priori estimates. This is due to
the fact that the nonlinearity is isolated on a set of small area related to the crack set. Away from the crack set
the evolution is linearly elastic and characterized by the shear wave speed of Plexiglass. This observation motivates
future work that will address a-posteriori error estimation and mesh adaptivity.
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Appendix A. Proof of Lipschitz continuity for the non-local force

In this section, we prove Propositions | and 2.
A.1. Proof of Proposition 1

Recall that 1 = [0, T is the time domain, X = Co”" (D; RY) x o7 (D; RY), and F<(y, t) = (F{(y, 1), FS(y, )7,
where Ff(y,t) = y* and F;(y,1) = L")+ b(t). Given t € I and y = (', y*)T,z = (z', z%)" € X, we have
IF(y, 1) — F(z, Dllx
= Hy2 -7 ||C0vV(D;Rd) + ”[’E(yl) - Ee(zl)”covy(D;Rd) (107)
and
HF< s Dl = | cor gy + 1£°OD] cospiay + b4 (108)

where b = sup, [|b(t)|| 0.

Thus, to prove Egs. (21) and (22) of Proposition 1 we need to study the terms associated with £¢ in the equations
listed above. The peridynamic force £¢ is sum of two forces, the tensile force L5 and the dilatational force L5,.
So for u, v € Cg’y(D; R9) we have

||£€(u) — EE(U)HCO‘y(D;]Rd)

< [£5@) = L5O)] o (pigay + [1£5@) = LSO coy ey (109)
and

”‘Ce(u)”CO'V(D;R") = ”EET(M)”CW(D;]RC!) + ||£B(”)“c0.y(o;w)' (110)

We conclude listing estimates that will be used in the sequel. For u € Cg’y(D; R and w € Cg’y(D; [0, 1]) one
easily deduces the estimates
lu(x + €§) —u(x)| < (el§)D" lullcoy,
lu(x +€&) —u(y +€&)| < |x — y|" llullcoy,
lo(x + €§) —w(y +€8)| < |x — y|"|wllcoy, (111)

for x, y € D and & € H;(0). Since u and w are extended by zero outside D these estimates also hold for all points
outside D.

A.l1.1. Lipschitz continuity in Holder space
In this subsection, we provide upper bounds on Eq. (109).

We employ the notations used in Section 4.2.4. Recall that, for & € H,(0), we define

§
sg =€l|, eg = —

&’
wg(x) = w(x + €§)w(x),
ug(x) =u(x +€&) —u(x) (112)
and
Jo = € J(EIE| " dE, for « € R. (113)

@d JH, ()
Hydrostatic strain simplifies to

Wd

1
O(x;u)=— /H o w(x +€&)J(|§Dug(x) - ecd§. (114)

Peridynamic force £5.(u) and L%, (u) can be written as

¢ 2 JAED ., -
L (u)(x) = s Jno w;(x)%f(ug(x)-es/ﬁ)egd& (115)
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Lpu)(x) =

2w

211
/ wg(X)J(1ED[S'O(x + €& w)) + g'(0(x; w))]egd&
d J Hy(0)

(116)
Non-local tensile force. For any u,v € Cy” (D; R?), we provide upper bounds on
|17 ) — EET(U)HCO,V(D-Rd)

= sup |L5(u)(x) — L5(v)(x)]

xeD

+ o sup (L7 )(x) — L5 (0)(x)) —

x,yeD,x#y

(L5 w)(y) — LS () (y)
lx — yl” ‘

(117)
Using simplified form of £ in Eq. (115) and proceeding as in Section 4.2.4 we see that
|£5 (u)(x) — L7 (0)(x)]

2 J( )
2

< = e (IEI) |f( s(x) - €5/ %) —
€wq Ju,(0)

f
< £/ J(E') |i¢§(x) — Dg(x)| dé.
€@d JH©) Sk

A straightforward calculation gives the estimate

f'(Wg(x) - eg/ /)| d&

(118)
lug(x) — ve ()] = [u(x + €§) — u(x) — (v(x + €§) — v(x))|
< |u(x + €8) —v(x + €&)| + |u(x) — v(x)| < 2[lu — v]coy
and on applying this to Eq. (118) we get

4cf J,
1£5(@)(x) — L5@)0)] < —2 | — v oy,
where J; is given by Eq. (113). Next we derive a bound on
I(L7@)(x) — L5 ()(x)) — (L7 @)(y) — LT (0)(p))]
lx — yl”

2 J(&D N y
@/Hl(m NS [0s()(f g (x) - €5/ /56) = f'(Bg(x) - e/ /50))

—wg(W(f'(@g(y) - eg//s5e) — f'(0s(y) - €5/ /5¢)) egdé'

(119)

1

o x =yl

Let

lx —yl”

wg(0)(f'(g(x) - eg/\/5g) — f'(V(x) - eg//5¢))

—wg(Y)(f'(ue(y) - eg//s5) — f'(ve(y) - e;:/\/s_))‘
Then

(120)
[(L5 @) (x) — L (v)(x)) — (LS (w)(y) —

lx — y|”

< i/ J(gD)
T €wq Juo) /St

(121)
To analyze H we consider the function r : [0, 1] x D — R? given by
r(l, x) = vg(x) + I(ug(x) — ve(x))

L))

(122)
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and or(l, x)/0l = ug(x) — ve(x). We write

flg(x) - eg//s5) — f'(Ve(x) - eg//5¢)

_ /1 3f’(r(l,x)~eg/ﬁ)dl
o al

:/M X
0

or ol

r=r(l,x)
1
" e - =
= l,x)- = — dl. 123
/0 fird, x) e.g/\/E)«/E (ug(x) — ve(x)) (123)
and similarly we have
f(ag(y) - es//se) — f'(0e(y) - e/ /5¢)
! ” (7 - -
:/o f (NLJO'%/J@)E-(u;(y)—vg(y))dl- (124)

Substituting Eqgs. (123) and (124) into Eq. (120) gives
_ 1
lx — yI”

1
/O [05(0) £ (1, %) - €] J55)(fig (x) — B5(x)

— g f(rd, y) - eg/ /58)ig(y) — ve(y))] - e—§d§‘~

wg(x)f”(r(l x) - eg//se)g(x) — vg(x))

T lx - yIV
—wgW f(rd, y) - eg/ /se)(ug(y) — f)g(y))‘di-

We now add and subtract wg(x) f"(r(, x) - e: /. /se)(ug(y) — vg(y)), and note 0 < wg < 1, to get

= —yIV / |f(r{, x) - e/ /5ol lug(x) — vg(x) — g (y) + vg(y)ldl
—|x — / ) F %) - €/ J57) — s £ (F(L. 3) - s/ /55
lug(y) — ve(y)ldl
= H[ + Hz, (125)

where we denoted first and second terms on right hand side as H; and H,. Using the estimate

leg(x) — ve(x) — ug(y) + ve(y)l
lx —yl”

S 2||u - v”CO,y.
and | f"(r)| < CJ we see that

| < W/ g (x) — vg(x) — ug(y) + ve(y)ldl

|x yw—
2cf

< Zlu—vlcoy. (126)
NG

lg(x) — ve(x) — ug(y) + ve(y)l
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To bound H,, we add and subtract wg(x) f"(r(l, y) - e¢/ /5¢) and further split the terms

- /1 £ (r(l, x) - es) J55) — [/ (r(l, ) - e/ /55
= x — 3" /5

lug(y) — ve(y)ldl

U wg(x) — we )], _ _
| ST M) e Sl ) = B
= H; + Ha, (127)

where we used the fact that 0 < wg < 1 in first term.
We consider Hj first. With | ()| < C'3f and0<I,1—1<1forl €[0, 1], we have

Lf"(r(l,x) - eg/ /sg) — ["(r(l, y) - e/ /5¢)]

lx — y|”
_ ¢l rt.x) —rd. )
TV lx =yl
- C_3f|1 —lvg(x) — ve(w)| + |Llug(x) — ug(y)l
VA lx — y|”
- C_{ (Ii;(x)—ﬁg(y)l + Iﬁg(x)—ﬁg(y)l)
TsEN =l x —yI”
Following estimates
[vg(x) — ve(y)l g (x) — ug(y)|
e Y , =R <
-y <2|v|lcor x— I’ < 2||lullco.y
delivers
"(r(l,x) - e se)— f(r(d, y)-e Sg) 2c!
7w x) e/ 59 = J 0 y) - e/ SOL 265 @ ol (128)
lx — yl” VAT

We use the inequality above together with the estimate

lug(y) — vs(y)| < 23;”“ = vlcoy
to get
4cf
Hy < ——(lullcoy +lvlicor)llu —vllcoy. (129)
S
We now consider H, in Eq. (127). Using |f"(r)| < C{, lg(y) — ve(¥)| < 2|lu — v||coy, and the following
estimate
|wg (x) — wg(y)] _ lo(x + €8§)w(x) — w(y + €§)w(y)]

lx — yl” lx — y|”
_ o + ed)llox) — o(y)l L lo(W)|o(x +€y) — oy + €§)|
- lx — yl” lx — yl”
<2|ollco.y, (130)

we have

_ 4G lollens
Ve

Applying the inequalities Eqgs. (129) and (131) to Eq. (127) gives

H, lu — vl oy . (131)

act 4cq ol co.
Hy < | = (lullcoy + 0llcor) + === | llu = vllco (132)
5t NG
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Applying the upper bounds on H; and H, shows that

4c! 4c! (1 + |l o)

H < [1—_3y<||u||co,y +lvllcor) + —2 N Sl = vl o (133)
S
&

We substitute the upper bound on H in Eq. (121) to find that
(L5 @)(x) — L5 (0)(x)) — (L5@)(y) — LT )W)

lx —yl”
2 / J(8) | 4cf
<= = (lullcoy + vl cor)
€wq JH0) /S s;y o r
4¢ (1 + |l coy)
— S = vl oy dE
NS
8¢ Jy)o_ 8CS (1 + l|wllcor)Ji
= [;T/yﬁuuuco.y  ollco) + =5 | e = o (134)
where J, is defined in Eq. (113). Application of Eqgs. (119) and (134) delivers
| £5 @) — £5) | co.s
8¢ Jzo- 8CS (2 + llwllcor)Ji
< [;T/yﬂnunco,y + 9lleo) + 2= |l = vl o (135)

and we have established the Lipschitz continuity of the non-local force due to tensile strain.

Non-local hydrostatic force. Now we establish the Lipschitz continuity for the non-local dilatational force. For any
u,ve Cg'V(D; R9) we write

”‘CED(”) - E;)(U)HCO,V(D;RGI)

= sup |[LHm)(x) — L (v)(x)]

xeD
(L) (x) — L, (0)(x)) — (LS @)(y) — L 0)(p))] _

(136)
x,yeD,x#y |x - }’|V

+

The potential function g can either be a quadratic function, e.g., g(r) = Br?/2 or it can be a convex—concave
function, see Fig. 2(a). Here we present the derivation of Lipschitz continuity for the convex—concave type g. The
proof for the quadratic potential functions g is identical.

Let g be a bounded convex—concave potential function with bounded derivatives expressed by Eq. (10).
We begin by estimating |6(x; u) — 6(x; v)| where 6(x; u) is given by Eq. (114). Application of the inequality
lug(x) — ve(x)| < 2|lu — vl|coy, and a straightforward calculation shows that

10(x; u) — 0(x; )| < 2Jollu — vl o (137)
We now bound |0(x; u) — 6(y; u)| as follows

0(x; u) —0(y; u)| =

1

Wy
1 _ _

< — | JEDIox + ebitg(x) — o(y + eb)itg(y)|dE
@d J H(©0)
1 _ -

<— J(IEDlw(x + €&)|ug(x) — ug(y)|dé
@d J Hy(0)
1 _

+— J(IEDIw(x + €§) — w(y + €§)||ug(y)|d§, (138)
@d J H,(0)

where we used |e;| = 1 and Cauchy’s inequality in the first equation, added and subtracted w(x + €&)ug(y) in

the second equation and used the triangle inequality. Applying |ug(x) — ug(y)| < 2|x — y|" [lullco.y, |o(x + €&) —
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w(y +€8)| < |x — y"lwllcor, and Jug(y)| < 2||ullcoy gives

1
10(x; u) —0(y:u)| < —f JUED2Ix — yI" llullcor dE
H,(0)

o
1
+ — JUEDIx — y" lwllcor 2ull oy,
@a JH0)
ie.,
10Ge; u) — 0(y; w)| < 2Jo(1 + llwllco)lullcoylx — yI7. (139)

We note that estimate Egs. (137) and (139) hold for all x, y € D as well as for x and y in the layer of thickness
2e surrounding D.
Using Eq. (116) we have

1L @)(x) — L)) =

1
5 / wg(x)J(1EDIE'O(x + €&; ) + g'(0(x; )
€ Wd JH(0)

— 8O +e&v) — g'(0x; v))]egdf;"

<

1
<o [ e
€°Wd J H,(0)

—8'O(x + €& v) — g'(O(x; v))

g0 + ek u) + g'(O(x; w)

d§

<

1
<o J(|§|){
€°Wd J Hy(0)

g'O(x;u) — g'O(x;v)

g0 + €& u)) — g'(0(x + €&; v))

+

}d’g. (140)

Since |g/(r1) — g'(r2)| < C5lr1 — ral, we have
lg'(0(x; w)) — g'(0(x; V)| < C510(x; w) — O(x; )|
<2C5 Jollu — vl co,
where we used Eq. (137). Similarly we have
g (0(x + €&; w)) — g'(O(x + €&; v)| < 2C5 Jollu — v]| o
and we arrive at the estimate

872

4C5 J
|LH@)@) = LH®)] < —Zlu = vlco- (141)

Now we estimate
(LS @)(x) — LG (0)(x) — (LS @)(y) — L)) '

lx —yl”

We write

L) (x) — L) (x) =

f s T (EDLE Ok + e&: w) + g'(O(x: w)
Hy(0)

— 8 (0(x + €&; v)) — g'(0(x; v))legdE

e2a)d

and

1
Ly@)(y) — Lw)(y) = o /H o wg(NJEDLE' Oy + €&; ) + g'(0(y; u)
1

—8'(0(y + €&;v) — g'(0(y; v))legdE.
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to find

(L @)(x) — LHw)(x)) — (L5 @)(y) — L))

1
3 / J(&D)
€°Wd JHy ()

<w;=(X)[g'(9(x +e&su) +g'(0(x;w) — g'(0(x + €§;v)) — g'(O(x; v))]

— (NGO + €& u) + g'O(y; u)) — g'O(y + €&;v)) — g'(O(y; v))]) e;di‘

1
< - / J(ED
€°Wd J H,(0)

‘wg(x)[g’(G(x + €& u)+ g'(0(x; u)) — g'(O(x + €&; v)) — g'(0(x; v))]

—wr(NE'O(y + €& u)+ g’ O(y;w) — g'(O(y + €&; v)) — g'(0(y; v))]‘dE

1
= — / o J(IEI)’(COg(x)[g/(@(x+6‘é;u))—g’(9(x+eé;v))]
Hy

2wy
— wg(MIg' Oy + €& u) — 'Oy + €&; v))])
+ <wg(x)[g/(9(x; u)) — g'(0(x; v))]
— wg(NIE'O(y; w)) — g'O(y; v))]) ‘d‘é, (142)
where we have rearranged the terms in last step. Application of the triangle inequality gives
(L @)(x) — LH(0)(x)) — (L @)(y) — LH@)())]
/HI(O) J(IEI)('wg(x)[g’(O(x + ek u)) — g'O(x + €&; v))]

eza)d
— g Oy + €& m)) — g'(O(y + €&; v))]‘
+ 'wg(x)[g'(9(x; u)) — g'(0(x; v))]

— o (N[ O(y; w) — g'O(y; v))]DdE~ (143)

Now write /¢ : RY x RY — R given by

hg(x, y) = ‘wg(x)[g'(G(x; u)) — g'(0(x; v)] — we(MIE'O(y; w)) — g'(O(y; v))]|. (144)
and

(L @)(x) = LH(0)(x)) — (L5 @)(y) — L))

=
2wy

./H«» J(ED(he(x + €&, y + €8) + hg(x, y))dE. (145)
1

We now estimate h¢(x, y) for any x, y in D and in the layer of thickness € surrounding D.
Proceeding as before we define r : [0, 1] x D — R as follows

r(l,x) =0(x;v)+10(x;u) —0(x; v)), (146)
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SO % =0(x; u) — 0(x; v). We also have

g'Ox;u) — g'Ox; v) = g'(r(1, x)) — g'(r(0, x))

B /1 0g'0rl, X))
b al

1
=/ g (r(l, x)(O(x; u) — O(x; v))dl.
0

Similarly,

1
§O(y:w) —g'©O(y; v) :/o g"(rd, y)O(y; ) — 0(y; v))dl.

Substitution of Eqs. (147) and (148) in he(x, y) gives
he(x, y) = ‘ fo (@8 (1, 2O w) — Ox: )

— w(0)g"(rll, y)O(y; w) — O v»)dl‘
< fo | 'w;:(x)g”(r(l, )6 w) — 6(x; v)

—wg(g"(r(l, y))(O(y; w) — 6(y; v))|dl.

Adding and subtracting wg(x)g”(r(l, x))(0(y; u) — 6(y; v)) gives
1
he(x, y) < /(; g (0)| 18" (r (L, )] [(0(x; u) — O(x; v)) — (B(y; u) — 6(y; v)|dl

+ /01 g (x)g"(r(l, x)) — wg(y)g"(rd, y)I10(y; u) — 6(y; v)ldl
=1+ I,
For I;, we note that 0 < w(x) < 1 and |g"(r)| < C§ and proceed further to find that
I < C51(0(x; w) — 6(x; v)) — (B(y; u) — 6(y; v))|
= C510(x; u —v) — 0(y; u — v)|.
Using the estimate given in Eq. (139) we see that
I < 20C5(1 + [l o) llu = vllcoy x — yI7.
Now we apply the inequality given in Eq. (137) to I to find that

1
L < 2Jgllu = vlicoy / g (x)g" (r(l, x)) — wg()g"(rd, y)ldl.
0

Adding and subtracting wg(x)g"(r(l, y)) gives
L < 2Jollu — vl oy /01 lwg ()| 18" (r(l, x)) — &"(r L, y))ldI
+ 2Jollw — vl coy /0] g (x) — wg (I 18" (r L, y))ldl
< 2C5 ol — vl o /01 Ir(l, x) —rd, y)ldl

1
+2C5 Jollu — vl coy / |wg (x) — we(y)ldl.
0

217

(147)

(148)

(149)

(150)

(151)
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The quantity |r(/, x) — r(l, y)| (see Eq. (146)) can be estimated as follows
Irl, x) —r(, y)l
= [(1 = DO(x; v) +10(x; u) — (1 = DO(y; v) + 16(y; u))|
<1 —=1116(x; v) = 6(y; V)| + 1] |0(x; u) — 6(y; u)]
= 10(x;v) —0(y; v)| +10(x; u) — 6(y; u)]
< 2Jo(1 + ll@llco) vl coy X = y17 +2Jo(1 + ll@llcor) @l cor |x — yI”

= 2Jo(1 + [[@llcor )@l cor + vl cor)lx — yI”, (152)

where we used the fact that [ € [0, 1] and Eq. (139). Using the inequality above and |wg(x) — we(y)| <
2|x — y"llw|lcor We get
L < 2C5 Jollu — vl oy 2Jo(1 + lollcoy )|l coy + 0]l coy) [x — yI”
+2C5 Jollu = vllcor 2lx — yI" l@llcos

< 4Jo(1 + [lllco. ) [CS To(llll oy + lIvllcor) + C51lu = vlicoy x — yI”. (153)
Substituting Eqs. (151) and (153) into Eq. (149) gives
hg(x, y)
< 6Jo(1 + ll@llcor) [C5 Jo(llullcoy + Nvllcoy) + C31llu — vlicoy [x — yI”. (154)

We now apply Eq. (154) to Eq. (145) and divide both sides by |x — y|” to see that
(LS @)(x) — LHW)(x)) — (L5 @)(y) — L))
lx — yl”

1
< - / 0
€°Wa J H,(0)

2 x 6Jo(1 + ll@llco) [C5 oIl cor + I0llcor) + C31llu — vl coy dE

12J2(1 + ll@ll o) [CE Jo(llull oy + NVl co.y) + CE
_ 0( I ||c0y)[ 3 06(|2| ”COV [ ||c0y) 2]||u—v||co,;/. (155)

Collecting results inequalities Eqs. (141) and (155) deliver the upper bound given by
I1£5 ) — L)l cor

16J2(1 ) CE T, . , Ccs
< 0( + llollcor) [ 3 OE(BVHCOV‘F“UHCOV)‘F 2]||u—v||c(),y. (156)

Lipschitz continuity for L¢(u). Using Eqgs. (135) and (156) we get
1L (u) — ﬁe(v)”cO,y

8C{ Js/n_ 8CS 2+ lwllcoy )i
< (;T/yy(nunco.y + ollcor) + —2 —

62
16J3(1 + [l o) [C5 Jo(lull co.r + [[0]lcor) + C5]
+ ”u — v”CO,y.

2 (157)

Let a(y) defined as follows: a(y) =0if y > 1/2 and a(y) = 1/2 — y if y < 1/2. It is easy to verify that, for all
ye@,1land0<e <1

1 1 1
max{e—z, 65/2V} < et (158)
Using «(y) and renaming the constants we have
1L () — L) co.y

Li(1+ [l oy )1+ ullcoy + 1] co)
< S lu = vllcos. (159)
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To complete the proof of Eq. (21), we substitute the inequality above into Eq. (108) to obtain

”Fs(yv t) - FG(Z’ t)”X

Li(1 + [[@llcor )0 + 1y llcor + 12" llcos)
<11y = 2llcor + BT —

< L+ o)A+ yllx + lzl)
gy Iy = zllx, (160)

1
Iy = 2"l co

and Eq. (21) is proved.

A.1.2. Bound on the non-local force in the Holder norm
In this subsection, we bound || £ (#)| 0., from above. It follows from Eq. (115) and a straightforward calculation
similar to the previous sections that

L5l = =552,
[L£5(w)(x) — LS (w)(y)] - 4C2 Jillullcoy + 4C{J_1/z||w||co.y 161
lx — yl” - €? ' (1ol

Next we consider the non-local dilatational force £5,. We show how to calculate the bounds for the case of a
convex—concave potential function g. When g is quadratic we can still proceed along identical lines. We use the

formula for £9,(u)(x) given by Eq. (116) and perform a straightforward calculation to obtain the upper bound given
by

CgJ
L5 @) x)] < =12 (162)
We have the estimate
[L5@)(x) — Lo@)(y)]
1
<= / J(Iél)‘wg(x)(g’(G(x + €& u) + g'(0(x; u)))
€°Wd JH(0)
— we(¥)(E' Oy + €& u)) + g'(O(y; u)))’d«E
1
<= f J(IEI)‘w;(x)g’(G(x+6§;u))—wg(y)g’(Q(eref;';u))‘dE
€°Wd JH(0)
1
3 / J(IEI)‘wg(x)g/(H(x; u)) — wg(»)g'(0(y: u))‘dé- (163)
€°Wd JH ()

Using |wg(x) — w¢(y)| < 2|x — y|"[|@llcoy, 18'(r) — &' ()| < Cilri —ral, |g'(r)] < C¥, and the estimate on
|6(x; u) — 6(y; u)| given by Eq. (139), we obtain

|ILD@)(x) — LE@)(y)
- [2J0C5(1 + llollco)llullcory +2C lloll oy llullcoy]

2 lx — yl”. (164)
€
Last we combine results and rename the constants to get
e Lol + ll@llcor )1+ flllcor)
1@l cor < " — (165)

€2
This completes the proof of Eq. (22).

A.2. Proof of Proposition 2

Given u, v € L%(D; R?) we find upper bounds on the Lipschitz continuity of the nonlocal force with respect to
the L? norm. Motivated by the inequality

L) — LYWl 2 = 1£5) = L7l 2 + 1£5 @) — L@l 2, (166)
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we bound the Lipschitz continuity of the nonlocal forces due to tensile strain and dilatational strain separately. We
study L% first. It is evident from Eq. (115) and using the estimate | f'(r;) — f'(r2)| < C{ |r1 — rz|, and arguments
similar to previous sections that we have

|£5(u)(x) — L3 (0)(x)]

2 JUED ,, _ .
= ewq Ju,0 «/f—s | f'(ug(x).ec//5) — [ (Ve(x).e¢//5¢)|dE
2c] / JUED )
- 4 167
= Gy Sy g ) TN (167)

where we also substituted s¢ = €|£].
f
We apply Eq. (68) to Eq. (167) with C = “#, & = 1, and p(&) = |itg(x) — d¢(x)| to get
L5 () — LS )17,

< fD |5 (u)(x) — LS (v)(x)|*dx

2 -
2cf\" A J(ED -
sL(E—Z) w_de]@ & e — 55 ()P

f 2 _
= % if JUED U Iﬁs(x)—ﬁg(x)lzdx} dé, (168)
€ @i Ju,0) 8] D

where we interchanged integration in last step. Using

/ litg (x) — 05 (x)[*dx < 2/lu —vl[3, (169)
D
we conclude that
4c! 7,
1£7@) = L5 = —3 L — vl 2. (170)

In estimating || £, (w) — L5, (v)|| 2 we will consider convex—concave g noting that the case of quadratic g is dealt
in a similar fashion. From Eq. (116) and using estimate |g'(r1) — g'(r2)| < C5|ri — r2|, and proceeding as before
we have

|LH@)(x) — L (w)(x)]

1

3 / JUEDNE O (x + €& u)) — g'(0(x + €&; v))|
Hy (0)

€E“Wy

+18'(0(x; u)) — g'(O(x; v))|1dE
8

IA

C
< 2 / JUEDIO(x + €&; u) — O(x + €&; v)| + |0(x; u) — 0(x; v)|]d§
€7 Wa JH(0)
Cg
== / JUEDNO(x + €&;u — )| + 0(x; u — v)|]1d§. (171
€°Wd J H,(0)

14
Squaring Eq. (171) and applying inequality Eq. (68) with C = f—%, a =0, and p(§) = |0(x +€&;u—v)| +

|0(x; u — v)| gives

L5 ) — LG,

C§ 2 J_() 2
§/<_J._/G J(ENO(x + €&;u — v)| + |0(x; u — v)|)*dEdx
D Hy(0)

€? Wy

Cg 2 J_() 2 2
< (—) —/ J(I&D [/ 2(10(x + €& u —v)|” + 0(x; u — v)| )dX} ds, (172)
H,(0) D

€ ) wy
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where we used Cauchy’s inequality and exchanged integration in the last step. It is easy to verify that
6 suw))Pdx < 203 |u|?
10(x + €85 w)Pdx < 273 |ull2,
D
holds for all § € H;(0). Combining this estimate and Eq. (172) we see that

4C3 J?
I1£5@) — LS)ll,2 < j O llu — vl|,2. (173)

2

Estimates Eqs. (170) and (173) together delivers (after renaming the constants)
L;
[1£°(w) — L2 < 6—2|Iu = v, (174)

where L3 is given by Eq. (60). This completes the proof of Proposition 2.

Appendix B. Energy stability of the semi-discrete scheme

In this section, we establish Theorem 2 for convex—concave potential functions g as well as for quadratic potential
functions. We recall the semi-discrete problem introduced in Section 4.1. We first introduce the semi-discrete
boundary condition by setting @;(t) = 0 for all r and for all x; ¢ D. Let {&;(¢)}; x,ep denote the semi-discrete
approximate solution which satisfies the following evolution, for all ¢ € [0, T] and i such that x; € D,

(1) = LE@0)(x;) + bx;, 1), (175)

where #(t) is the piecewise constant extension of {ft(t)}i,xiep, given by

al,x) = Y i)y, ().

i,x;eD
Let £€(i(t))(x) be defined as
L@y = Y L@ xu, (x)

i,x;eD
and define I;(t) similarly. From Eq. (175) noting the definition of piecewise constant extension

i(x, 1) = Le@(t))(x) + b(x, 1)

= LC@)x) + b(x, 1) + o (x, 1), (176)
where the error term o (x, t) is given by
o(x, 1) = L) (x) — LE@1))(x). (177)

We split o into two parts
o(x,0) = | £ @)@ — L5 + [ £ @) - L5a@0)w)|
=:or(x,t)+op(x,1). (178)
Multiplying both sides of Eq. (176) by ﬁ(t) and integrating over D gives
@), (1) = (L@)), (1)) + (b(), (1)) + (o (1), &(1)), (179)
where (-, -) denotes the L2-inner product.

B.1. Estimating o

We proceed by estimating L2-norm of o (¢). It follows easily from Eq. (115) that

4¢{ Ji oD
€3/2 :

4C‘1f ]_1/2

lor(e. 0l < =5

= llor @2 < (180)

We now deal with two cases of g separately.
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1. convex—concave type g: In this case, we can easily show from Eq. (116) that

4CtJ 4C{ Jo/1D]
o, 0l = 2L 5 oy, = TAPL (181)

2. Quadratic type g: In this case we have g'(r) = g”(0)r. Let x € Uj, i.e. in the unit cell of the ith mesh node.
To simplify the calculations let u = @(¢) (and later we will use the fact that & is piecewise constant function). From
Eq. (116), we have

lop(x, )| = |Lp@)(x;) — L5 @)(x)]

= & J(|s|>[wg<x,~)<9(x,» + e u) +00x )
€°Wq J @)

— wg(x)(O(x 4+ €&; u) + 0(x; u))]e;df,-“. (182)
Now consider the function a(x, &) defined as
a(x, &) =0(x +¢€&;u). (183)
We then have

lop(x, 1)
g"(0)
€0y Ju o)

— wp()(atx, ) + alx, o»}egdg‘
g"(0)

2
€°Wd JH(0)

J(IEI)[wg(xi)(a(xi, ) +a(x;, 0)

J(1&ED(a(x;, &)| + lax;, 0)] + |a(x, §)| + |a(x, 0))dE. (184)
Let
bg = |a(x;, )| + la(x;, 0)] + |a(x, &) + |a(x, 0)] (185)

then using the inequality Eq. (68) with C = ,o=0,and p(§) = b, we get
5 //(0) )
lop(x, D" < J(1§Dbgd§. (186)
Hi(0)
Thus on an interchange of integration we have
lop@)|7, = f lop(x, 1)*dx

<> |0D(x, n2dx

i,x;jeD

g”(o)> ﬁ/ 7 /bd d 187
5(62 2], s0en| X [ iaxae (187)

i,xjeD

We denote the term inside square bracket as / and estimate it next. Recalling the definition of b¢ in Eq. (185) and
using the identity (3"_ ¢,)? <4Y'_ ¢ we have
<4y (|a(x,»,s>|2+ lax;, 0)° + la(x, ) + la(x, 0)]*)dx. (188)

i,x;eD
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For x either in D or in layer of thickness € surrounding D and & € H,(0), we have from the definition of a(x, &)

la(x, &)1* = |0(x + €&, w)|*
2

1
_ —f (x + ¢k + em) I (nDiig(x + <) - eqdn
@d J H,(0)

2
) (189)

<

1
—/ J(nD(u(x + €& + en)| + |u(x + €&))dn
@d JHy(0)

where we used the fact that 0 < w(x) < 1 and definition of u,(x + €&). We now apply inequality Eq. (68) with
C=1,a=0and p(n) = lu(x + €& + en)| + |u(x + €&)| to obtain

T
la(x, £ < =~ J(nD(|u(x + €& + en)| + |u(x + €£)))*dy
®a J Hy(©0)
iy
< Zh J(nD(u(x + €& + en))* + |u(x + €&)*)d, (190)
@d J Hy(0)

where we have also used the inequality (a + b)?> < 2a® 4 2b>. This inequality holds for all x and & which includes
x=x;and § =0.

With estimate on |a(x, & )|* and the fact that u is a piecewise constant function defined over unit cells U;, we
immediately have

Y| lax, &)Pdx < 4TFull?, = 4T3 a0, (191)
Ui

i,x;jeD
where we substituted #(7) for u. Combining above estimate with Eq. (188) we get

I < 643 a7 (192)
Finally, we use the bound on / and substitute it into Eq. (187) to show

g//(())
€2

A

2 o
) fo / J(EN6AT (0|12
Hy(0)

wq

lop@®3, < (

8 //(O)J_Z R
Slop®ll2 = <L)l (193)

A

On renaming the constants the bound on o (¢) can be summarized as

llo @2
4! J1pID]  4C8Jo/TD] _ C
< — for convex—concave g,
< €3/2 €2 €2 (194)
4¢/ Jip/DT  82"(0)J5 Ci + Cllawll :
L 63//2 = u @) 2 < TL for quadratic g .
B.2. Energy inequality
From Eq. (179) and noting the identity
d ~ ~ A A~ A
ng(u)(z) = (u(t), w(t)) — (L((t)), u(t)) (195)
we have
d&(m)(1)

= (b(1), (1)) + (o (), 2a(1))
< (16 12 + o @)l 2) ()] 2 (196)

dt
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When g is convex—concave we can apply identical steps as in the proof of Theorem 5 of [18] together with the
estimate Eq. (194) to obtain

C b
VE@)(t) < VE@)(0) + te—z +/0 ()l L2ds (197)

for all 7 € [0, T']. This completes the proof of energy stability for convex—concave potential functions g.
We now address the case of quadratic potential functions g. We introduce the energy £€(&)(¢) given by

_ 1
Em)(t) = Em)(t) + 5||u(r>||iz.

Differentiation shows that
des@)(t)  dE(@m)(1)

(@), (1))

dt dt
Thus from Eq. (196) we get
dE<()(1)

< (B2 + o @)l 2) 1@ 2 + @), @)
< (1)1l 2 + C1/€¥) @)l 2 + (C2/€> + Dlla@) 2 @)l 2. (198)
From the definition of energy £¢ we have

@@l < 28<@)@)  and  [a@)l 2 < /2@ (199)

Using the above inequalities in Eq. (198) along with Cauchy’s inequality gives
dE<(@)(t)
dt

dt

A c? C o
< 1bO)IZ + = + 3(?22 + DE(@)). (200)
Using the integrating factor exp[—3(C,/€* + 1)t] we recover the inequality

EC@)(t) < exp[3(Ca/€* + 1t (56(:2)(0)

T R
+ / <%+||b(s)||iz)exp[—3(cz/e2+1)s]ds)- (201)
0

This completes the proof of Theorem 2.
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