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In this paper we derive bounds for the torsional rigidity of a cylindrical shaft with
arbitrary transverse cross-section containing a number of cylindrically orthotropic fibres
or coated fibres. The exact upper and lower bounds depend on the constituent shear
rigidities, the area fractions, the locations of the reinforcements as well as the geometric
shape of the cross-sections. Specific bounds are derived for circular shafts, elliptical shafts
and cross-sections of equilateral triangle. Simplified expressions are also deduced for
reinforcements with isotropic constituents. We verify that when additional constraints
between the constituent properties of the phases are fulfilled, the upper and lower bounds
will coincide. In the latter case, the fibres or coated fibres become neutral under torsion
and the bounds recover the previously known exact torsional rigidity.
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1. Introduction

Saint-Venant’s torsion of cylindrical shafts has long been a subject of classical
mechanics. The torsional rigidity depends in a complicated way on the geometric
shape of the cross-section, constituent shear rigidities as well as on its
microstructure. An exact characterization of the composite shafts often poses
some mathematical difficulties. Recently, substantial advances have been made
for torsion of composite shafts, made from two or more different materials. For
example, Chen et al. (2002) found that a circular shaft filled with an assemblage of
composite cylinders permits an exact determination of the torsional rigidity. Chen
(2004) showed that, depending on the cross-sectional shape of the host shaft, the
torsional rigidity of the composite shaft could be exactly determined if the
composite cylinders are suitably multicoated. Ting et al. (2004) extended
the concept and showed how to design a multicoated cylinder with cylindrically
orthotropic constituents so that the composite shaft filled with an assemblage of
multicoated cylinders can be exactly analysed. All these developments were
indirect, based on a construction of neutral inclusions under torsion. A neutral
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inclusion in torsion was defined as a cylindrical inclusion which can be introduced
into a homogeneous host shaft subjected to torsion, without disturbing the
warping field in the host shaft. Neutral inclusions for Saint-Venant’s torsion
problem were constructed by Lipton (1998) for the case of imperfectly bonded
inclusions placed inside a more compliant matrix. For this case, the neutral
inclusions have a radius determined by the elastic moduli of the constituents and
the stiffness of the imperfect interface. Other neutral inclusions in the presence of
imperfect interface for three-dimensional elastic composites are constructed in
Lipton & Vernescu (1995). For coated neutral inclusions, see the book of Milton
(2002, ch. 7) for a detailed exposition of related references. However, exact
formulae for the torsional rigidity are not usually available for more general fibre
geometries and material properties. Therefore, it is also useful to have explicit but
sharp estimates on the torsional rigidity for more general situations. In this paper
we pursue this line of investigation with the goal of providing explicit and sharp
bounds for the torsional rigidity that hold for a large class of fibre configurations.

The problem of bounding the torsional rigidity for a cylindrical shaft has long
been a subject of fundamental interest in solid mechanics. For homogeneous
shafts made of elastically isotropic material, de Saint-Venant (1856) proposed
that among all cylindrical shafts with given cross-sectional area, circular shafts
will give the greatest torsional rigidity. A rigorous proof of this proposition was
made nearly one century after by Diaz & Weinstein (1948) and Polya (1948).
Polya & Weinstein (1950) showed that among all multiply connected sections
with given cross-sectional area and with given joint area of holes, the ring
bounded by two concentric circles has the maximum torsional rigidity. Upper
and lower bounds on torsional rigidity were also investigated by Payne &
Weinberger (1961), Payne (1962) and some others. All these above results
are mainly concerned with homogeneous cross-sections. For composite shafts,
Alvino & Trombetti (1985) showed that circular cross-sections with a radially
non-increasing arrangement of compliance will give the maximum torsional
rigidity among all cross-sections with given cross-sectional area and fixed area
fraction of the constituent phases. Lipton (1998, 1999) presented a variational
approach to examine composite shafts with imperfect interfaces between fibre
and matrix phases. For this case, the condition of the continuity of the warping
displacement is relaxed and replaced with a ‘spring-type’ interface prevailing
along the host shaft and the fibres. Optimal bounds and isoperimetric
inequalities were introduced illustrating the dependence of the torsional rigidity
on the degree of imperfect bonding together with shape and position of the fibres
within the shaft.

More recently, Lipton & Chen (2004) developed a variational approach for
bounding the torsional rigidity of shafts containing coated fibre reinforcements. The
first set of results are reinforcement inequalities that provide explicit criteria that
determine when the torsional rigidity of a particular coated fibre configuration lies
above or below the torsional rigidity of the coated cylinder assemblage found by Chen
et al. (2002). The torsional rigidity for this assemblage is identical to the torsional
rigidity of a single-coated fibre of circular cross-section centred inside a shaft of
circular cross-section. When additional (neutrality) conditions are fulfilled by the
warping function inside the shaft then the upper and lower inequalities coincide and
agree with the exact torsional rigidity found by Chen et al. (2002). The second set of
results are geometric inequalities that show how the effective anti-plane shear rigidity
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and torsional rigidity of each coated fibre can be used to determine whether a
particular configuration provides reinforcement above or below that of a
homogeneous shaft containing no coated fibres. These are obtained using techniques
based upon the solution of eigenvalue problems associated with each coated fibre.
Amazingly, the lowest eigenvalue for these problems is given in terms of the effective
anti-plane shear modulus of the coated fibre.

The present study focuses on the former set of problems addressed by Lipton &
Chen (2004) but with emphasis on shafts with arbitrary cross-sections. The shaft
contains a number of fibres or coated fibres, which can be arbitrarily positioned
inside the shaft. The constitutive law for the reinforcements is allowed to be
cylindrically orthotropic and the host medium, referred to as the matrix, is
elastically isotropic. The elastic symmetry of cylindrical orthotropy is charac-
terized by three different shear rigidities in the radial, circumferential and axial
directions, respectively. Here under Saint-Venant’s torsion, only the shear
rigidities in the radial and circumferential directions will take effect. In this
work, the choice of trial fields used in the variational principles is motivated by the
fields inside the exactly solvable microgeometries for shafts with arbitrary cross-
section introduced and discussed by Chen (2004). The exact upper and lower
bounds depend on the constituent shear rigidities, the area fractions, the locations
of the reinforcements as well as the geometric shape of the cross-section. The shape
factor of the cross-section will explicitly enter into the expressions of the bounds.
As demonstrated by Ting et al. (2004) and Chen & Wei (2005), these types of
anisotropic materials provide more degrees of freedom allowing more opportu-
nities for finding explicit formulae for the torsional rigidities. It is found that the
expressions for the explicit bounds on the torsional rigidity for cross-sections
containing non-coated fibres are distinct from that of cross-sections containing
coated fibres. The former involves a single summation contributing from each non-
coated fibres, while the latter involves a double summation, which in addition to
the contribution of each coated fibre, also involves a summation relevant to the
shape effect of the host shaft.

The paper is organized as follows. We first provide a brief outline of the
bounds derived in §2. In §3 we derive the upper bounds for the torsional rigidity.
The solutions are formulated in terms of virtual warping displacement.
Derivations for the lower bounds given in §4 are based on constructing virtual
stress potential. In §5, specific bounds are derived for circular shafts, elliptical
shafts and cross-sections of equilateral triangle. Simplified expressions are also
provided for phases with isotropic constituents. Lastly, a generalization to shafts
containing many multicoated fibres is envisaged.

2. Inequalities on the torsional rigidity

We consider the Saint-Venant torsion of cylindrical shafts. The shafts are made
of a homogeneous isotropic matrix containing N cylindrically orthotropic fibres.
The fibres have circular cross-section and the radius of the ith fibre, :=1, ..., Nis
denoted by a; The fibres may also be coated by a shell of cylindrically
orthotropic material of uniform thickness, then, in this situation, the outer radius
of the ith coating will be denoted by b,. Each coated fibre may have different
constituent materials with different area fractions. The area fraction of the fibre
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for the ith coated fibre is denoted by v; and v;= a?/b?. The matrix has the
isotropic shear modulus denoted by u,,, while the fibres and the coatings are
cylindrically orthotropic.

In order to describe the cylindrical orthotropy, let us now consider a cylindrical
inclusion, which could be a coated or a non-coated fibre. Suppose that the centre of
the inclusion is located at a certain point O; inside the cross-section Q. The
position O; will be designated as &; = (;, y;) relative to the origin of . Consider a
second coordinate system obtained from the first coordinate by a translation
without a change in orientation. We denote this new coordinate system by
(X, Y, 2), in which z= X + Z; and y= Y + ;. We introduce the polar coordinates
(1,0, 2) centred at O; with X =rcos § and Y = rsin §. The unit vectors in the
radial and tangential directions are denoted by e, and ey, respectively. The
rigidity tensor inside cylindrically orthotropic fibre and coating is of the form

p=u.(X,Ye.e +pu(X, Y)ese,. (2.1)

For (X, Y) in the ith fibre g, (X, V) = ¥, uy(X, V)= ui” and for (X, Y) in the
corresponding coating w,.(X,Y)= ,u,i@ and uy(X,Y)= ,u;’,(C). The shaft cross-
section, denoted by Q is simply connected and its outer boundary is denoted by
dQ. The domain occupied by the ith fibre and its coating is denoted by
3, ={X*+ Y?< b?}. The union of all the fibres is denoted by X; and that of the
coatings is by X.. The remaining part of the cross-section containing matrix
material is denoted by Q,, and thus Q= JZ;|JZ.. At the interfaces between
any two adjacent phases, we assume that they are perfectly bonded.

Instead of directly solving for the warping and associated stress fields inside
the composite shaft, we introduce variational principles and derive sharp upper
and lower bounds for the torsional rigidity of the composite shaft. The bounds
given here depend on the elastic properties of the constituents, the cross-sectional
shape of Q, the area fractions v, as well as the position of the reinforcements ;.
We describe the variational principles used to derive the bounds for the torsional
rigidity. The torsional rigidity for a shaft with cross-section Q containing N fibres
or coated fibres is denoted by 7y(Q). The first variational principle is given in
terms of virtual warping functions w that are square integrable with square
integrable gradients. It is given by

Ty(2) = min {J

Here z* is the anti-clockwise rotation of x through m/2 radians. Note that the
piecewise constant shear matrix is u,, I in the matrix and is (2.1) for the coated
fibres. This variational principle is minimized by the actual warping function
inside the shaft.

The second variational principle is given in terms of virtual stress potentials @
that vanish on the boundary of the shaft cross-section dQ and are square
integrable and have square integrable gradients. The second variational principle
for the torsional rigidity is given by

Tn(Q) = max {4]9@ da:—JQ (ﬂ))v q;) V@ dw}. (2.3)

¢ det u(zx

Q,u(:z;)(Vﬁ) +zt)- (Vi + zt) da;}. (2.2)

This variational principle is maximized by the actual stress potential inside the shaft.
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We start by displaying bounds on the torsional rigidity for reinforcements that
are non-coated cylindrically orthotropic fibres. For a system of N cylindrically
orthotropic fibres located at the points &;,, i=1,..., N, we construct upper and
lower bounds for the torsional rigidity. The main result is stated in proposition 2.1.

Proposition 2.1. For a shaft with arbitrary cross-section Q containing N
cylindrically orthotropic fibres with radii a;, we find that the torsional rigidity of
the reinforced shaft Ty(Q) is bounded between the quantities

N N
—i Mm i —i(

AN—i-WZa o (,uG—,um)STN(Q)SAN+7rZa (MG — tm) (2.4)

G i=1

where AN and 2% are defined by
N

N _ ~m ™ i(f) _ 4

AT =T"(Q) + 5 Z (Ma ,um) a; and (2.5)

N
Il
—

£ = f: n((@h)” + (81)7) a" (2.6)

T ™(Q) is the torsional rigidity of the homogeneous shaft with cross-section Q and
ug s the geometric mean of the shear rigidity defined by

wly = . (2.7)

The upper and lower bounds agree when u,, = ,uG, =1,...,N.

Note that the position of the fibres, &;, i=1,..., N and the cross-sectional
shape of Q are expressed through the coefﬁments S, a;, and B;,. The parameter S
could be a finite or an infinite value depending on the cross-sectional shape of the
shaft. For instance, for a circular shaft we have S=1. Detailed expressions for the
coefficients S, «;, and 8., for a few simple cross-sectional shapes were given by
Chen (2004) and are recorded in §3 for completeness.

Next we suppose that the reinforcements are coated fibres. The variational
bounds on the torsional rigidity are given in proposition 2.2.

Proposition 2.2. For a shaft with arbitrary cross-section Q containing N
cylindrically orthotropic coated fibres, the torsional rigidity of the reinforced shaft
Tn(RQ) is bounded between the quantities

BN+”ZZ (1) 22— (phon () = ) < Ty () < BY
i=1 n=1 Hoe ()
N S
+ TFZ rl IuCCA( ) :u'1n)7 (28)
i=1 n=1

where BY and E' are given by

N
BY =7™(Q +g Z ( : ) + ,ug( )a umb4) (2.9)

1=1

ri(n) = n((oz;)2 + (1)) 02", (2.10)
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and ,uéCA(n) is the shear rigidity defined by

(g + 1) + 0} (g = 1))
(g + 1) =g = 1)]

MECA(”) = ,uéc)

: (2.11)

with

. 'ui(f) /uf.(f)uf,(f>
do = \ug ) and g = = [ i) i) (2.12)
Ka Mr "My

We mention that the value ,uec A (n), which depends on n with n=1,..., 5, is
the effective anti-plane shear rigidity of an assemblage of coated cylinders, with
cylindrically orthotropic constituents, under displacement boundary conditions
of order n. The expression pqc, differs intrinsically with that of non-coated fibres
in which ug does not vary with n. It is seen that the upper and lower bounds will
coincide when p,, = utca(n), forall n=1,...,Sand i=1,...,N.

3. Upper bounds on the torsional rigidity for shafts of arbitrary
cross-section reinforced with coated or uncoated fibres

In this section we develop trial warping functions for cylindrical shafts of
arbitrary cross-section Q containing N circular cylindrically orthotropic fibres or
coated fibres. The trial fields will be substituted into the variational principle
(2.2) to deliver the upper bound given in propositions 2.1 and 2.2.

First, consider a homogeneous shaft filled with pure matrix material. For a
fixed Cartesian coordinate system centred at O, the associated warping
displacement, denoted by wy,(z, y), is harmonic inside 2 and on dQ

dwy, i
The trial warping function w is taken to be equal to w,, outside the inclusions.
The inclusions can be either coated or uncoated fibres. Inside the coated or
uncoated fibre centred at &;, the trial field w is the solution of the boundary-value
problem given by w= w, on the inclusion matrix boundary, and inside the

coating and fibre w satisfies
V- (u(@)Vi) =0, (3:2)

where u(x) is given by (2.1). The transmission conditions across the coating—
fibre interface J are

)|, =0, [w@)(Vi+at)-e]

=0, (3.3)

where [-]|; denotes the jump of a quantity across J. We note further that if the
trial satisfies the extra traction continuity condition at the interface between X,
and the matrix given by

px) (Vo + ) e, = u, (Vo + z5)-e,, (3.4)
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where the Lh.s. is evaluated on the interface just inside ¥; and the r.h.s. is
evaluated on the matrix side of the interface, then the trial is the actual warping
function inside the composite shaft.

Substitution of this trial field into the variational principle gives the upper
bound

UN=J (V0 + ) (Vo + 2+ d:1:+ZJ x) (Vi + z+) - (Vo + z*)d.
m 2

(3.5)

Adding and subtracting the torsional rigidity of the cross-section filled with pure
matrix material 7™(Q) gives

Uy =T"(Q ZJ V(Vio + ) - (Vi + z)dz

_ZJ o (Y, + 25) - (Va, + 2+)dz. (3.6)

The expressions for the upper bounds (2.4) and (2.8) on the torsional rigidity
are obtained by deriving explicit expressions for the quantities

H, = L’u(m)(vm + ) (Vi + z)dz

—J oy (Y, + ) (Y, +2-)de, i=1,...,N. (3.7)

To calculate these quantities associated with ¥, for coated or non-coated
fibres, it is convenient to translate the coordinates to the location of the centre
of the ith fibre O, The specific transformation of the warping function under
this change of coordinates is pointed out in Chen et al. (2002). In particular,
the warping displacement for a cross-section filled with pure matrix material
in the new coordinates w,|p, is related to the warping function in the old

coordinates by wy|o, = wy,(X+2;, Y+ 9;) — ;X + 2, Y. Since the warping field
is harmonic inside Q, the function w,,|o can be expanded about the point O;

in the form of trigonometric series with a sufficient number of terms S
(Chen 2004),

s
= Z r"(a, cos nd + B, sin nd), (3.8)
0; n=0

Wy

where the coefficients «,, and §,, are constants. For example, for a circular Q,
the non-zero coefficients of «,, and @,, are

oy = _@7 and 61 == Zii. (39)

This implies that S=1. For an elliptical Q, the non-vanishing coefficients of «,
and (8, are given by

ap =—(k +1)7;, Br=—(k—1)2; and By =—k/2, (3.10)
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where k= (A% —B?)/(A*+ B?), and A and B are the semi-axes of the ellipse.
In this case, S=2. Also, if Q is an equilateral triangle with side length [, then

ay = 2v38,9,/1— i, ay = V33,1, B = \/g(ﬁ _3912)/[ + 75,
By = \/?-’i“i/h B3 = 1/\/§l (3.11)

and S=3. When the cross-section  becomes irregular, e.g. a rectangle, the
number of S will become larger or even unbounded.

Next we consider the trial warping displacement inside X, associated with the
local coordinates centred at ;. The trial warping function inside ¥, for the local
coordinate system is denoted by w, and is related to the trial warping function
inside X; in the old coordinates by w; = w(X + Z;, Y + 9;) — ;X + 2; Y. We let @
denote the trial inside the fibre and w} the trial inside the coating. In the local
polar coordinate system, w; is the solution of

af 1 aaf A2 o*ab . k) (k
a2 T ar +7’_§ 96° =0, with 2 =/ /", (3.12)

for k=f and c. At the interface J between the fibre and the coating, we require that

A
(@] =0 and [ur i} =0 (3.13)
J ar || s
and at the interface between ¥, and the matrix we have
ﬂ)’i - ’LU1n|OL. (314)

The quantities H; defined by (3.7) can now be expressed in terms of the local
coordinate representation of the trial warping functions and are given by

0, \ 2 1 9w, 2
H, =J w,(r cos @, rsin ) Wi + py(r cos 0,7 sin 0) [ — ad +r rdrdf
b} or r 00

Owmlo \> . (1 0wy, 2
_J w [ (Qmlo\ 4 (L Onlo, | N qpas =1 N, (315)
3, ar r 06

In the following subsections we evaluate H; for both non-coated and coated fibres.

(a) Reinforcements are cylindrically orthotropic fibres

We first treat the case when the reinforcements are cylindrically orthotropic
non-coated fibres. Here there is no coating phase and X, consists of a cylindrically
orthotropic fibre. The trial function @' inside the fibre is required to satisfy (3.12)
and the boundary condition (3.14) is

ﬁ}fz = m|0,7 (316)

on the boundary of ¥;, i.e. r=a,, We solve the boundary-value problem within
each fibre to obtain the explicit formula for @!. Since @' satisfies (3.12), it can be
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represented as

s
at = Z " (A, cos nf + B, sin nf), for r< a,. (3.17)
n=0

The coefficients A, and B, are determined by (3.16) and are given by
A, = anaf(l_m and B, = 6naf(l_a). (3.18)

Substitution of wy|p, (see (3.8)) and @; = @} into (3.15) and (3.6) delivers the
upper bound given in (2.4).

We point out that if the traction is continuous across the fibre-matrix
interface (see (3.4)), then we have the additional condition for the warping
functions given by

oWt dwp| o,

¢ —

=W
AT T .

i=1,...,N. (3.19)

By substituting (3.8), (3.17) and (3.18) into (3.19), it is seen that the
overdetermined system has a solution only when ug = u,. In this case, the
trial function w becomes the actual warping displacement in the shaft and we
recover the exact formula (Ting et al. 2004)

Ty(Q) = A", (3.20)

It should be emphasized that the exact torsional rigidity (3.20) is independent of
the shape Q. In this case, the fibres are referred to as neutral inclusions (Chen
et al. 2002), since the presence of the fibres do not disturb the warping field of the
homogeneous shaft.

(b) Reinforcements are cylindrically orthotropic coated fibres

In this section we suppose that the reinforcements are cylindrically orthotropic
fibres with cylindrically orthotropic coatings.

We solve the boundary-value problem within each coated fibre given by (3.12),
(3.13) and (3.14) to obtain the explicit formula for trial warping function w;
inside each fibre. From (3.12), it follows that

s
W = ZT”Af(AEf) cos nf + BY sin nd), for r<a; and
n=0

n

-n

s
w§ = r”a“(Agf’) cos nf + B sin nd) + Zr_”'% (A(ﬁ)n cos nf + B sin nﬁ),
n=1

for a; <r<b, (3.21)

where the coefficients Ag), Bg), Agf), Bg), A(fn and B(_L)n are unknown constants
to be determined. Now the continuity conditions (3.13) at r=a; and boundary
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conditions (3.14) at r=b; require that
a AD = g2 A9 4 g =he 4O
Ay + b7 Al = bra, (3.22)

,U,i 'nAfAn _ éc)(aZnACASLC) _a;n,ACASLC)> and

o B = a* B\ + o, " BY),
b B + b BY = b8, (3.23)

uéﬁf) a B = uéc) (a? B\ — a7 " BY ))-

()

The two linear systems (3.22) and (3.23) are entirely similar by observing that
()

AV B7(7,f), A o B;C), AY o BY and @, <> B,. The solutions of (3.22) and
(3.23) are derived as

AD B gy mnliN2 gua=)

I

Uy, a :871, (g +1)—1/M (gi—l)

A7 _BY (g TR 520
= an .

ap, :B’n (g +1) (g —1)

A(E)n B(_c)n 1- ) (= n(l 2))/2 n(l )

w B (gD (gi—l)

Substitution of w,,|e, (see (3.8)) and the explicit formula for @, into (3.15) and
(3.6) delivers the upper bound given in (2.8).

If the traction continuity (3.4) on the coating—matrix interface is also fulfilled,
one has the additional constraint given by

Jw
= #Hl aT

() OWS

i(c) i

Brar

Making use of (3.8) and (3.21), (3.25) can be rewritten as

S N
,U,mZb?an = Z,U,gc) (b;M“Agf) - b_"A“A(E)n) and
N (3.26)
umZb"ﬁn = Z & (b7 B == BY)).

By substituting (3.24) into (3.26), it can be shown that the overdetermined
system has a solution only when u,, = utca(n) fori=1,..., Nand n=1,...,5. In
the latter case, the trial function @ becomes the actual warping displacement in
the shaft and we recover the exact formula (Ting et al. 2004)

Tv(Q) =B". (3.27)

(3.25)

r=>b; r=b,.
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4. Lower bounds on the torsional rigidity for shafts of arbitrary
cross-section reinforced with coated or uncoated fibres

In this section we develop trial stress potentials for composite shafts with coated
or uncoated fibres. These are substituted into the variational principle (2.3) to
obtain the lower bounds given in (2.4) and (2.8). The trial potential to be
constructed is denoted by ¢. As in §3, we start by introducing the stress potential
@, for a cross-section Q filled with pure matrix material. In the matrix phase
external to the coated or uncoated fibres we take the trial stress potential to be
equal to ¢,,. For future reference, we denote the restriction of the trial potential
¢ to the matrix phase by ¢,,. In what follows it is convenient to represent ¢, in
terms of local polar coordinates based at the centre O; of the ith fibre. To
proceed, we recall the relationship between the stress potential ¢,, and the
warping displacement w,, (e.g. Sokolnikoff 1956). Denoting the harmonic
function conjugates to w,, by w, the stress potential ¢,, is related to the warping
displacement through

1
P = My <w_ 5‘:13’2) (41)

We apply (4.1) together with the representation for wy, |, given by (3.8) and the
Cauchy Riemann equations in polar form to find that

@Pmlo, = O (7T cos O + 1,7 sin 0 + ;)

N | =

S
= Uy, (Z r"(a, sin nf — B, cos nf) — 7"2> : (4.2)
n=0

To fix ideas, we note that for a circular cross-section with radius R, we find that
the non-zero coefficients of «,, and @8, are given in (3.9) together with

1 ) R 1
By =—5 (B =& =if) =5 (B ~[a"). (13

This agrees with previous known results (e.g. Lipton & Chen 2004).

(a) Reinforcements are cylindrically orthotropic fibres
We suppose that the cross-section £ contains N cylindrically orthotropic
fibres. The restriction of the trial field ¢ to the interior of the ith fibre is denoted
by @;. We choose ¢ to be the superposition of two functions, i.e.
¢ =Y +vi, (4.4)
where ' satisfies
Py 1oy A Py

r? r or 12 Q62 - —2,u§, for |z —z| =r<a; (4.5)

with
v; =0, onr=ugq (4.6)
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and the function vy’ satisfies

Py la%‘ 33 0%y

dr? r Or 2 962

=0, forr<a, (4.7)
with
Vi = (pm‘Olv on 7r=a. (48)

It should be noted that the function y; is exactly the stress potential for a
single cylindrically orthotropic fibre under torsion. The solution of the governing
system (4.5) and (4.6) can be derived as

Y, =— Lad ] (r2 — a?). (4.9)

The solution of v’ is given by

N
i = Z TM(C; cos ml + DZ sin mﬁ), (410)

n=0

which, in reference to (4.8) and (4.2), will give

i n(1-A
Cn =" MUna;

2
' 12 , a;
8 Di= e Ve, and ) =—u, (60 +5‘)- (4.11)
The lower bound in (2.4) follows from substitution of this trial stress potential
into the variational principle (2.3).
Suppose now that the trial potential field ¢ satisfies the displacement
continuity condition on the fibre-matrix interface given by

_1 00 .1 00,
to o |, — (10) la—rl —a (4.12)
This means that
—a;+ > (u) ﬂnAaﬁ”(C; cos nfl + D}, sin nf)
n=1
=—q + Z nal (=@, cos nf + a, sin nd). (4.13)
n=1

It now follows from the formulae (4.11) for C, and D, that the condition (4.13) is
satisfied only if ug = u,,. For this situation, the trial ¢ is the stress potential in
the shaft and the exact formula (3.20) is recovered.

(b) Reinforcements are cylindrically orthotropic coated fibres

Here we derive the trial stress potential when the reinforcements are coated
fibres. As in §4a, we choose the trial stress potential in the matrix ¢,, to be ¢,.
Inside each coated fibre, we take the trial function ¢, to be given by the sum of
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two functions y; and ;. Here ng’“), k=f{, c, satisfies

02¢Ef)

Loy a7 ey 0 i the f
o v or T2 o =—2u, " inthe fibre, r<e and (4.14)
v 1 gpl@ 302 5240 i
vi 4= d + 2 Vi _ —2,u,é( ) in the coating, a;<r<b;. (4.15)

ar? r Or rr 962

At the fibre—coating interface and the coating—matrix interface, we require

1 oy .
[W)} =0, LY, =0 and ¥\ =o0. (4.16)
=g 'u;(k) or — ¢ r=b;

The function 7y’ satisfies

62,Ygf) 1 a,YEf) + /‘{(_f)Q (:)2,)/(_f)

13 13

ar? r dr r2 962

=0, for r<a,,

, , , , (4.17)
62756) + l 6759) + AEL)Q aQYEL) =0, forg;<r<b, and
ar? r or 92 ! !

(k) 1 gy (©) -
|:’YZ ] _ 07 T - 0 and i ‘7'=b7; q)m|0,- ‘7'=b,' (418)
r=a, ,ulg(k) Jar _

Again, the function y; is exactly the stress potential for a single coated fibre
under torsion. The solution of the governing system (4.14)—(4.16) is given by

1 i i(c i
0 = =5 (10 =0 = ) )

2
(4.19)
c 1 i(c
Yl = —5#0( )(7“2_522‘)'

The solutions ygk), (4.17), are of the form

s
y(f) = Zr"af (Cgf) cos nf + DY sin m‘)), for r< q;

i
n=

s s
ch) = Zr"ac (C’ ©) cos n 4+ D' sin nﬂ) + Zr_"x" (C@n cos nf + D sin nﬁ),
n=1

for a, <r<b, (4.20)

where the coefficients C Sf), Dg), C 59, Dgf'), C @n and D(_L)n are unknown constants
to be determined. Now the continuity conditions at r=a; and boundary
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conditions at r=b; give the relations

C b2
C(()f) = C((J) = T Mm (:80 + é) and (421)
aszog) = G?ACCELC) + az‘_nxcc@na
b O + b7 O = — b, (4.22)

e —1 i)\ ~1
(Méf)) a;Mngf) _ (/’LéC)) (afl“CEf)—af"A‘C(f)n) and

aZM"Dg) =a, % plo) 4 ai_m" D(_C)n,
b DY + b D, =, bla, (4.23)

<Iuéf)) —1a?,1fD£Lf) _ (Iugc)) -1 (a;ﬂ“ D%C) _ ai_M°D(—C)n>,

for each n=1, ..., S. Again, the two linear systems (4.22) and (4.23) are entirely
similar by observing that C’Slf) “ Dg ), Cgf ) e Dgf), C@n - D(_C)n and a, < —0,.
The solutions of (4.22) and (4.23) are derived as

o _ p'h _ QMmgiyg—n(l—h))ﬂazn(l—lf)
ﬁn oy (97 + 1) + V?Ac(gi - 1) ’
ol D\ (g + 1>y§—n(1—lc>)/2a?(l—lc)
=— =— - — and (4.24)
Bn a, (¢ +1)+v(¢"—1)
c, _ D, _ _gz‘)yg—n(l—/\c))/%lﬂ(lﬂc)
B a, (g + 1) +v%(g —1)

Finally, we substitute of (4.1), (4.2), (4.19), (4.20) and (4.24) into (2.3), and after
some tedious algebra, we obtain the lower bound given in (2.8).

Next suppose that the trial potential also satisfies the displacement continuity
condition on the matrix—coating interface given by

-1 a(ﬁm
Mm T
r

_ iy 1L a@i
B ('u&) ar

It follows from (4.2), (4.20), (4.24) and (3.24) that the additional requirement
(4.25) gives an overdetermined system for the solution of the coefficients
Cﬁf), D_£f), C’gf ), Dgf), C(f)n and D(f)n. This system has a solution only when
P = poea(n) for i=1,...,N and n=1,..., 5. In this case, the trial function ¢

becomes the stress potential inside the shaft and we recover the exact formula
(Ting et al. 2004)

(4.25)

r=b; r=b; )

Tv(Q) = B". (4.26)

Proc. R. Soc. A (2007)



Bounds for torsional rigidity of shafts 3305

5. Some examples

In this section we will derive results for a few simple cross-sectional shapes. Among
various cross-sectional shapes of the composite shaft, circular cross-section is
probably the most common one. Here, in addition to circular shaft, we will derive
results for an elliptical Q and an equilateral triangular Q. In addition, simplified
results will be given for shafts containing isotropic fibres or isotropic-coated fibres.
First, we recall that for the three cross-sectional shapes considered, the torsional
rigidity 7™ (Q) for a homogenous Q has exact expressions (Sokolnikoff 1956)

T"(Q) = 7r,um R',  when Q is a circle of radius R,

A*B?
T™Q) = muy, e when Q is an ellipse with semi-axes A and B,
1
TR) = 8 8:)/_ uolt,  when Q is an equilateral triangle with side length 1.
(5.1)
Next, using (3.9)—(3.11) into (2.6), we find that
B = Ja ', (5.2)
for a circular Q,
. 1
E = [( + 1|2, +2x(9; —27)] @l +=Kas, (5.3)

2
for an elliptical Q, and

; 6 2v/3%;(Z; — ¥ 4
E=aq [uﬁ+@+‘ﬁ\J+l:%——l+%, (5.4)
for an equilateral triangular Q with side length I. The term for anl Y'(n) is similar

to that of & except by replacing a; with b;. Also, the term 3251 Y'(n)uba(n) in
(2.8) can be expanded in the forms

s
> Ti(nucca(n) = | ucca(l), (5.5)
n=1

for a circular Q,

. 2 N i Lo
ZT n)ucea(n) = [(K + D& +2«(57 —27) Jucea(1)87 +§K2MCCA(2)b;'1a
(5.6)

for an elliptical Q, and

5L 2EE-D)
ZT n)pcea(n L'Kl—?\wi’zl + |z +¥ teca(1)
L 60 b
7 L2 ucea (2) +l_2/~LCCA(3)]7 (5.7)
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for an equilateral triangle. Upon substitution of (5.1)—(5.7) into (2.4) and (2.8), we
can find torsional rigidity bounds for each case. Here explicit results will only be
stated for circular shafts. When the shaft has circular cross-sections with radius R,
we denote Q as Dp. The torsional rigidity of Dy reinforced with N fibres is written

as TN(DR)

Proposition 5.1. For a shaft with circular cross-section containing N
cylindrically orthotropic fibres, the bounds for the torsional rigidity are

N N

A 1% i A i

AV 7y &l i (16— ) S Ty(Dg) S AV + 7 " [ a7 (16 — ),
=1 G i=1

where AN is now given by

N
s 7T
AN = 5 5 Z :u“m (59)

Proposition 5.2. For a circular shaft reinforced with N cylindrically orthotropic
coated fibres, the bounds for the torsional rigidity are

BN+7rZ| PO (hea (1) = ) < Tn(Dp)

Meoa
<B" + WZ ERAMNOEI™S] (5.10)
i=1
where BY is given by
N
N _ T 4, T i(c) (14 if) 4 4
B = EIJ’mR +§ ; (/J“ﬂ (bz ) + ) CL :u'mb ) (511)
When the constituents are isotropic, then ,ur< = ,u;(l” k=f, c. It is also seen

from (3.12) that A,=1 and ¢'=u'®/u"®. The bounds in (5.10) recover our
previous results (proposition 2.1; Lipton & Chen 2004). While the expression
(5.8) constitutes bounds for shafts containing homogeneous cylinders with
different materials. These latter upper and lower bounds will coincide only when
the shaft is homogeneous, u,, = ;.

6. Generalization to multicoated fibres

We have seen in (2.4) that the bounds will reduce to the exact result A" when
Um = p¢- This finding, first reported by Ting et al. (2004), is generally true
regardless of the geometric shape of Q. Mathematically, this means that a host
medium with anti-plane shear rigidity ug is neutral to a cylindrically orthotropic
fibre (with shear rigidities u, and py) under wvarious orders of boundary fields.
However, when the inclusion is a coated fibre, made up of two constituent
materials, the condition of w, = ucea(n) may not be easily fulfilled for each
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n=1,...,8 (Chen 2004). For example, in (3.10) we have demonstrated that an
elliptical Q corresponds n=1 and 2. Chen (2004) has demonstrated that for a
coated fibre it is not possible to find a non-trivial set of phase constituents that
satisfy the condition uges (1) = peea (2). This means that, for an elliptical Q, the

upper and lower bounds given in (2.8) will not coincide. In order to construct a
class of composite shafts for which the bounds recover exact results, we may
consider the fibres to be multicoated or even graded, as suggested by Chen
(2004). These multiphase fibres have more degrees of freedom to satisfy the
neutrality conditions.

To derive bounds for the torsional rigidity for an arbitrary shaft containing N
multicoated fibres, one still proceeds as in §§3b and 4b for coated fibres. Let us
consider a circular multicoated fibre X, with outer radius a}, i=1, ..., N. The
multicoated cylinder consists of a core with radius ag and (@ — 1) layers of coating.
The gth layer of the coating occupies the annulus a1 < r<a, ¢=1,2, ..., @—1,
agr1 =0. The auxiliary boundary-value problems for the trial warping field
and trial stress potential, though more tedious to obtain, are entirely similar to
those of coated fibres. Here without repeating the algebraic process, following the
bounds obtained for the coated fibre, proposition 2.2, and the exact result found in
Chen (2004) and Ting et al. (2004), we propose the following bounds for the
torsional rigidity of a shaft containing N multicoated fibres.

Proposition 6.1. For a shaft with arbitrary cross-section Q containing N
cylindrically orthotropic multicoated fibres, the torsional rigidity of the reinforced
shaft Ty(Q) is bounded between the quantities

i=1 n=1 KArcA
N 5 4
<cN+ WZ 0'(n) (uarca(n) = t), (6.1)
=1 n=1

0'(n) = n( (@) + (8)") (a})™ (6.3)

and wica(n) is the anti-plane shear rigidity of an assemblage of multicoated
cylinders under boundary fields of order n.

The formula of pi;c,(n) has been derived in Ting et al. (2004) in construction
of a neutral multicoated cylinder under torsion. For completeness, we record the
expression in appendix A.

T.C. was supported by the National Science Council, Taiwan, under contract NSC 95-2211-E006-
466. R.L. was supported by NSF grant DMS-0406374, AFOSR grant F49620-02-1-0041 and the
Boeing Aircraft Company.
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Appendix A

In this appendix, we listed the formula of the anti-plane shear rigidity of an
assemblage of multicoated cylinders under boundary fields of order m. The
detailed derivation steps can be found in the work of Ting et al. (2004). Here we
only recorded the formula based on the notations defined in the main text

p K( Qvn) - K( Qv") (1)
Marca(n) = ————2 (A1)
KT R

where the index ‘¢’ denotes the ith multicoated cylinder,

KO = KPVK K, (A2)
with
ol =dh,
K\ = and (A 3)

— c(_‘])nhq c&@ hq

hy = w0 dY = (a4 /a) T (g /ag)™, (A4)

We note that, for clarity and without adding many indices, we have omitted the
index ¢ on the r.h.s. of (A1) and (A 2)—(A 4).
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