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Synopsis »
We examine slow viscous flow past a concentrated bed of small stationary viscous bubbles of a second

fluid, and derive Darcy’s law relating the average fluid velocity to the overall pressure gradient and
body force.

1. Introduction

In this paper, we consider a concentrated bubble bed or foam in which a
continuous fluid phase flows past an array of liquid or gaseous bubbles. The fluid
velocity at the centre of mass of each bubble is taken to be zero, so that there is
no relative motion between bubbles. The bubbles are assumed to be small with
respect to macroscopic length scales and we assume, as a first approximation, that
surface tension keeps their shape spherical. The bubble concentration, although
finite, is assumed to be low enough so that the bubbles are separated and retain
their spherical shape. For the purposes of this study we suppose that fluids differ
in viscosity only. The fluids are incompressible and inertial effects are neglected in
both phases. Thus the stationary linearised Navier-Stokes equations apply
everywhere in the flow regions. The viscosities of the bubbles and surrounding
fluid are p; and u, respectively, with 0 <y, <p,. The case of gas bubbles is
" obtained in the limit u, <« 1.

The local fluid velocity is denoted by u(x). We consider the local strain rate
tensor e = (Vu + VuT)/2 and the local stress tensor o = 2ue — IP, where P is the
local pressure and

_ {u, in the bubble, (1.1)
"~ lu, in the continuous fluid phase. )
For a prescribed body force f the equations of motion in each phase are
divo+f=0 (1.2)

and
divu=0. (1.2)
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Following Taylor [7] and others [3,4,5], we assume that the velocity is
continuous across bubble surfaces, that the normal component of the velocity
vanishes along these surfaces

u.n=0, (1.3)
and that the stress tensor satisfies the jump condition
[oln=(n".[0]. n)n, : (1.4)

where n is the exterior unit normal vector. Here the notation [ ] denotes the
jump of the bracketed quantity across the bubble surface.

. The conditions (1.3) and (1.4) are lowest order approximations to the
kinematic and dynamic conditions on a bubble surface held nearly spherical by
surface tension (cf. [5]). We motivate (1.3) and (1.4) by an argument along the
lines of Cox [3] and Schowalter, Chaffey and Brenner [5]. To fix ideas, suppose
that ¢ is the typical distance between bubbles and that for finite ¢ the bubbles are
nearly spherical with radius a¢. Following [3, 5], the equation for the surface of a
nearly spherical bubble with centre of mass at the point / is written

lx — 1= ea + £%°(6, ¢, 1), (1.5)

where x is a point on the surface and £°g* is the small deformation at time ¢

depending on the polar coordinates (8, ¢). If we denote the coefficient of surface
tension by y, the mean curvature by H¢ and the pressure by P*, the dynamic
condition on the bubble surface is given by

[2ue — IP*In = —ynH.. (1.6)
1t follows from (1.5) that
e 3_2i |
Ht= - + O(¢) 1.7
and hence
2 2z
[2ue — IP*In = —yn(—-— —-—5+0(¢ )) (1.8)

In view of the scaling in (1.8) we may decompose the pressure into two parts
P*=P + P', where P’ is constant in each fluid with a jump discontinuity of y2/ea
across the bubble surface. We see from (1.8) that the part of the mean curvature
that diverges as the radius of the bubble goes to zero is balanced by a pressure
jump. The remaining jump in normal stress is of order one. Denoting the

remainder by [o]n we have
2g° ' :
[o]n = —yn( -Ey 0(5)). (1.9)
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given by (1.5) to lowest order in the small deformation £°g°. Following (3,4, 5]
we suppose that the small bubbles have rigid spherical surfaces |x —[|=ae.
Therefore the kinematic condition is given by (1.3). The dynamic condition (1.9)
is approximated as in 3, 5] by (1.4) on the sphere |x —I| =ae.

Lastly, we suppose that the region Q is the unit cube in R centred at the origin
and that u satisfies periodic boundary conditions on Q. We note that our
method applies to other boundary conditions. For example, the region 2 could
be an arbitrary bounded open domain in R* and « =0 on 3Q.

We break the local velocity and pressure into slowly varying quantities & and p,
varying on the scale of the macroscopic driving force, and oscillatory quantities
u', p', varying on the scale of the bubble separation ¢. In view of the classical
Darcy’s law for porous media, we expect that

i, = —K;(V;P - f), (1.10)

where K is a tensor depending on the geometry of the bubble bed. This
self-permeability tensor K is a measure of the ability of the surrounding fluid to
slip by the stationary bubbles.

We provide justification of such a law using a simple model of a periodic array
of spherical bubbles of radius ea. We suppose that the continuous fluid phase
and bubbles are present in the relative volume fractions 8; and 8,, respectively,
where 8, + 6, = 1. Taking as period cell Q the unit cube centred at the origin,
containing a spherical bubble of radius a centred at the origin, we consider the
following local problem. Let e* be a unit vector directed along the x, axis,
k=1, 2,3. There exist unique solutions ¢* and g* (¢* unique up to an additive
constant) of

0=pu(y)8,0 -V, g+ geQ, lyl#q, (1.11)
div, ¢* =0, (1.12)
$*.n=0only|=a,
[2ue(9*) — Ig*]n = ([2ue(9*) - Ig"]n . n)n on |y| =g,
¢~ is Q periodic,
q* is Q periodic,

(1.13)

(1.14)

where
“={m l<a,
B2 lyl>a.
The self-permeability tensor Kj; is defined by

1 i

It is easily seen that the self-permeability tensor is symmetric and positive definite
(cf. (2, 6)).

Let u® be the local viscosity field of an e—periodic array of bubbles. Given a
square integrable momentum source f(x), we define u° to be the local fluid
velocity and P to be the local pressure (unique up to an additive constant in each
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phase) that satisfy

of=2u’°*—IP*, (1.16)
divo*+f=0, (1.17)

divu®=0, (1.18)

u®. n=0 - on bubble surfaces, (1.19)
[o°]n=([0of]n.n)n on bubble surfaces, (1.20)
u* and P periodic on Q. (1.21)

We consider a security region S inside Q with smooth boundary y containing
the bubble volume V. The region between the bubble and y is denoted by Y. The
scaled security region about the /th drop in an g-periodic array of bubbles is
defined by S(/, €) and is homothetic to S with ratio . The regions V(/, £) and
Y(l, €) for the /th bubble are homothetic to V and Y, respectively, with ratio &.

The pressure field P* is defined inside each bubble up to an additive constant.
We introduce a normalised pressure field P¢ by modifying if necessary P* by a
constant inside each bubble, so as to obtain

1 = 1

Pfdx = Pedx 1.22
VG D vao’ & G D v o (12
for all L.
THEOREM 1.1. For any square integrable momentum source f, we have
%-» u® weakly in L¥Q), (1.23)
P*— P strongly in LYQ)/R, (1.24)
where
. divu®=0, (1.25)
u® is Q-periodic (1.26)
and )

 The main difference between our problem and the one treated by Tartar in [6]
lies in the different kinematic and dynamic conditions at the two phase boundary.
We believe that we have clarified a point in [6], in that we show that the correct
extension of the pressure inside solid inclusions is determined by the average
pressure over a security region surrounding the inclusion (see equation (2.29)).
Thus our analysis gives a simple expression for the extension which is needed to
obtain L?-convergence of the pressure as the radii of the inclusions go to zero.
Our proof of Theorem 1.1 follows the same steps as given in [6]. We learned that
Tartar’s method has been extended recently to biconnected porous media by
Allaire [1], as communicated to us by F. Murat. Lastly, we note that there is
some flexibility with the choice of security region as the L? limit of the sequence
of normalised pressures is the same for all security regions.
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2. Convergence of the flow fields and pressures

We prove the convergence results (1.23), (1.24) of Theorem 1.1. We consider
the unit cell Q and note that, by Stokes’ theorem, the average of a divergence
free flow field u over the drop volume V is equal to &;=1/|V| fsvu. nx;dS.
Hence if u. n =0 on 3V, then 4; =0 and, by Poincaré’s inequality,

f uldy = Cf (V,u) dy. : (2.1)
e Q

Therefore rescaling by x = ¢y, one has dx = ¢’ dy, 9, = €3, and hence
f wrdx =e*C I (V.u)?dx. 2.2)
eQ . £Q

We observe that the constant C is the same for all periods £éQ. Thus summing
over all the periods, we obtain the estimate

"ug"i’(nv =&C||Vu e"%}(!2)’"’- (2.3)
Multxphcanon of (1.17) by u®, integration by parts and application of Korn’s
inequality gives

= C 'l e 24)

min (4, ) 1Vl rapes 5 || .

We use (2.3) to estimate the right-hand side of (2.4) and obtain
min (i1, 42) “V“‘”Ll(n)m— eC ||V *|| Lxap. (2.5)
It follows directly from inequalities (2.3), (2.5) that one has
Lemma 2.1. The sequence u® satisfies |
Nlu L2y = Ce2, . (2.6)
Vet [l xgaym = Ce. @7

The weak convergence in L*(Q)* of a subsequence u*/¢'? follows immediately:
We now show the convergence of the normalised pressure (see equation (1.22))
in L¥Q)/R. We introduce the spaces Hp(Q)’ = {6 € H'(Q)| é is Q-periodic},

and V= {6 € Hp Q) [ 6.n=0, on bubble surfaces}. Following Tartar [6] we

construct a local restriction operator R such that

R.:HL(Q)Y—>Ve (2.8)
5in V* implies R,6=35, 7 (2.9)
divé =0 implies divR,6=0, (2.10)
RSl L2ay = ¢ [16]] xay + Ce IVS|| 2y, (2.11)
and
IV(R:0) Ml ay §§ 181} xap + C V0l zxay-. (2.12)

The construction of R, proceeds as follows.
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Lemma 2.2. Given the subregions S, V, and Y of the unit cell Q and given u in
HY(Q)? there exist solutions v in H(Y)?, q in LYY)/R of

Av=Au-Vg, (2.13)
divv=divu+—1— u.nds, (2.14)

(Y] Jav
UIY'—'U, U.nlay=0, U.Tlav=u.7-'lav, (2-15)

and there exist solutions w in H'(V)?, p in L¥(V)/R of

Aw=Au-Vp, (2.16)
1
divw=divu—— 1 u.nds, (2.17)
V] Jav
W.nlav=0, W.Tlay=u.flay, (2-18)

where n is the outward unit normal to 3V and v is any unit.tangent vector to 3V.
The proof of this lemma is analogous to the proof of [6, Lemma 3]. O
We define the operator R acting on the space H'(Q)’ by

u(y), ue@/s,
Ru(y)=yv(y), yeY,

w(y), yeV.
It is evident that
”Ru"HI(Q)J§ ”u”HI(Q)_\, (2. 19)
Ru=u if u.n|s=0, (2.20)
and that
divu=0 implies divRu=0. (2.21)

We define R, by applying R to every £Q period. It is easily seen that (2.8),
(2.9) and (2.10) hold. We estimate [|R.6]},;1qy by rescaling and applying (2.1) to
obtain

RS 2y = C{e7* |0llZxap + V8]l 1xay). (2.22)
Arguing as in Lemma 2.1 we obtain
"Rzéllil(g)l § Cez “VRC(S"LZ(Q)JXJ. (2.23)

From (2.22) and (2.23) it is evident that ||R.6||7xap+ €*||VRS||3x0p=
C{lI6113xqy + I|V8||Zxqyp=} and (2.11) and (2.12) follow.

LemMa 2.3. For all § in H..(Q)® we have
f Pedivéde= f Pediv R, dx. (2.24)
Q Q

Proof. From the definition of the local restriction operator R, and equation

e

(1.22) we have
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Q Q
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(1.22) we have

- — 1 _
P"divédx—f PedivR.0dx = {— P‘dx(f 5. ds)
L Q bugh;les 1Y(l, )| Y({.o) avV(le) "

1 _
+ P‘dx(f 6.ndS)}=0. o
V(i ¢l v, e) av(le)

Using Lemma 2.3, we follow the arguments of Tartar [6] to obtain strong
convergence of the normalised pressures. We multiply (1.17) by R.6 and
integrate by parts to obtain

f Pt divR,5 dx = f 2u%": e(R,5) dx — f f. R, dx. (2.25)
Q Q Q

By using inequalities (2.11), (2.12), (2.24), and (2 25) we obtain the estimate
lfg P le 5 dxl = C ”6”[{!(9)} Thl.ls,

|vpe lavap =C. ' . (2.26)
It follows from [8, Chapter 1] that
IIF‘IIme =C HVP‘HH"‘(Q)’- (2.2‘7)

Hence P*is bounded uniformly in L¥Q)/R and there exists a subsequence P*
converging to P such that

P?—P weakly in LYQ)/R,
and _ - (2.28)
VP?—VP weakly in H™Y(Q)%.

We conclude, following the arguments of [6], that VP“— VP strongly in
H~Y(Q)% and, from (2.27), we have P¢— P strongly in L¥Q)/R. O

We observe that the extension of the pressure for the case of solid inclusions
given in [6, equation (33)] amounts to the extension of the pressure by an
appropriate constant inside each inclusion. Indeed, for solid inclusions the
pressure is initially defined only in the fluid region Q, = {Q/U, V(I, €)}. If we set

Pe, xeQ,,

P‘: 1 (2.29)
—— Pedx, xeV(l,e), .
|Y("‘)| Y(l.2) ¢ e

then arguing as in Lemma 2.3, we have [q P*div 8 dx = [ P*div R,8 dx for all &
in [-I(,(S'.!)3 where R, is defined by [6, Lemma 4]. Thus the extended pressure
given in [6] is given by (2.29).

3. Identification of «® and P

In this section we follow the energy method of [6] to obtain the constitutive
relation between u® and P. We rescale by x = gy in the cell problem (1.11)-(1.14)
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to obtain
¢k(X) - ¢k f k(x)_ k f (3 1) - R NG ee E .
e e)r 9e¥)=4q g g - Robert Lipton was s
; Mathematical Sciences
0=c"pu’(x)A¢%— eV g+ e, x¢aV(, ¢), (3.2) -
¢s.n=0 on3V(,e),
£ 1 e k1 @.3)
2u‘e. (¢~ Iq’ﬂz" =(2u e,(¢f) —lIgcln. n)n on 3V(, ), 1 G. Allaire. Homogenizat
and (to appear).
div, ¢* =0 X)) 2 Chmstent mor o
x Ve . M e - INorth-riollz
It is easy to see that 3 %9?9’) Cg;l. _’lgg deformati
oo < < _ 4 J.B.Keller, L. A. Rube
| 198l@r =€, g8l =C (3.5) i aeler L. A. Rabe
and 5 W.R. Schowalter, C. E.
V]| xaymer < Ce ™. (3.6) Colloid Interface Sci. 26 (
. . . . 6 L. Tartar. Appendix. In A
We choose 6 in C7(2) and multiply (3.2) by du* and integrate over Q to obtain Lecture Notes in Physics 1
7 G. L. Taylor. The viscosi
e e e € London Ser. A. 138 (1932
oot e Aoty as- [ ur. svgtar+ [ our.etar=0. ) R Temam, Nevir- St

Integration by parts in (3.7) and application of (1.19) and (3.3) yields
f 2ute(¢’): e(bu®) dx = —1] Igk: e(6u®) dx +lzf bu®.etdx. (3.8)
Q EJg & Ja
However, from (1.18) and (2.6)
(1 e } =
m{equ,. e(6u®) dx} =0.
Therefore passing to the limit in (3.8) gives
limf 2u%.(¢%): e*(6u®) dx =f ou’. edx. (3.9)
e—0.Jg Q
By multiplying (1.17) by 8¢% and performing integration by parts, we obtain
I 2ue(u®): e(8¢%) dx =f Pediv (6¢%) dx + I f. 6¢%dx. (3.10)

Noting that P converges strongly in L*(Q)/R to P and that @ converges weakly
to its average, we pass to the limit in (3.10) to obtain

Iintx)f 2ue(u®): e(8¢%) dx = Kk,-f Pa,6dx + Kk,-f fié dx. (3.11)

We observe as in [6] that the difference between the left-hand sides of (3.9) and
(3.11) is of order &, thus in the limit we have

L 6u°.exdx=Kk,-(L (P35 +ﬁ6)dx)

for all test functions 6 in C5(Q), and Darcy’s law u} = K,(f — 3,.P). O
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o | (3.5)
(3.6)

| integrate over Q to obtain
I Su. e¥dx=0. 3.7
Q

and (3.3) yields

+—15f u.etdr.  (3.8)
£ Jag

& edr. (3.9)

ation by parts, we obtain

+ J' f.8¢%dx.  (3.10)
Q

1 that ¢% converges weakly

:+K,,,.f fédr.  (3.11)
Q

left-hand sides of (3.9) and

5) dx)

: Kk‘(ﬁ - 8,,13). D
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