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Abstract We consider the nonlocal formulation of continuum mechanics described by peri-
dynamics. We provide a link between peridynamic evolution and brittle fracture evolution
for a broad class of peridynamic potentials associated with unstable peridynamic constitu-
tive laws. Distinguished limits of peridynamic evolutions are identified that correspond to
vanishing peridynamic horizon. The limit evolution has both bounded linear elastic energy
and Griffith surface energy. The limit evolution corresponds to the simultaneous evolution
of elastic displacement and fracture. For points in spacetime not on the crack set the dis-
placement field evolves according to the linear elastic wave equation. The wave equation
provides the dynamic coupling between elastic waves and the evolving fracture path inside
the media. The elastic moduli, wave speed and energy release rate for the evolution are ex-
plicitly determined by moments of the peridynamic influence function and the peridynamic
potential energy.

Keywords Peridynamics · Dynamic fracture · Brittle materials · Elastic moduli · Critical
energy release rate

Mathematics Subject Classification 34A34 · 74R10 · 74H55

1 Introduction

Peridynamics, introduced by Silling in 2000, [30] is a nonlocal formulation of continuum
mechanics expressed in terms of regular elastic potentials. The theory is formulated in terms
of displacement differences as opposed to spatial derivatives of the displacement field. These
features provide the flexibility to simultaneously simulate kinematics involving both smooth
deformations and defect evolution. Numerical simulations based on peridynamic modeling
exhibit the formation and evolution of sharp interfaces associated with defects and fracture
[6, 31, 32, 35], and [15]. These aspects are exploited in the peridynamic scheme for dynamic
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Fig. 1 Domains D and Dα

fracture simulation where the crack path is determined as part of the solution [20, 24]. This
type of solution is distinct from the classical setting where the crack path is specified a priori
see, [19].

We consider peridynamic formulations with constitutive laws that soften beyond a critical
shear strain. Here we discover new quantitative and qualitative information that is extracted
from the peridynamic formulation using scaling arguments and by passing to a distinguished
small horizon limit. In this limit the dynamics correspond to the simultaneous evolution of
elastic displacement and fracture. For points in spacetime not on the crack set the displace-
ment field evolves according to the linear elastic wave equation. The wave equation provides
the dynamic coupling between elastic waves and the evolving fracture path inside the media.
The limit evolutions have bounded energy expressed in terms of the bulk and surface ener-
gies of linear elastic fracture mechanics. They also satisfy an energy inequality expressed in
terms of the kinetic energy of the motion together with the bulk elastic energy and a Grif-
fith surface energy. These energies are described by the density ρ, elastic shear modulus μ

and energy release rate Gc . The parameters μ and Gc have explicit formulas given in terms
of the moments of the peridynamic influence function and the peridynamic potential energy
see, (2.8). These formulas provide a rigorous means to calibrate peridynamic potentials with
experimentally measured values of elastic shear modulus and critical energy release rate.

To present the ideas we focus on antiplane shear problems posed over a bounded convex
domain D ⊂ R

2. The antiplane displacement transverse to D is written u(t, x). In the peri-
dynamic formulation one considers pairs of points x, x ′ in R

2 and the relative displacement
η(t, x) = u(t, x ′)−u(t, x). The antiplane shear strain is given by S = η/|x ′ −x|. The family
of points x ′ that interact with x is confined to a neighborhood Hε(x) of x of diameter 2ε.
Here ε is the horizon for the peridynamic interaction and Hε(x) is a disk of radius ε centered
at x. The peridynamic influence function is defined inside Hε(x) and is written J (

|x′−x|
ε

),
with M > J(r) ≥ 0 for 0 ≤ r ≤ 1 and zero outside. Next we will introduce the nonlocal ana-
logue of boundary conditions for the problem. We define the set Dα , with D ⊂ Dα defined
as the set of points x for which dist(x,D) < α, see Fig. 1. For points x residing in Dα ∼ D

we set the displacement u(t, x) = 0 for all 0 ≤ t ≤ T ; this gives the nonlocal analogue of
“Dirichlet” boundary conditions for peridynamic problems introduced in [13].

In this paper we are interested in the small horizon limit ε → 0 and we make the change
of variable x ′ = x + εξ , where ξ belongs to the unit disk H1(0) centered at the origin. The
peridynamic potential energy density is a function of x ′ − x = εξ and η(x) and we consider
the family of regular peridynamic potentials parameterized by ε given by

Wε
(
η(x), εξ

) = 1

ε3
J
(|ξ |)f

( |η(x)|2
ε|ξ |

)
= 1

ε3
J
(|ξ |)f (

ε|ξ |S2
)
, (1.1)
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see Fig. 2. The potential functions f : [0,∞) →R considered here are positive, smooth and
concave with the properties

lim
r→0+

f (r)

r
= f ′(0) > 0, lim

r→∞f (r) = f∞ < ∞. (1.2)

The limiting values of f ′ near zero and f near infinity determine the linear elastic proper-
ties and critical energy release rate seen in the limiting dynamics. The precise relationship
between f ′(0) and f∞ and the linear elastic shear modulus μ and critical energy release
rate Gc are given by formulas (2.8) of Sect. 2.1. The potentials Wε can be thought of as
the smooth analogues of potentials used to describe the peridynamic bond stretch models
introduced in [30, 31]. This class of potential energies is convex-concave with respect to the
magnitude of the shear strain S with infection point η/(ε|ξ |) see, Fig. 2. This delivers the
constitutive relation

force = ∂ηW
ε
(
η(x), εξ

) = 2

ε3
J
(|ξ |)f ′(ε|ξ |S2

)
S. (1.3)

Here the softening behavior occurs when the antiplane shear strain S exceeds the critical
value η/(ε|ξ |) see, Fig. 3.

The peridynamic potential energy is obtained by integrating the energy density over the
neighborhood Hε(x) and is given in terms of the rescaled coordinates by

ε2
∫

H1(0)

Wε
(
η(x), εξ

)
dξ. (1.4)

The total strain energy of the displacement is given by

PDε(u) = ε2
∫

D

∫

H1(0)

Wε
(
η(x), εξ

)
dξ dx. (1.5)

Fig. 2 Convex-concave potential

Fig. 3 Unstable constitutive
relation between force and
antiplane shear strain
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The peridynamic evolution is described by the Lagrangian

Lε
(
u(t), ∂tu(t), t

) = K
(
∂tu(t)

) − PDε
(
u(t)

) + U
(
u(t)

)
, (1.6)

with

K
(
∂tu(t)

) = 1

2

∫

D

ρ
∣∣∂tu(t, x)

∣∣2
dx, and U

(
u(t)

) =
∫

D

b(t, x)u(t, x) dx, (1.7)

where ρ is the mass density of the material and b(t, x) is the body force density. The initial
conditions uε(0, x) = u0(x) and uε

t (0, x) = v0(x) are prescribed and the action integral for
the peridynamic evolution is

I ε(u) =
∫ T

0
Lε

(
u(t), ∂tu(t), t

)
dt. (1.8)

For a given unit vector n and h in R we define the difference quotient of ψ(x) by

Dh
nψ(x) =

{
ψ(x+hn)−ψ(x)

h
, if h 	= 0

0, if h = 0.
(1.9)

Writing e = ξ

|ξ | and ξ = e|ξ |, we set

Dε|ξ |
e ψ(x) = ψ(x + εξ) − ψ(x)

ε|ξ | (1.10)

D
ε|ξ |
−e ψ(x) = ψ(x − εξ) − ψ(x)

ε|ξ | . (1.11)

The Euler Lagrange Equation for this system delivers the peridynamic equation of motion
given by

ρuε
tt = −∇PDε

(
uε

) + b (1.12)

where

∇PDε
(
uε

) = ε3
∫

H1(0)

D
ε|ξ |
−e ∂ηW

ε
(
η(x), εξ

)|ξ |dξ. (1.13)

In what follows we examine the family of peridynamic deformations {uε(t, x)}ε>0 de-
fined for suitable initial data u0, v0 and investigate the dynamics of the limit u0(t, x) =
limε→0 uε(t, x). To do this we describe peridynamic deformations as trajectories in func-
tion space. The nonlocal Dirichlet boundary conditions are incorporated into the function
space by defining the class of functions L2

0(D) that are square integrable over D and zero
on Dα \ D.1 In this context we view peridynamic evolutions as functions of time taking
values in the space L2

0(D). It follows from the evolution equation (1.12) that uε(t, x) is
twice differentiable in time taking values in L2

0(D). This space of functions is denoted
by C2([0, T ];L2

0(D)) see, e.g., [17]. The initial value problem for the peridynamic evo-
lution (1.12) is shown to be well posed on C2([0, T ];L2

0(D)) see, Sect. 2.2. We apply a

1We denote A \ B = A ∼ B = A ∩ Bc , where Bc is the complement of B in A.
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scaling analysis to show that the peridynamic evolutions uε(t, x) approach a limit evolution
u0 in the ε → limit. The limit evolution u0(t, x) is shown to have bounded linear elastic
energy and bounded Griffith surface energy for a wide class of initial conditions. The limit
evolution satisfies an energy inequality expressed in terms of the kinetic energy of the mo-
tion together with a linear elastic energy in terms of the antiplane shear strain ∇u0 and a
Griffith surface energy associated with the evolving jump set Su0(t) of u0(t, x) see, Sect. 3.1.
The jump set Su0(t) is the crack set and distinguished limit of the peridynamic model is
given by the displacement—crack set pair u0(t, x), Su0(t). The wave equation provides the
dynamic coupling between elastic waves and the evolving fracture path inside the media.

Motivated by the approach given in [34] we investigate the effect of the softening con-
stitutive law (1.3) on the nucleation of fracture inside a peridynamic body. We consider a
generic peridynamic neighborhood Hε(x) of radius ε about the point x. For points x ′ in-
side Hε(x) we say that the material between x and x ′ (the bond) is critically strained if the
magnitude of the shear strain |Sε | = |ηε(x)|/(ε|ξ |) > η/(ε|ξ |), otherwise the shear strain
is called subcritical. A linear stability analysis is given that identifies necessary conditions
for fracture nucleation inside Hε(x). These conditions are directly linked to the appearance
of subsets of critically strained bonds inside Hε(x) with nonzero area fraction. The frac-
ture nucleation condition given by Proposition 2.1 implies that if the neighborhood contains
a nonzero area fraction of critically strained bonds then the neighborhood can be linearly
unstable and a displacement jump can be nucleated. These results are presented in Sect. 2.3.

We focus on the peridynamic neighborhoods Hε(x) that contain critically strained bonds
over an area fraction larger than εα with exponent 0 < α < 1 and 0 < εα < 1. These neigh-
borhoods are referred to as unstable neighborhoods. Under this definition unstable neigh-
borhoods have the potential to nucleate jump discontinuities. We apply this definition to
identify a set where unstable neighborhoods for the flows uε(t, x) concentrate as the peridy-
namic horizon approaches zero. To present the idea we fix α and consider the collection of
centroids x of all the unstable neighborhoods Hε(x) with critically strained bonds over an
area fraction greater than εα for a family of flows with δ > ε > 0. This collection is denoted
by the set Cα

δ . It is shown that the area of Cα
δ vanishes as δ → 0 and that the collection of

centroids for unstable neighborhoods concentrate onto a set Cα
0 of zero area as δ → 0. This

is shown to be true for every choice of 0 < α < 1 and we take the intersections of these sets
denoted here by C0

0 . The set C0
0 is associated with centroids of neighborhoods for which all

bonds have become soft. The dynamics associated with each point in the reference configu-
ration belonging to the set C0

0 is not affected by the motion of its surroundings. With these
ideas in mind the set C0

0 presents itself as an alternate description of the crack set in the
small horizon limit.

It is shown that the concentration of instability is inevitable for convex-concave peridy-
namic potentials and is directly linked to the energy budget associated with the peridynamic
motion. The analysis shows that for a family of peridynamic flows {uε(t, x)}ε>0 all driven by
the same initial conditions and body forces that the peridydnamic potential energy of each
flow is bounded uniformly in time 0 ≤ t ≤ T independently of the radius of the horizon, see
Sect. 4.2. This bound is shown to force the localization see Theorem 2.3. These observations
are presented in Sect. 2.4 and established in Sect. 4.5.4.

Within the context of Sect. 3.2 we will apply these observations and adopt the hypothesis
that the crack set Su0 for the limit evolution and C0

0 are one and the same, see Hypothe-
ses 3.3. We employ a scaling analysis to the peridynamic equation of motion to discover
that the limit evolution u0(t, x) satisfies the wave equation at every point in spacetime where
∇u0 is defined see Theorem 3.4. The wave equation provides the dynamic coupling between
elastic waves u0(t, x) and the evolving fracture path Su0(t) inside the media. It is important
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to point out that the limiting dynamic fracture evolution described here follows from scaling
arguments and on passing to a distinguished limit in the peridynamic formulation. These
results are presented in Sects. 3.1 and 3.2. The mathematical tool set appropriate for extract-
ing the limit behavior from this class of peridynamic models is based on Γ -convergence and
comes from the literature associated with the analysis of the Mumford Shah functional and
free discontinuity problems see, [21, 22], and [23].

We point out here that other related recent work focuses on passing to the small horizon
limit for linear peridynamic formulations; establishing a link between linear elasticity and
peridynamics see [14, 16, 27, 33].

In closing we note that there is a vast literature on fracture modeling and a complete
survey is beyond the scope of this paper. Instead we point out recent proposals for com-
puting crack propagation in dynamic and quasi static settings. Approaches using a phase
field for the damage set and a linear elastic field, to represent crack propagation have been
proposed and developed in [9, 26], and [7]. Wave equations for fields inside domains with
evolving cracks are posed in [11] and variational aspects of sharp interface models are dis-
cussed in [25]. For quasi static problems variational phase field methods are developed in
the pioneering work of [8, 18]. More recently a two field method using eigen-deformations
for the fracture field is developed for quasi static problems in [29]. Alternative nonlocal
formulations have been developed for quasi static crack propagation in [5, 10].

2 Peridynamic Evolution

We begin this section by introducing a suitable class of initial conditions appropriate for
describing the evolution of deformations that can have smooth variation as well as jumps.
Here we will choose initial conditions with bounded elastic energy in the sense of fracture
mechanics. We show that well posed peridynamic evolutions exist for this class of initial
data. These peridynamic evolutions satisfy an energy balance between potential and kinetic
energy at each time during the deformation. Next we develop a necessary criterion for frac-
ture initiation inside a peridynamic neighborhood. Here fracture initiation is defined to be
the nucleation of a jump in the displacement inside a peridynamic neighborhood. We de-
velop a criterion for the orientation of the nucleated crack based upon the notion of the most
unstable direction. The approach taken here is consistent with the analysis of crack nucle-
ation developed in [34]. We conclude with a discussion of the localization of instability in
the limit of vanishing peridynamic horizon.

2.1 Initial Conditions and Motivation

Our choice of initial conditions is motivated by Linear Elastic Fracture Mechanics (LEFM).
Here we investigate Mode III fracture in the context of antiplane shear. The initial condition
is specified by a crack set K and displacement u0. The gradient ∇u0 is defined off the crack
set and the displacement u0 can suffer jumps across K . Griffith’s theory of brittle fracture
asserts that the energy necessary to produce a crack K is proportional to the crack length �.
For LEFM the total energy associated with bulk elastic and surface energy is given by

∫

D

μ|∇u0|2 dx + Gc�, (2.1)

where μ is the shear modulus and Gc is the critical energy release rate for the material. In
what follows we chose initial conditions associated with bounded LEFM elastic energy.
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In order to pass to the small horizon limit of peridynamics and to understand the elastic
energy associated with this limit we cast the problem in a functional analytic context. The
function space used in the mathematical formulation of free discontinuity problems includ-
ing fracture is the space SBV developed in [3] see also, [1, 2]. Functions in this space belong
to L1(D) and are approximately continuous almost everywhere. Here we recall that points
x of approximate continuity for the function u0 satisfy

lim
r↘0

1

πr2

∫

B(x,r)

∣∣u0(y) − u0(x)
∣∣dy = 0, (2.2)

where B(x, r) is the ball of radius r centered at x. The discontinuity set Su0 for elements
of SBV are characterized by at most a countable number of smooth rectifiable curves across
which u0 has a jump discontinuity. Here the notion of arc length corresponds to the one
dimensional Hausdorff measure of Su0 and is denoted by H1(Su0). We choose an orientation
and define the unit normal ν to the jump set Su0 . For points x belonging to the jump set we
denote the intersection of B(x, r) with the half spaces (y − x) · ν < 0 and (y − x) · ν > 0 by
B−(x, r) and B+(x, r) respectively. The left and right limits of the function u0 for a point
on the jump set are denoted by u−

0 , u+
0 and satisfy the identities

lim
r↘0

1

πr2

∫

B−(x,r)

∣∣u0(y) − u−
0 (x)

∣∣dy = 0,

lim
r↘0

1

πr2

∫

B+(x,r)

∣∣u0(y) − u+
0 (x)

∣∣dy = 0.

(2.3)

The approximate gradient denoted by ∇u0 of an SBV function is defined almost everywhere
on D \ Su0 and satisfies

lim
r↘0

1

πr2

∫

B(x,r)

|u0(y) − u0(x) − (y − x) · ∇u0(x)|
r

dy = 0. (2.4)

Distributional derivatives Du0 of SBV functions are constructed from the approximate gra-
dient and jump sets and satisfy

〈Du0,Φ〉 =
∫

D

∇u0 · Φ dx +
∫

Su0

(
u+

0 − u−
0

)
ν · Φ dH1, (2.5)

for every continuous test function Φ : D →R
2 with support on D. Here dH1 corresponds to

an element of arc length for sufficiently regular curves. Functions in SBV have distributional
derivatives with bounded total variation. Detailed descriptions of the properties of SBV
functions are provided in [4] and [5].

Deformations of class SBV(D) are easily interpreted as deformations with cracks in D:
the crack set K is identified with the jump set Su0 and ∇u0 represents the usual shear strain
in the elastic part of the body outside the crack see, [1, 2]. With this in mind we take the
initial displacement u0 ∈ L2

0(D) and require that it belong to the space SBV(D). For this
choice of initial data the bulk and surface energy of LEFM is given by

LEFM(u0,D) =
∫

D

μ|∇u0|2 dx + GcH1(Su0). (2.6)



28 R. Lipton

Definition 2.1 We refer to initial data u0 ∈ L2
0(D), v0 ∈ L2

0(D) with the restriction of u0 on
D belonging to SBV(D) that satisfy

LEFM(u0,D) < ∞, sup
x∈D

|u0| < ∞, sup
x∈D

|v0| < ∞, (2.7)

as LEFM initial data.

We coordinate our choice of shear modulus μ and critical energy release rate Gc with the
peridynamic potential f and influence function J through the relations:

μ = πf ′(0)

∫ 1

0
r2J (r) dr Gc = 2πf∞

∫ 1

0
r2J (r) dr, (2.8)

where f∞ is defined by (1.2). The correspondence between the shear modulus and critical
energy release rate and the peridynamic quantities f and J follows directly from the limit
analysis, see Theorem 3.1, Sect. 4.3, and equation (4.49).

2.2 Peridynamic Evolutions and Energy Balance

We choose the initial data (u0, v0) to be LEFM initial data and the initial crack set at t = 0
is prescribed by K = Su0 . There is a unique peridynamic evolution for this choice of initial
data. This is stated in the following theorem.

Theorem 2.1 (Existence of unique solution for nonlinear peridynamics) For LEFM initial
data (u0, v0) and body force b(t, x) in C1([0, T ];L2(D)) there exists a unique peridynamic
evolution uε(t, x) in C2([0, T ];L2

0(D)) taking the initial values uε(0, x) = u0(x), uε
t (0, x) =

v0(x), and satisfying

ρuε
tt (t, x) = −∇PDε

(
uε(t, x)

) + b(t, x), for 0 < t ≤ T and x in D. (2.9)

This theorem follows from the Lipschitz continuity of ∇PDε and is established in
Sect. 4.1.

Multiplying both sides of (2.9) by uε
t delivers the identity

∂t

{
ρ

2

∥∥uε
t

∥∥2

L2(D)
+ PDε

(
uε

)} =
∫

D

buε
t dx (2.10)

and integration over time from 0 to t delivers the energy balance associated with the peridy-
namic evolution given by

Theorem 2.2 (Energy balance)

EPDε
(
t, uε(t)

) = EPDε
(
0, uε(0)

) −
∫ t

0

∫

D

bt (τ )uε(τ ) dx dτ, (2.11)

where

EPDε
(
t, uε(t)

) = ρ

2

∥∥uε
t (t)

∥∥2

L2(D)
+ PDε

(
uε(t)

) −
∫

D

b(t)uε(t) dx (2.12)

and

EPDε
(
0, uε(0)

) = ρ

2
‖v0‖2

L2(D)
+ PDε(u0) −

∫

D

b(0)u0 dx. (2.13)
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2.3 Instability and Fracture Initiation

In this section we present a fracture initiation condition that arises from the unstable peri-
dynamic constitutive law relating antiplane shear strain to force. Fracture nucleation con-
ditions have been identified for peridynamic evolutions in [34]. Here we investigate the
nucleation criteria for the case at hand and provide an additional condition for the most
unstable direction along which the crack can nucleate. We introduce a jump perturbation
at x associated with a direction ν on the unit circle. Set E+

ν (x) = {y : (y − x) · ν⊥ > 0}
and E−

ν (x) = {y : (y − x) · ν⊥ ≤ 0} and introduce the local coordinate basis at x given by ν

and ν⊥. Consider a time independent body force density b and a smooth equilibrium solution
u of (1.12). We now perturb u by adding a function δν with a jump discontinuity of height δ

across the line {y ∈ Hε(x); (y − x) · ν⊥ = 0} that is piecewise constant in Hε(x) and δν = δ

for points in E+
ν ∩ H1(0) and δν = 0 for points in E−

ν ∩ H1(0). Here the direction ν points
along the direction of the discontinuity and ν⊥ is the normal to the line of discontinuity. We
write up = u + δν and apply the ansatz

ρu
p
tt = −∇PDε

(
up

) + b. (2.14)

We regard δ as a small perturbation and expand the integrand of ∇PDε(up) in a Taylor
series to recover the linearized evolution equation for the jump δ at x across the line with
normal ν⊥. The evolution equation is given by

ρδtt = Aνδ, (2.15)

where

Aν = −1

2

{∫

H1(0)∩E+
ν (0)

ε2∂2
ηWε

(
u(x + εξ) − u(x), εξ

)
dξ

+
∫

H1(0)∩E−
ν (0)

ε2∂2
ηWε

(
u(x) − u(x − εξ), εξ

)
dξ

}
, (2.16)

here E+
ν (0) = {ξ : ξ · ν⊥ > 0} and E−

ν (0) = {ξ : ξ · ν⊥ ≤ 0}. Recalling that η = Sε|ξ | and
calculation shows that

∂2
ηWε(η, εξ) = 2

ε4|ξ |J
(|ξ |)(f ′(ε|ξ |S2

) + 2f ′′(ε|ξ |S2
)
ε|ξ |S2

)
, (2.17)

where f ′(ε|ξ |S2) > 0, f ′′(ε|ξ |S2) < 0 and the critical value η is the root of ∂2
ηWε(η, εξ) =

0 with

∂2
ηWε(η, εξ) > 0 for |S| < η/

(
ε|ξ |), (2.18)

and

∂2
ηWε(η, εξ) < 0 for |S| > η/

(
ε|ξ |). (2.19)

Here η = √
ε|ξ |r where r is the inflection point for the function r :→ f (r2). For Aν > 0

the jump can grow exponentially. It is evident that this can occur if there are critically
strained bonds, |S| > η/(ε|ξ |) or equivalently |η| > η, inside the neighborhood. We sum-
marize these results in the following.
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Proposition 2.1 (Facture nucleation condition) Given a point x and a direction ν, a condi-
tion for crack nucleation at x along direction ν is Aν > 0. The directions ν∗ along which
cracks grow are the most unstable ones which satisfy the condition

Aν∗ = max
ν

Aν > 0. (2.20)

Proposition 2.1 together with (2.19) provides the explicit link between dynamic instabil-
ity and the critical shear strain where the constitutive law begins to soften.

2.4 Concentration of Fracture Nucleation Sites in the Small Horizon Limit

Here we present results that show that peridynamic neighborhoods likley to nucleate jump
sets become concentrated in the small horizon limit. The discussion focuses on the basic
unit of peridynamic interaction: the peridynamic neighborhoods Hε(x) of diameter ε > 0
with centroids x ∈ D. Here we investigate the family of peridynamic evolutions uε(t, x) at
a fixed time t .

Consider a prototypical neighborhood Hε(x). The collection of points y inside Hε(x) for
which the relative shear strain Sε beyond critical, i.e., |Sε | = |uε(t, y) − uε(t, x)|/(ε|ξ |) >

η/(ε|ξ |) is called the unstable subset of Hε(x) and is written in terms of the relative dis-
placement as

{
y in Hε(x) : ∣∣uε(t, y) − uε(t, x)

∣
∣ > η

}
, (2.21)

where η = √|y − x|r , and r is the inflection point for the map r :→ f (r2). The weighted
area fraction of the neighborhood Hε(x) occupied by the unstable subset is denoted by

P
({

y in Hε(x) : ∣∣uε(t, y) − uε(t, x)
∣
∣ > η

})
. (2.22)

Here P is defined in terms of the indicator function χ+,ε(x, y) for the unstable subset with,
χ+,ε(x, y) = 1 for y in the unstable subset and 0 otherwise, and

P
({

y in Hε(x) : ∣∣uε(t, y) − uε(t, x)
∣
∣ > η

})

= 1

ε2m

∫

Hε (x)

χ+,ε(x, y)

∣
∣∣
∣
y − x

ε

∣
∣∣
∣J

(∣
∣∣
∣
y − x

ε

∣
∣∣
∣

)
dy, (2.23)

where the normalization constant m = ∫
H1(0)

|ξ |J (|ξ |) dξ is chosen so that P (Hε(x)) = 1.

Definition 2.2 The neighborhood Hε(x) is said to be unstable at time t if there is an expo-
nent 0 < α < 1 for which

P
({

y in Hε(x) : ∣∣uε(t, y) − uε(t, x)
∣∣ > η

})
> εα. (2.24)

To proceed choose δ > 0, 1 > α > 0, and consider a family of radii εj = 1
2j , j = 1, . . .

and the collection of neighborhoods Hεj
(x) with centroids x in the reference domain D.

The set of centroids associated with unstable neighborhoods for εj < δ at time t is denoted
by Cα

δ,t . This set is expressed as

Cα
δ,t = {

x ∈ D; ∃εj < δ for which

P
({

y in Hεj
(x) : ∣∣uεj (t, y)0 − uεj (t, x)

∣
∣ > η

})
> εα

j

}
. (2.25)
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Here Cα
δ,t ⊂ Cα

δ′,t for δ < δ′ and C0
δ,t ⊂ Cα

δ,t ⊂ Cα′
δ,t for 0 < α < α′ where the set C0

δ,t is the
collection of centroids for failed neighborhoods C0

δ,t = ∩0<α<1C
α
δ,t given by

C0
δ,t = {

x ∈ D; ∃εj < δ for which

P
({

y in Hεj
(x) : ∣∣uεj (t, y) − uεj (t, x)

∣∣ > η
}) = 1

}
(2.26)

Let C0
0,t = ∩0<δC

0
δ,t denote the concentration set for the set of centroids associated with

unstable neighborhoods. In what follows the Lebesgue measure (area) of a set Ω ⊂ R
2 is

denoted by L2(Ω) and we state a theorem on the localization of bond instability as the
peridynamic horizon shrinks to zero.

Theorem 2.3 (Localization of bond instability in the small horizon limit) The collection
of centroids for unstable neighborhoods concentrate onto C0

0,t . The set of centroids C0
δ,t is

decreasing with δ → 0 and there is a positive constant C independent of t and δ for which

L2
(
C0

δ,t

) ≤ Cδ, for 0 ≤ t ≤ T and L2
(
C0

0,t

) = lim
δ→0

L2
(
C0

δ,t

) = 0. (2.27)

Moreover Cα
δ,t concentrate on the set Cα

0,t , where Cα
0,t is a set of Lebesgue measure zero and

L2
(
Cα

0,t

) = lim
δ→0

L2
(
Cα

δ,t

) = 0, for 0 ≤ α < 1. (2.28)

Theorem 2.3 is established in Sect. 4.5.4. This theorem shows that the nucleation sites
concentrate on the centroids associated with the collection of failed neighborhoods C0

0,t

for which all bonds have become soft. For points x belonging to C0
0,t the dynamics of the

surrounding motion no longer influences the dynamics at x. Intuitively this set of points
provides an alternative description of the crack set in the reference configuration as seen in
the small horizon limit. The concentration of instability is inevitable for this model and is
directly linked to the energy budget associated with the peridynamic motion. It is shown that
for a family of peridynamic flows {uε(t, x)}ε>0 all driven by the same initial conditions and
body forces that the peridydnamic potential energy of each flow is bounded uniformly in
time 0 ≤ t ≤ T independently of the radius of the horizon, see Sect. 4.2. This bound forces
the localization as shown in Sect. 4.5.4.

3 The Small Horizon, Sharp Interface Limit

In this section we identify the ε ↘ 0 limit of the solutions uε to the peridynamic initial value
problem with LEFM initial data. A limit evolution u0(t, x) is identified that:

• Has uniformly bounded linear elastic bulk energy and Griffith surface energy for
0 ≤ t ≤ T .

• Satisfies an energy inequality involving the kinetic energy of the motion together with
the bulk elastic and surface energy associated with linear elastic fracture mechanics for
0 ≤ t ≤ T .

• Satisfies the wave equation for points in spacetime not on the crack set.
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3.1 Convergence of Peridynamics to Sharp Interface Dynamics Associated with Brittle
Fracture

We consider the family of solutions uεk to the peridynamic initial value problem with LEFM
initial data for a sequence εk , k = 1,2, . . . . We shall see that we can pass to the limit εk ↘ 0
to identify a limit evolution u0(t, x) for 0 ≤ t ≤ T . The limit flow is found to have an approx-
imate gradient ∇u0(t, x) almost everywhere in D and the jump set Su0(t) is the countable
union of rectifiable arcs. Moreover the limit evolutions u0(t, x) have uniformly bounded en-
ergy in the sense of linear elastic fracture mechanics over 0 ≤ t ≤ T . We begin by making
the following hypothesis.

Hypothesis 3.1 We suppose that the magnitude of the deformations do not become infinite
for 0 ≤ t ≤ T , i.e.,

sup
k

∥
∥uεk (t)

∥
∥

L∞(D)
< ∞, (3.1)

for 0 ≤ t ≤ T . This hypothesis is consistent with the bounds on the kinetic energy for peri-
dynamic evolution given in Theorem 4.1 of Sect. 4.2 and is also motivated by simulations
carried out in the peridynamic literature see, for example [24, 31].

Theorem 3.1 (Limit evolution with bounded LEFM energy) Suppose Hypothesis 3.1 holds
true then there exists a subsequence of peridynamic evolutions uεk with LEFM initial data
that converge as trajectories in C([0, T ];L2

0(D)) to u0(t, x) in C([0, T ];L2
0(D)). The limit

flow has an approximate gradient ∇u0(t, x) almost everywhere in D and the jump set Su0(t)

is the countable union of rectifiable arcs. Furthermore there exists a constant C depending
only on T bounding the LEFM energy of the limit flow, i.e.,

μ

∫

D

∣∣∇u0(t, x)
∣∣2

dx + GcH1(Su0(t)) ≤ C (3.2)

for 0 ≤ t ≤ T . The relations between the peridynamic potential f , influence function J ,
shear modulus μ, and critical energy release rate Gc are given by (2.8).

Theorem 3.1 is established using Gronwall’s inequality see, Sect. 4.2 and the Γ -
convergence associated with peridynamic energies see, Sect. 4.3. The proof of Theorem 3.1
is given in Sect. 4.3.

We now present an energy inequality for the limit evolution. We denote the LEFM energy
for the limit evolution u0(t) at time t as

LEFM
(
u0(t),D

) = μ

∫

D

∣
∣∇u0(t)

∣
∣2

dx + GcH1(Su0(t)) (3.3)

and the LEFM energy for the initial data is written

LEFM(u0,D) = μ

∫

D

|∇u0|2 dx + GcH1(Su0). (3.4)

The sum of energy and work for the deformation u0 at time t is written

GF
(
u0(t),D

) = ρ

2

∥
∥u0

t (t)
∥
∥2

L2(D)
+ LEFM

(
u0(t),D

) −
∫

D

b(t)u0(t) dx. (3.5)
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The sum of energy and work for the initial data u0, v0 is written

GF(u0,D) = ρ

2
‖v0‖2

L2(D)
+ LEFM(u0,D) −

∫

D

b(0)u0 dx. (3.6)

The energy inequality for the limit evolution u0 is given in the following theorem.

Theorem 3.2 (Energy Inequality) For 0 ≤ t ≤ T ,

GF
(
u0(t),D

) ≤ GF(u0,D) −
∫ t

0

∫

D

bt (τ )u0(τ ) dx dt. (3.7)

The proof of Theorem 3.2 given in Sect. 4.4.
Motivated by the energy inequality Theorem 3.2 we conclude this section by showing that

the length of the set cracked the by the limiting evolution over the time interval 0 ≤ τ ≤ t

is bounded. Recall the jump set for the deformation u0 at time τ is Su0(τ ) and its length is
given by its one dimensional Hausdorff measure H1(Su0(τ )). The bound follows from the
following theorem.

Theorem 3.3
∫ t

0

(
GcH1(Su0(τ )) + μ

∫

D

∣∣∇u0(τ )
∣∣2

dx

)
dτ < ∞, 0 ≤ t ≤ T . (3.8)

Hence
∫ t

0
H1(Su0(τ )) dτ < ∞, 0 ≤ t ≤ T . (3.9)

This shows that the total length of the set cracked by the evolution from t = 0 to t = T is
bounded. Theorem 3.3 is established in Sect. 4.5.

3.2 Wave Equation for the Displacement

It is shown that the limit evolution u0 solves the wave equation. The following hypothesis
on the regularity of the crack set is made.

Hypothesis 3.2 We suppose that the crack set given by Su0(t) is a closed set for 0 ≤ t ≤ T .

The next hypotheses applies to the concentration set associated with unstable neighbor-
hoods and its relation to the crack set for the limit flow.

Hypothesis 3.3 Theorem 2.3 shows that the centroids of failed neighborhoods for which all
bonds have become soft, see (2.26), concentrate on the lower dimensional set C0

0,t . Recall
that the dynamics associated with every point in the reference configuration belonging to
the set C0

0,t is not affected by the motion of its surroundings. Motivated by this observation
we assume Su0(t) = C0

0,t for 0 ≤ t ≤ T .

The next hypotheses applies to neighborhoods Hεk
(x) for which the shear strain is sub-

critical, i.e., |uεk (t, y)−uεk (t, x)|/|y−x| < η/|y−x|, for y in Hεk
(x). These neighborhoods

will be referred to as neutrally stable.
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Hypothesis 3.4 We suppose that εk = 1
2k < δ and 0 ≤ t ≤ T . Consider the collection of

centroids C0
δ,t . We fatten out C0

δ,t and consider C̃0
δ,t = {x ∈ D : dist(x,C0

δ,t ) < δ}. We suppose

that all neighborhoods Hεk
(x) that do not intersect the set C̃0

δ,t are neutrally stable.

Passing to subsequences if necessary we apply Theorem 3.1 and take u0 to be the limit
evolution of the family of peridynamic evolutions {uεk }∞

k=1 characterized by horizons of radii
εk = 1

2k .

Theorem 3.4 (Wave equation) Suppose Hypotheses 3.2, 3.3 and 3.4 hold true then the limit
evolution u0(t, x) is a solution of the wave equation

ρu0
t t = 2μdiv

(∇u0
) + b, for all (t, x) on [0, T ] × D. (3.10)

Here the second derivative u0
t t is the time derivative in the sense of distributions of u0

t and
div(∇u0) is the divergence of the approximate gradient ∇u0 in the distributional sense.

The proof of Theorem 3.4 is given in Sect. 4.5.

Remark 3.1 The sharp interface limit of the peridynamic model is given by the displace-
ment—crack set pair u0(t, x), Su0(t). The wave equation provides the dynamic coupling
between elastic waves and the evolving fracture path inside the media.

Remark 3.2 We point out that the peridynamic constitutive model addressed in this work
does not have an irreversibility constraint and the constitutive law (1.3) applies at all times
in the peridynamic evolution. Because of this the crack set at each time is given by Su0(t).
Future work will investigate the effects of irreversibility (damage) in the peridynamic model.

Remark 3.3 We conjecture that Hypotheses 3.2, 3.3 and 3.4 hold true. It is also pointed out
that these hypotheses are only used to establish Lemma 4.3 which identifies the directional
derivative of u0 at x along the direction e = ξ/|ξ | with the weak L2(D ×H1(0)) limit of the
shear strain Sεk = ηεk

εk |ξ | restricted to pairs (x, ξ) for which the shear strain is subcritical, i.e.,
|Sεk | < η/(εk|ξ |).

4 Mathematical Underpinnings and Analysis

From the physical perspective the convex-concave nonlinearity of the peridynamic potential
delivers the unstable constitutive law relating force to shear strain. On the other hand from
the mathematical viewpoint this class of peridynamic potentials share the same convex-
concave structure as the function r :→ arctan(r2) proposed by De Giorgi [21] and analyzed
and generalized in the work of Gobbino [21, 22], and Gobbino and Mora [23] for the analysis
of the Mumford Shah functional used in image processing [28]. Here we apply the methods
developed in these investigations and use them as tools for extracting the limit behavior from
the peridynamic model.

In this section we provide the proofs of the theorems stated in sections two and three.
The first subsection asserts the Lipschitz continuity of ∇PDεk (u) for u in L2

0(D) and ap-
plies the standard theory of ODE to deduce existence of the peridynamic flow see, Sect. 4.1.
A Gronwall inequality is used to bound the peridynamic elastic energy and kinetic energy
uniformly in time see, Sect. 4.2. We introduce Γ -convergence for peridynamic functions in
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Sect. 4.3 and identify compactness conditions necessary to generate a sequence of peridy-
namic flows converging to a limit flow. We take limits and apply Γ -convergence theory to
see that the limit flows have bounded elastic energy in the sense of fracture mechanics. In
Sect. 4.4 we pass to the limit in the energy balance equation for peridynamic flows (2.11) to
recover an energy inequality for the limit flow. The wave equation satisfied by the limit flow
is obtained on identifying the weak L2 limit of the sequence {∇PDεk (uεk )}∞

k=1 and passing
to the limit in the weak formulation of (1.12) see, Sect. 4.5. We conclude with the proof of
Theorem 2.3.

4.1 Existence of Peridynamic Evolution

The peridynamic equation (2.9) is written as an equivalent first order system. We set yεk =
(y

εk

1 , y
εk

2 )T where y
εk

1 = uεk and y
εk

2 = u
εk
t . Set F εk (yεk , t) = (F

εk

1 (yεk , t),F
εk

2 (yεk , t))T

where

F
εk

1

(
yεk , t

) = y
εk

2

F
εk

2

(
yεk , t

) = ∇PDεk
(
y

εk

1

) + b(t).

The initial value problem for yεk given by the first order system is

d

dt
yεk = F εk

(
yεk , t

)
(4.1)

with initial conditions yεk (0) = (u0, v0)
T satisfying LEFM initial conditions. In what fol-

lows we consider the more general class of initial data (u0, v0) belonging to L2
0(D)×L2

0(D).
A straight forward calculation shows that for a generic positive constant C independent of η,
ξ , and εk , that

sup
η

∣∣∂2
ηWεk (η, εkξ)

∣∣ ≤ J
(|ξ |) C

ε4
k |ξ | . (4.2)

From this it easily follows from Hölder and Minkowski inequalities that ∇PDεk is a Lips-
chitz continuous map from L2

0(D) into L2
0(D) and there is a positive constant C independent

of 0 ≤ t ≤ T , such that for any pair of vectors y = (y1, y2)
T , z = (z1, z2)

T in L2
0(D)×L2

0(D)

∥∥F εk (y − z, t)
∥∥

L2(D)2 ≤ C

ε2
k

‖y − z‖L2(D)2 for 0 ≤ t ≤ T . (4.3)

Here for any element w = (w1,w2) of L2
0(D) × L2

0(D) we have ‖w‖L2(D)2 = ‖w1‖L2(D) +
‖w2‖L2(D). Since (4.3) holds the standard theory of ODE in Banach space [12] shows that
there exists a unique solution to the initial value problem (4.1) with yεk and ∂ty

εk belonging
to C([0, T ];L2

0(D)) and Theorem 2.1 is proved.

4.2 Bounds on Kinetic and Potential Energy for Solutions of PD

In this section we apply Gronwall’s inequality to obtain bounds on the kinetic and elastic
energy for peridynamic flows. The bounds are used to show that the solutions of the PD
initial value problem are Lipschitz continuous in time. The bounds are described in the
following theorem.
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Theorem 4.1 (Bounds on kinetic and potential energy for peridynamic evolution) There
exists a positive constant C depending only on T and independent of the index εk for which

sup
0≤t≤T

{
PDεk

(
uεk (t)

) + ρ

2

∥
∥u

εk
t (t)

∥
∥

L2(D)

}
≤ C. (4.4)

Proof We apply (2.9) and write

d

dt

{
PDεk

(
uεk (t)

) + ρ

2

∥
∥u

εk
t (t)

∥
∥

L2(D)

}

=
∫

D

(∇PDεk
(
uεk (t)

) + ρu
εk
tt (t)

)
u

εk
t (t) dx

=
∫

D

u
εk
t (t)b(t) dx ≤ ρ

2

∥
∥u

εk
t

∥
∥2

L2(D)
+ ρ−1

2

∥
∥b(t)

∥
∥2

L2(D)
. (4.5)

Adding PDεk (uεk ) to the right hand side of (4.5) and applying Gronwall’s inequality gives

PDεk
(
uεk (t)

) + ρ

2

∥
∥u

εk
t (t)

∥
∥

L2(D)

≤ et

(
PDεk (u0) + ρ

2
‖v0‖L2(D) + ρ−1

2

∫ T

0

∥∥b(τ)
∥∥2

L2(D)
dτ

)
. (4.6)

From (4.10) of Sect. 4.3 we have the upper bound

PDεk (u0) ≤ LEFM(u0,D) for every εk, k = 1,2, . . . , (4.7)

where LEFM(u0,D) is the elastic potential energy for linear elastic fracture mechanics
given by (3.4). Theorem 4.4 now follows from (4.6) and (4.7). �

Theorem 4.1 implies that PD solutions are Lipschitz continuous in time; this is stated
explicitly in the following theorem.

Theorem 4.2 (Lipschitz continuity) There exists a positive constant K independent of
t2 < t1 in [0, T ] and index εk such that

∥
∥uεk (t1) − uεk (t2)

∥
∥

L2(D)
≤ K|t1 − t2|. (4.8)

Proof We write

∥
∥uεk (t1) − uεk (t2)

∥
∥

L2(D)
=

(∫

D

∣∣
∣∣

∫ t2

t1

uεk
τ (τ ) dτ

∣∣
∣∣

2

dx

) 1
2

≤
∫ t2

t1

∥
∥uεk

τ (τ )
∥
∥

L2(D)
dτ

≤ K|t1 − t2|, (4.9)

where the last inequality follows from the upper bound for ‖uεk
t (t)‖L2(D) given by Theo-

rem 4.1. �
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4.3 Compactness and Convergence

In this section we prove Theorem 3.1. We start by introducing the relationship between
the elastic energies PDεk (u) and LEFM(u,D) given by (1.5) and (3.3) respectively. An
application of Theorem 4.3 of [23] together with a straight forward computation using the
formula for the peridynamic strain energy delivers the following inequality

PDεk (u) ≤ LEFM(u,D), for every u in L2
0(D), and εk > 0. (4.10)

We now recall the properties of Γ -convergence in order to apply them to the problem
considered here. Consider a sequence of functions {Fj } defined on a metric space M with
values in R together with a function F also defined on M with values in R.

Definition 4.1 We say that F is the Γ -limit of the sequence {Fj } in M if the following two
properties hold:

1. for every x in M and every sequence {xj } converging to x, we have that

F(x) ≤ lim inf
j→∞

Fj (xj ), (4.11)

2. for every x in M there exists a recovery sequence {xj } converging to x, for which

F(x) = lim
j→∞

Fj (xj ). (4.12)

We shall see that we can pass to the limit εk ↘ 0 to find that the limit evolution u0(t, x)

belongs to the class of Generalized SBV functions denoted by GSBV(D). This class of
functions has been introduced for the study of free discontinuity problems in [3] and are
seen here to naturally arise in the small horizon limit of peridynamics. The space GSBV(D)

is composed of all measurable functions u defined on D whose truncations uk = (u ∧ k) ∨
(−k) belong to SBV(B) for every compact subset B of D, see [4, 5]. Every u belonging to
GSBV(D) has an approximate gradient ∇u(x) for almost every x in D and the jump set Su

is the countable union of rectifiable arcs up to a set of Hausdorff H1 measure zero.
For u in L2

0(D) define PD0 : L2
0(D) → [0,+∞] by

PD0(u,D) =
{

LEFM(u,D) if u belongs to GSBV(D)

+∞ otherwise
(4.13)

A straight forward application of Theorem 4.3(iii) of [23] to the sequence of peridynamic
energies {PDεk } shows that

PD0(u,D) is the Γ -limit of
{
PDεk

}
in L2

0(D), (4.14)

lim
k→∞

PDεk (u) = PD0(u,D), for every u in L2
0(D). (4.15)

Now it is shown that the family of peridynamic flows {uεk }∞
k=1 is relatively compact

in C([0, T ];L2(D)) and that the limit flows have bounded elastic energy in the sense of
fracture mechanics. For each t in [0, T ] we apply Theorem 4.1 and Hypothesis 3.1 to obtain
the bound

PDεk
(
uεk (t)

) + ∥
∥uεk (t)

∥
∥

L∞(D)
< C (4.16)
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where C < ∞ and is independent of εk , k = 1,2, . . . , and 0 ≤ t ≤ T . With this bound
we can apply Theorem 5.1 and Remark 5.2 of [23] to assert that for each t the sequence
{uεk (t)}∞

k=1 is relatively compact in L2(D). From Theorem 4.2 the sequence {uεk }∞
k=1, is seen

to be uniformly equa-continuous in t with respect to the L2(D) norm and we immediately
conclude from the Ascoli theorem that {uεk }∞

k=1 is relatively compact in C([0, T ];L2(D)).
Therefore we can pass to a subsequence also denoted by {uεk (t)}∞

k=1 to assert the existence
of a limit evolution u0(t) in C([0, T ];L2(D)) for which

lim
k→∞

{
sup

t∈[0,T ]

∥
∥uεk (t) − u0(t)

∥
∥

L2(D)

}
= 0. (4.17)

Observe that since the sequence of peridynamic energies {PDεk } Γ -converge to PD0 in
L2(D) we can apply the lower bound property (4.11) of Γ -convergence to conclude that the
limit has bounded elastic energy in the sense of fracture mechanics, i.e.,

LEFM
(
u0(t)

) = PD0
(
u0(t)

) ≤ lim inf
k→∞

PDεk
(
uεk (t)

)
< C. (4.18)

This concludes the proof of Theorem 3.1.

4.4 Energy Inequality for the Limit Flow

In this section we prove Theorem 3.2. We begin by showing that the limit evolution u0(t, x)

has a weak derivative u0
t (t, x) belonging to L2([0, T ] × D). This is summarized in the fol-

lowing theorem.

Theorem 4.3 On passage to subsequences as necessary the sequence u
εk
t weakly converges

in L2([0, T ] × D) to u0
t where

−
∫ T

0

∫

D

∂tψu0 dx dt =
∫ T

0

∫

D

ψu0
t dx dt, (4.19)

for all compactly supported smooth test functions ψ on [0, T ] × D.

Proof The bound on the kinetic energy given in Theorem 4.1 implies

sup
εk>0

(
sup

0≤t≤T

∥∥u
εk
t

∥∥
L2(D)

)
< ∞. (4.20)

Therefore the sequence u
εk
t is bounded in L2([0, T ] × D) and passing to a subsequence

if necessary we conclude that there is a limit function ũ0 for which u
εk
t ⇀ ũ0 weakly in

L2([0, T ] × D). Observe also that the uniform convergence (4.17) implies that uεk → u0 in
L2([0, T ] × D). On writing the identity

−
∫ T

0

∫

D

∂tψuεk dx dt =
∫ T

0

∫

D

ψu
εk
t dx dt. (4.21)

applying our observations and passing to the limit it is seen that ũ0 = u0
t and the theorem

follows.
To establish Theorem 3.2 we require the following inequality.
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Lemma 4.1 For every t in [0, T ] we have
∥∥u0

t (t)
∥∥

L2(D)
≤ lim inf

εk→0

∥∥u
εk
t (t)

∥∥
L2(D)

. (4.22)

Proof For every non-negative bounded measurable function of time ψ(t) defined on [0, T ]
we have the inequality

∫ t

0
ψ

∥
∥u

εk
t − u0

t

∥
∥2

L2(D)
dt ≥ 0 (4.23)

and together with the weak convergence given in Theorem 4.3 one easily sees that

lim inf
εk→0

∫ T

0
ψ

∥∥u
εk
t

∥∥2

L2(D)
dt −

∫ T

0
ψ

∥∥u0
t

∥∥2

L2(D)
dt ≥ 0. (4.24)

Applying (4.20) and invoking the Lebesgue dominated convergence theorem we conclude

lim inf
εk→0

∫ T

0
ψ

∥
∥u

εk
t

∥
∥2

L2(D)
dt =

∫ T

0
ψ lim inf

εk→0

∥
∥u

εk
t

∥
∥2

L2(D)
dt (4.25)

to recover the inequality given by

∫ T

0
ψ

(
lim inf
εk→0

∥∥u
εk
t

∥∥2

L2(D)
− ∥∥u0

t

∥∥2

L2(D)

)
dt ≥ 0. (4.26)

The lemma follows noting that (4.26) holds for every non-negative test function ψ . �

Theorem 3.2 now follows immediately on taking the εk → 0 limit in the peridynamic en-
ergy balance equation (2.11) of Theorem 2.2 and applying (4.15), (4.17), (4.18), and (4.22)
of Lemma 4.1. �

4.5 Stationarity Conditions for the Limit Flow

In this section we prove Theorems 3.3 and 3.4. In the first subsection we give the proof of
Theorem 3.3. In the second subsection we provide the proof of Theorem 3.4 using Theorem
4.4. In the last subsection we prove Theorem 4.4.

4.5.1 Proof of Theorem 3.3

We consider the integral
∫ t

0

(
PDεk

(
uεk (τ )

) + ∥∥u
εk
t (τ )

∥∥2

L2(D)

)
dτ, (4.27)

and apply the energy bound (4.4) to obtain the inequality
∫ t

0

(
PDεk

(
uεk (τ )

) + ∥
∥u

εk
t (τ )

∥
∥2

L2(D)

)
dτ < Ct. (4.28)

Since PDεk (uεk (t)) and ‖uεk
t (t)‖2

L2(D)
are non-negative we apply Fatou’s Lemma to see that

∫ t

0
lim inf
εk→0

(
PDεk

(
uεk (τ )

) + ∥
∥u

εk
t (τ )

∥
∥2

L2(D)

)
dτ < Ct. (4.29)



40 R. Lipton

Applying (4.18) and (4.22) delivers the upper bound

∫ t

0
LEFM

(
u0(τ ),D

)
dτ +

∫ t

0

∥
∥u0

t (τ )
∥
∥2

L2(D)
dτ < Ct. (4.30)

Here we have used the fact that PDεk (u0(t)) is continuous in t and the pointwise convergence
PDεk (u0(t)) → LEFM(u0(t),D) to assert the integrability of LEFM(u0(t),D) with respect
to t . Theorem 3.3 now follows from (4.30).

4.5.2 Proof of Theorem 3.4

We introduce the following integration by parts identity that holds for any pair of func-
tions u, v belonging to L2

0(D) with either u or v having compact support inside D given
by

∫

D

∫

H1(0)

D
εk |ξ |
−e uv dξ dx =

∫

D

∫

H1(0)

uDεk |ξ |
e v dξ dx. (4.31)

Note further if v is infinitely differentiable and has compact support in D then

lim
εk→0

Dεk |ξ |
e v = ∇v · e (4.32)

where the convergence is uniform in D. Here e is the unit vector e = ξ/|ξ |.
Taking the first variation of the action integral (1.8) gives the Euler equation in weak

form

ρ

∫ T

0

∫

D

u
εk
t δt dx dt −

∫ T

0

∫

D

∇PDεk
(
uεk

)
δ dx dt +

∫ T

0

∫

D

bδ dx dt = 0 (4.33)

where the test function δ = δ(x, t) = ψ(t)φ(x) is smooth and has compact support in
[0, T ] × D. Integrating by parts in the second term of (4.33) using (4.31) gives

ρ

∫ T

0

∫

D

u
εk
t δt dx dt

−
∫ T

0

∫

D

∫

H1(0)

|ξ |J (|ξ |)f ′
( |ηεk |2

εk|ξ |
)

2ηεk

ε|ξ | D
εk
e δ dξ dx dt

+
∫ T

0

∫

D

bδ dx dt = 0. (4.34)

Where ηεk = uεk (x + ξ) − uεk (x) and observe that ηεk /(εk|ξ |) = D
εk |ξ |
e uεk . Next we make

the change of function and write Fs(r) = 1
s
f (sr2) and on setting s = εk|ξ | and r = D

εk |ξ |
e uεk

we transform (4.34) into

ρ

∫ T

0

∫

D

u
εk
t δt dx dt

−
∫ T

0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e δ dξ dx dt



Dynamic Brittle Fracture as a Small Horizon Limit of Peridynamics 41

+
∫ T

0

∫

D

bδ dx dt = 0, (4.35)

where

F ′
εk |ξ |

(
Dεk |ξ |

e uεk
) = f ′(εk|ξ |∣∣Dεk |ξ |

e uεk
∣∣2)

2Dεk |ξ |
e uεk . (4.36)

For future reference observe that Fs(r) is convex-concave in r with inflection point rs =
r/

√
s where r is the inflection point of f (r2) = F1(r). One also has the estimates

Fs(r) ≥ 1

s
F1(r) for r ≥ rs, and (4.37)

sup
0≤r<∞

∣
∣F ′

s (r)
∣
∣ ≤ 2f ′(r2)r√

s
. (4.38)

We send εk → 0 in (4.35) applying the weak convergence Theorem 4.3 to the first term to
obtain

ρ

∫ T

0

∫

D

u0
t δt dx dt − lim

εk→0

(∫ T

0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e δ dξ dx dt

)

+
∫ T

0

∫

D

bδ dx dt = 0. (4.39)

Theorem 3.4 follows once we identify the limit of the second term in (4.39) for smooth test
functions φ(x) with support contained in D. We state the following convergence theorem.

Theorem 4.4 Given any infinitely differentiable test function φ with compact support in D

then

lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e φ dξ dx = 2μ

∫

D

∇φ · ∇u0 dx, (4.40)

where μ = πf ′(0)
∫ 1

0 r2J (r) dr .

Theorem 4.4 is proved in Sect. 4.5.3. The sequence of integrals on the left hand side
of (4.40) are uniformly bounded in time, i.e.,

sup
εk>0

{
sup

0≤t≤T

∣∣
∣∣

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣

}
< ∞, (4.41)

this is demonstrated in (4.55) of Lemma 4.4 in Sect. 4.5.3. Applying the Lebesgue bounded
convergence theorem together with Theorem 4.4 with δ(t, x) = ψ(t)φ(x) delivers the de-
sired result

lim
εk→0

(∫ T

0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
ψDεk

e φ dξ dx dt

)

= 2μ

∫ T

0

∫

D

ψ∇φ · ∇u0 dx dt, (4.42)
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and we recover the identity

ρ

∫ T

0

∫

D

u0
t (t, x)ψt (t)φ(x) dx dt − 2μ

∫ T

0

∫

D

ψ(t)∇φ(x) · ∇u0(t, x) dx dt

+
∫ T

0

∫

D

b(t, x)ψ(t)φ(x) dx dt = 0 (4.43)

from which Theorem 3.4 follows.

4.5.3 Proof of Theorem 4.4

We decompose the difference D
εk |ξ |
e uεk as

Dεk |ξ |
e uεk = Dεk |ξ |,−

e uεk + Dεk |ξ |,+
e uεk (4.44)

where

Dεk |ξ |,−
e uεk =

{
D

εk |ξ |
e uεk , if |Dεk |ξ |

e uεk | < r√
εk |ξ |

0, otherwise
(4.45)

where r is the inflection point for the function F1(r) = f (r2). Here D
εk |ξ |,+
e uεk is defined so

that (4.44) holds. We prove Theorem 4.4 by using the following two identities described in
the Lemmas below.

Lemma 4.2 For any ψ in C∞
0 (D)

lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk |ξ |

e ψ dξ dx

− 2 lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)f ′(0)Dεk |ξ |,−
e uεkDεk |ξ |

e ψ dξ dx = 0. (4.46)

Lemma 4.3 Assume that Hypotheses 3.2, 3.3 and 3.4 hold true and define the weighted
Lebesgue measure ν by ν(S) = ∫

S
|ξ |J (|ξ |) dξ dx for any Lebesgue measurable set S ⊂ D×

H1(0). Passing to subsequences as necessary {Dεk |ξ |,−
e uεk }∞

k=1 converges weakly in L2(D ×
H1(0);ν) to e · ∇u0 where e = ξ/|ξ |, i.e.,

lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)Dεk |ξ |,−
e uεkφ dξ dx

=
∫

D

∫

H1(0)

|ξ |J (|ξ |)e · ∇u0φ dξ dx, (4.47)

for any test function φ(x, ξ) in L2(D ×H1(0);ν).

We now apply the Lemmas. Observing that D
εk |ξ |
e ψ converges strongly in

L2(D ×H1(0) : ν) to e · ∇ψ for test functions ψ in C∞
0 (D) and from the weak

L2(D ×H1(0) : ν) convergence of D
εk |ξ |,−
e uεk we deduce that

lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)f ′(0)Dεk |ξ |,−
e uεkDεk |ξ |

e ψ dξ dx
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=
∫

D

∫

H1(0)

|ξ |J (|ξ |)f ′(0)
(
e · ∇u0

)
(e · ∇ψ)dξ dx

= f ′(0)

∫

H1(0)

|ξ |J (|ξ |)eiej dξ

∫

D

∂xi
u0∂xi

ψ dx. (4.48)

A calculation shows that

f ′(0)

∫

H1(0)

|ξ |J (|ξ |)eiej dξ = μδij (4.49)

where μ is given by (2.8). Theorem 4.4 now follows immediately from (4.48) and (4.46).
To establish Lemmas 4.2 and 4.3 we develop the following estimates for the sequences

D
εk |ξ |,−
e uεk and D

εk |ξ |,+
e uεk . We define the set K+,εk by

K+,εk = {
(x, ξ) ∈ D ×H1(0) : Dεk |ξ |,+

e uεk 	= 0
}
. (4.50)

We have the following string of estimates.

Lemma 4.4 We introduce the generic positive constant 0 < C < ∞ independent of 0 <

εk < 1 and 0 ≤ t ≤ T and state the following inequalities that hold for all 0 < εk < 1 and
0 ≤ t ≤ T and for C∞(D) test functions φ with compact support on D.

∫

K+,εk

|ξ |J (|ξ |)dξ dx < Cεk, (4.51)

∣∣
∣∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |,+

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣ < C

√
εk‖∇φ‖L∞(D), (4.52)

∫

D×H1(0)

|ξ |J (|ξ |)∣∣Dεk |ξ |,−
e uεk

∣
∣2

dξ dx < C, (4.53)

∫

D×H1(0)

|ξ |J (|ξ |)∣∣Dεk |ξ |
e uεk

∣∣dξ dx < C, and (4.54)

∣∣
∣∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣ < C‖∇φ‖L∞(D). (4.55)

Proof For (x, ξ) ∈ K+,εk we apply (4.37) to get

J
(|ξ |) 1

εk

F1(r) = |ξ |J (|ξ |) 1

εk|ξ |F1(r) ≤ |ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk
)

(4.56)

and in addition since |ξ | ≤ 1 we have

1

εk

F1(r)

∫

K+,εk

|ξ |J (|ξ |)dξ dx

≤ 1

εk

F1(r)

∫

K+,εk

J
(|ξ |)dξ dx

≤
∫

K+,εk

|ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk
)
dξ dx ≤ sup

t∈[0,T ]
sup
εk

PDεk
(
uεk

)
(4.57)
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where Theorem 4.1 implies that the right most element of the sequence of inequalities is
bounded and (4.51) follows noting that the inequality (4.57) is equivalent to (4.51). More
generally since |ξ | ≤ 1 we may argue as above to conclude that

∫

K+,εk

|ξ |pJ
(|ξ |)dξ dx < Cεk, (4.58)

for 0 ≤ p. We apply (4.38) and (4.58) to find
∣∣
∣∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |,+

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣

≤ 2f ′(r2)r√
εk

∫

K+,εk

√|ξ |J (|ξ |)dξ dx ≤ √
εkC, (4.59)

and (4.52) follows.
A basic calculation shows there exists a positive constant independent of r and s for

which

r2 ≤ CFs(r), for r < r√
s
, (4.60)

so

∣∣Dεk |ξ |
e uεk

∣∣2 ≤ CFεk |ξ |
(
Dεk |ξ |

e uεk
)
, for

∣∣Dεk |ξ |
e uεk

∣∣ < r√
εk |ξ | , (4.61)

and
∫

D×H1(0)

|ξ |J (|ξ |)∣∣Dεk |ξ |,−
e uεk

∣
∣2

dξ dx

=
∫

D×H1(0)\K+,εk

|ξ |J (|ξ |)∣∣Dεk |ξ |
e uεk

∣∣2
dξ dx

≤ C

∫

D×H1(0)\K+,εk

|ξ |J (|ξ |)Fεk |ξ |
(
Dεk |ξ |

e uεk
)
dξ dx

≤ C sup
t∈[0,T ]

sup
εk

PDεk
(
uεk

)
(4.62)

where Theorem 4.1 implies that the right most element of the sequence of inequalities is
bounded and (4.53) follows.

To establish (4.54) we apply Hölders inequality to find that
∫

D×H1(0)

|ξ |J (|ξ |)∣∣Dεk |ξ |
e uεk

∣∣dξ dx

=
∫

K+,εk

|ξ |J (|ξ |)∣∣Dεk |ξ |
e uεk

∣∣dξ dx +
∫

D×H1(0)\K+,εk

|ξ |J (|ξ |)∣∣Dεk |ξ |
e uεk

∣∣dξ dx

≤ 2‖uεk‖L∞(D)

εk

∫

K+,εk

J
(|ξ |)dξ dx +

+ ν
(
D ×H1(0)

) 1
2

(∫

D×H1(0)

|ξ |J (|ξ |)∣∣Dεk |ξ |,−
e uεk

∣
∣2

dξ dx

) 1
2

, (4.63)
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and (4.54) follows from (4.58) and (4.53), and (3.1).
We establish (4.55). This bound follows from the basic features of the potential func-

tion f . We will recall for subsequent use that f is smooth positive, concave and f ′ is a
decreasing function with respect to its argument. So for A fixed and 0 ≤ h ≤ A2r2 we have

∣∣f ′(h) − f ′(0)
∣∣ ≤ ∣∣f ′(A2r2

) − f ′(0)
∣∣ < 2

∣∣f ′(0)
∣∣2

. (4.64)

The bound (4.55) is now shown to be a consequence of the following upper bound valid for
the parameter 0 < A < 1 given by

∫

D×H1(0)

|ξ |J (|ξ |)∣∣f ′(εk|ξ |∣∣Dεk |ξ |,−
e uεk

∣
∣2) − f ′(0)

∣
∣2

dξ dx

≤ ν
(
D ×H1(0)

) × ∣∣f ′(A2r2
) − f ′(0)

∣∣2 + Cεk

4|f ′(0)|2
A2

. (4.65)

We postpone the proof of (4.65) until after it is used to establish (4.55). Set hεk
= D

εk |ξ |,−
e uεk

to note

F ′
εk |ξ |(hεk

) − 2f ′(0)hεk
= (

f ′(εk|ξ |h2
εk

) − f ′(0)
)
2hεk

. (4.66)

Applying Hölders inequality, (4.52), (4.53), (4.66), and (4.65) gives
∣∣
∣∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣

≤
∣
∣∣
∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk,+|ξ |

e uεk
)
Dεk

e φ dξ dx

∣
∣∣
∣

+
∣∣
∣∣

∫

D×H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk,−|ξ |

e uεk
)
Dεk

e φ dξ dx

∣∣
∣∣

≤ C
√

εk‖∇φ‖L∞(D) + 2
∫

D×H1(0)

|ξ |J (|ξ |)f ′(0)Dεk |ξ |,−
e uεkDεk |ξ |

e ψ dξ dx

+
∫

D×H1(0)

|ξ |J (|ξ |)(F ′
εk |ξ |

(
Dεk |ξ |

e uεk
) − 2f ′(0)Dεk |ξ |,−

e uεk
)
Dεk |ξ |

e ψ dξ dx

≤ 2C

(
f ′(0) + √

εk + ν
(
D ×H1(0)

) × ∣
∣f ′(A2r2

) − f (0)
∣
∣2 + εk

4|f ′(0)|2
A2

)
‖∇φ‖L∞(D)

(4.67)

and (4.55) follows.
We establish the inequality (4.65). Set hεk

= D
εk |ξ |,−
e uεk and for 0 < A < 1 introduce the

set

K
+,εk

A = {
(x, ξ) ∈ D ×H1(0) : A2r2 ≤ εk|ξ ||hεk

|2}. (4.68)

To summarize (x, ξ) ∈ K
+,εk

A implies A2r2 ≤ εk|ξ ||hεk
|2 ≤ r2 and (x, ξ) 	∈ K

+,εk

A implies
εk|ξ ||hεk

|2 < A2r2 and |f ′(εk|ξ ||hεk
|2)− f ′(0)| ≤ |f ′(A2r2)− f ′(0)|. Inequality (4.53) im-

plies

C >

∫

K
+,εk
A

|ξ |J (|ξ |)h2
εk

dξ dx ≥ A2r2

εk

∫

K
+,εk
A

J
(|ξ |)dξ dx
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≥ A2r2

εk

∫

K
+,εk
A

|ξ |J (|ξ |)dξ dx, (4.69)

the last inequality follows since 1 ≥ |ξ | > 0. Hence
∫

K
+,εk
A

|ξ |J (|ξ |)dξ dx ≤ C
εk

A2r2 , (4.70)

and it follows that
∫

K
+,εk
A

|ξ |J (|ξ |)∣∣f ′(εk|ξ ||hεk
|2) − f ′(0)

∣
∣2

dξ dx

≤ 4
∣∣f ′(0)

∣∣2
∫

K
+,εk
A

|ξ |J (|ξ |)dξ dx ≤ Cεk

4|f ′(0)|2
A2r2 . (4.71)

Collecting observations gives
∫

D×H1(0)\K+,εk
A

|ξ |J (|ξ |)∣∣f ′(εk|ξ |∣∣Dεk |ξ |,−
e uεk

∣∣2) − f ′(0)
∣∣2

dξ dx

≤ ν
(
D ×H1(0)

)×∣∣f ′(A2r2
) − f ′(0)

∣∣2
, (4.72)

and (4.65) follows.
We now prove Lemma 4.2. Write

F ′
εk |ξ |

(
Dεk |ξ |

e uεk
) = F ′

εk |ξ |
(
Dεk |ξ |,+

e uεk
) + F ′

εk |ξ |
(
Dεk |ξ |,−

e uεk
)
, (4.73)

and from (4.52) it follows that

lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |

e uεk
)
Dεk |ξ |

e ψ dξ dx

= lim
εk→0

∫

D

∫

H1(0)

|ξ |J (|ξ |)F ′
εk |ξ |

(
Dεk |ξ |,−

e uεk
)
Dεk |ξ |

e ψ dξ dx. (4.74)

To finish the proof we identify the limit of the right hand side of (4.74). Set hεk
=

D
εk |ξ |,−
e uεk and apply Hólder’s inequality to find

∫

D×H1(0)

|ξ |J (|ξ |)(F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

)
Dεk |ξ |

e ψ dξ dx

≤ C

∫

D×H1(0)

|ξ |J (|ξ |)∣∣F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

∣
∣dξ dx‖∇ψ‖L∞(D) (4.75)

We estimate the first factor in (4.75) and apply (4.66), Hölder’s inequality, (4.53), and (4.65)
to obtain

∫

D×H1(0)

|ξ |J (|ξ |)∣∣F ′
εk |ξ |(hεk

) − 2f ′(0)hεk

∣∣dξ dx

≤
∫

D×H1(0)

|ξ |J (|ξ |)∣∣f ′(εk|ξ ||hεk
|2) − 2f ′(0)

∣
∣|hεk

|dξ dx
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≤ C

(
ν
(
D ×H1(0)

)×∣∣f ′(A2r2
) − f ′(0)

∣∣2 + εk

4|f ′(0)|2
A2r2

)
. (4.76)

Lemma 4.2 follows on passing to the εk zero limit in (4.76) and noting that the choice of
0 < A < 1 is arbitrary.

We now prove Lemma 4.3. For τ > 0 sufficiently small define Kτ ⊂ D by Kτ = {x ∈ D :
dist(x, Su0(t)) < τ }. From Hypothesis 3.3 the collection of centroids associated with unstable
neighborhoods C0

δ,t lie inside Kτ for δ sufficiently small. (Otherwise the collection C0
δ,t

would concentrate about a component of C0
0,t outside Kτ ; contradicting the hypothesis that

Su0(t) = C0
0,t ). The collection of all points belonging to unstable neighborhoods associated

with centroids in C0
δ,t is easily seen to be contained in the slightly larger set Kτ,δ = {x ∈ D;

dist(x,Kτ ) < δ}. From Hypothesis 3.4 we may choose test functions ϕ ∈ C1
0 (D \ Kτ,2δ)

such that for εk sufficiently small

Dεk |ξ |,−
e uεkϕ = Dεk |ξ |

e uεkϕ. (4.77)

We form the test functions φ(x, ξ) = ϕ(x)ψ(ξ), with ϕ ∈ C1
0 (D \ Kτ,2δ) and ψ ∈

C(H1(0)). From (4.53) we may pass to a subsequence to find that D
εk |ξ |,−
e uεk weakly con-

verges to the limit g(x, ξ) in L2(D ×H1(0);ν). With this in mind we write
∫

D×H1(0)

g(x, ξ)φ(x, ξ)|ξ |J (|ξ |)dξ dx

= lim
εk→0

∫

D×H1(0)

Dεk |ξ |,−
e uεk (x)φ(x, ξ)|ξ |J (|ξ |)dξ dx

= lim
εk→0

∫

D×H1(0)

Dεk |ξ |
e uεk (x)φ(x, ξ)|ξ |J (|ξ |)dξ dx

= lim
εk→0

∫

D×H1(0)

uεk (x)
(
D

εk |ξ |
−e ϕ(x)

)
ψ(ξ)|ξ |J (|ξ |)dξ dx. (4.78)

Noting that D
εk |ξ |
−e ϕ(x) converges uniformly to −e · ∇ϕ(x) and from the strong convergence

of uεk to u0 in L2 we obtain

= lim
εk→0

∫

D×H1(0)

uεk (x)
(
D

εk |ξ |
−e ϕ(x)

)
ψ(ξ)|ξ |J (|ξ |)dξ dx

= −
∫

D×H1(0)

u0(x)
(
e · ∇ϕ(x)

)
ψ(ξ)|ξ |J (|ξ |)dξ dx

= −
∫

D

u0(x)div

(
ϕ(x)

∫

H1(0)

eψ(ξ)|ξ |J (|ξ |)dξ

)
dx

=
∫

D

∇u0(x) ·
(

ϕ(x)

∫

H1(0)

eψ(ξ)|ξ |J (|ξ |)dξ

)
dx

=
∫

D×H1(0)

∇u0(x) · eϕ(x)ψ(ξ)|ξ |J (|ξ |)dξ dx, (4.79)

where we have made use of Du0�D \ Kτ,2δ = ∇u0 dx on the third line of (4.79). From the
density of the span of the test functions we conclude that g(x, ξ) = ∇u0 · e almost every-
where on D \ Kτ,2δ × H1(0). Since Kτ,2δ can be chosen to have arbitrarily small measure
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with vanishing τ and δ we conclude that g(x, ξ) = ∇u0 ·e on D×H1(0) a.e. and Lemma 4.3
is proved. �

4.5.4 Proof of Theorem 2.3

The set K+,εk defined by (4.50) has the equivalent description given by

K+,εk = {
(x, ξ) ∈ D ×H1(0); ∣∣uεk (x + εkξ) − uεk (x)

∣
∣ > η

}
(4.80)

where η is the critical relative displacement given by η = √
εk|ξ |r . We rewrite the lefthand

side of the inequality (4.51) as
∫

K+,εk

|ξ |J (|ξ |)dξ dx =
∫

D

(∫

H1(0)

χ+,εk (x, ξ)|ξ |J (|ξ |)dξ

)
dx, (4.81)

where for each x ∈ D, χ+,εk (x, ξ) is defined to be the indicator function given by

χ+,εk (x, ξ) = 1, for ξ ∈ H1(0); ∣∣uεk (x + εkξ) − uεk (x)
∣∣ > η

χ+,εk (x, ξ) = 0, otherwise.
(4.82)

Making the change of variable y = εkξ +x the inner integral on the right hand side of (4.81)
is given by

∫

H1(0)

χ+,εk (x, ξ)|ξ |J (|ξ |)dξ = m × P
({

y ∈ Hεk
(x); ∣∣uεk (y) − uεk (x)

∣∣ > η
})

(4.83)

Recall that (4.57) shows that the inequality (4.51) is uniform both in time and in the length
scale of the horizon εk . This follows from the uniform bound on the peridynamic potential
given by Theorem 4.1. Application of (4.51) gives

∫

D

P
({

y ∈ Hεk
(x); ∣∣uεk (t, y) − uεk (t, x)

∣
∣ > η

})
dx ≤ Cεk. (4.84)

For A > 0, Tchebyshev’s inequality gives

AL2
({

x ∈ D;P ({
y ∈ Hεk

(x); ∣∣uεk (t, y) − uεk (t, x)
∣∣ > η

})
> A

})

≤
∫

D

P
({

y ∈ Hεk
(x); ∣∣uεk (t, y) − uεk (t, x)

∣
∣ > η

})
dx. (4.85)

Choosing A = εα
k , and applying (4.84) delivers

L2
({

x ∈ D;P ({
y ∈ Hεk

(x); ∣∣uεk (t, y) − uεk (t, x)
∣∣ > η

})
> εα

k

})
< Cε1−α

k . (4.86)

Here C is a constant independent of t and εk . The collection of centroids x for neighbor-
hoods Hεk

(x) associated with the instability condition given by

P
({

y ∈ Hεk
(x); ∣∣uεk (t, y) − uεk (t, x)

∣∣ > η
})

> εα
k (4.87)

is denoted by Uα
εk,t . Choose εk = 1

2k and (4.86) implies L2(Uα
εk,t ) < C( 1

2k )1−α . The unstable
set defined by (2.25) is written as

Cα
δ,t =

⋃

εk<δ

Uα
εk,t (4.88)
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and from the geometric series we find

L2
(
Cα

δ,t

)
< Cδ1−α. (4.89)

Theorem 2.3 follows noting further that C0
0,t ⊂ C0

δ,t ⊂ Cα
δ,t .

5 Summary

The nonlocal continuum model of peridynamic type presented here does not require extra
constitutive laws such as a kinetic relation between crack driving force and crack velocity
or a crack nucleation condition. Instead this information is intrinsic to the formulation and
encoded into the nonlocal constitutive law. Crack nucleation criteria are recovered here by
viewing nucleation as a dynamic instability, this is similar in spirit to [34] and the work of
[15] for phase transions. The scaling analysis shows that the limit evolution has bounded
linear elastic energy and bounded Griffith surface energy and that these are expressed in
terms of shear moduli μ and energy release rate Gc . These parameters are determined ex-
plicitly by the peridynamic potential f and influence function J . The formulas for μ and
Gc follow directly from the scaling limit without extra hypotheses. With these observations
in hand we can turn this correspondence around and use measured values of μ and Gc to
choose peridynamic potentials and influence functions appropriate for a particular material
of interest. It is pointed out that the constitutive model (1.3) does not include the effects of
damage and bonds strained beyond critical can return to their subcritical constitutive behav-
ior. However with this caveat in mind the theoretical results presented here strongly support
the notion that the peridynamic model can be used as a numerical tool for analyzing crack
paths associated with brittle fracture by choosing the scaling parameter ε sufficiently small
in (1.12) and running numerical simulations. In closing we note that future work will at-
tempt to uncover kinetic relations relating crack driving force and velocity for the dynamics
in the small horizon limit.
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