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Abstract

The approach taken here solves the Maxwell equations inside metamaterial crystals directly and explicitly with no

approximations made. The Bloch wave solution and dispersion relation is given by a power series in the ratio between wave

number and period. Each term is iteratively defined by the solution of an auxiliary problem depending on the configuration and

shapes of the scatterers. The leading order term in the power series for the dispersion relation is given by the complex effective index

of refraction. The effective properties and their resonance frequencies depend explicitly on the shape of the scatterers. Double

negative behavior is explicitly controlled by the location of resonance frequencies related to spectra intrinsic to the geometric

configuration of the multi-phase inclusions. This provides for the rational shape design of inclusions for control of double negative

behavior across prescribed frequency ranges.
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1. Introduction

A compelling aspect of metamaterials research is the

quest for new sub-wavelength microstructures that

deliver both negative bulk dielectric constant and bulk

magnetic permeability across prescribed frequency

intervals. Double negative materials offer great poten-

tial for applications in biomedical imaging, optical

lithography and data storage. Such media support

electromagnetic waves for which the phase velocity is

antiparallel to the direction of energy flow as well as

other unusual electromagnetic effects such as the
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reversal of the Doppler effect and Cerenkov radiation

[41].

Double negative metamaterials are characterized by

sub-wavelength microstructure and control radiation

through a delicate combination of local and global

resonances. This approach to controlling wave propaga-

tion is distinct from approaches using photonic materials

which control radiation through multiple diffraction

implemented by structuring the medium along the same

length scale as the wave length of the incident radiation.

Pendry [29] demonstrated that unconventional properties

can be derived from sub-wavelength configurations of

different conventional materials. It was shown that a

cubic lattice of metal wires exhibited behavior associated

with negative bulk dielectric constant near the plasma

resonance of the structure. This resonance frequency is

intrinsic to the lattice and lies in the microwave regime
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Table 1

The changes of the double negative interval when inner radius and outer radius vary. In each cell, the upper number denotes the length of the interval

where both real parts of meff and e�1
eff k̂ � k̂ are negative. The lower number shows the center value of v0/vp in the double negative interval.

a = 0.5b a = 0.55b a = 0.6b a = 0.65b

b = 0.3 0 0 0 0.0332 (0.8919)

b = 0.35 0 0.02733 (0.9003) 0.03824 (0.8315) 0.04425 (0.7716)

b = 0.4 0.03541 (0.8707) 0.04204 (0.7960) 0.04893 (0.7345) 0.05579 (0.6830)

b = 0.45 0.04366 (0.7795) 0.05143 (0.7141) 0.05944 (0.6605) 0.06801 (0.6161)
six decades below the plasma resonance of the metal used

to make the lattice. Subsequently non-magnetic metallic

split-ring resonators were constructed to deliver negative

effective magnetic permeability at microwave frequen-

cies [28]. In more recent work Smith et al. [39]

experimentally demonstrated that arrays of metallic

posts and split ring resonators could also support

resonances at microwave frequencies and deliver

negative effective negative refractive index for a range

of microwave frequencies. Subsequent work has

delivered several new configurations of metallic reso-

nators for double negative behavior [15,19,34,46–48].

New designs for generating double negative properties in

the optical regime rely on Mie resonances. One scheme

employs coated rods made from a high dielectric core

coated with a frequency dependent dielectric plasmonic

or Drude type behavior at optical frequencies [43–45].

Other schemes employ small particles made from

dielectric materials with large permittivity, [20,30,42].

Alternate strategies for generating negative bulk dielec-

tric permeability at infrared and optical frequencies use

special configurations of plasmonic nanoparticles [1,37].

The list of metamaterial designs continues to grow and

recent reviews of the subject can be found in [32,33].

In this article we focus on a class of simple

microstructures and investigate the range of double

negative behavior that one can engineer using lossy

nonmagnetic materials. The main point of the article is to

introduce a multi-scale method for exploring the universe

of sub-wavelength microstructures that links the geo-

metry of the microstructure to the actual dispersion

relations for the medium without making use of any

simplifying approximation (e.g. the dipole approxima-

tion). Here we consider periodic arrays of nonmagnetic

scatterers made from two distinct materials. We present a

systematic method for recovery of the band structure of

the metamaterial. Each branch of the dispersion relation

is given by power series in the ratio of period to wave

number. The leading order term in the expansion is the

effective complex index of refraction for the medium.

Figures displaying the real and imaginary parts of the

leading order dispersion relation for several different

bands are displayed in Section 3 see, Fig. 4(a)–(d). The
higher order terms in the series involve corrections for

spatial dispersion. When the media is assumed lossless

the power series for each branch is shown to converge, see

[12]. This is also true for lossy materials. This expansion

provides the rigorous and explicit connection between

microgeometry and dispersion. It provides the opportu-

nity for the systematic design of sub-wavelength

structures for control of dispersion based on the shape

and topology of the inclusions used in the microgeo-

metry. This is taken up in Section 3 where several

simulations exhibiting the sensitivity of the dispersion

relations to the underlying geometry of the scatterers is

presented. The methodology provides a way to system-

atically identify the location of the center frequency and

band width of double negative intervals through

calculation of auxiliary spectral problems intrinsic to

the geometry. Table 1 illustrates how the center frequency

and band width of a preselected double negative interval

can be adjusted by changing the geometry of the scatterer.

This methodology presented here is a multiscale

approach in that the Maxwell equations are solved

exactly in terms of a power series that has as its expansion

parameter the ratio between the crystal period and the

wave number. When the expansion parameter is small

and the crystal period is subwavelength the leading order

terms in the dispersion relation control the physics. For

larger values of the expansion parameter when the crystal

period is closer to the wavelength of propagation the

higher order terms in the series become important in

describing nonlocal effects such as spatial dispersion.

To demonstrate the method we construct metama-

terials made from sub-wavelength periodic arrange-

ments of nonmagnetic infinitely long parallel coated

cylinders immersed in a nonmagnetic host. In what

follows the period of the lattice is denoted by d. The

coated cylinders are parallel to the x3 axis and made

from a frequency independent high dielectric core and a

frequency dependent dielectric plasmonic coating

(Fig. 1). The host medium containing the coated rods

has relative dielectric permittivity equal to unity. To

generate effective magnetic properties the material

comprising the core of the rod is chosen to be a high

contrast dielectric material eR = g/d2 see [9]. The
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Fig. 1. Periodic array of coated dielectric rods with period d.
dielectric coating is frequency dependent and char-

acterized by single oscillator model that includes

dissipation.

The approach taken here solves the Maxwell

equations directly and explicitly with no approximations

made. The solution is given by a power series with each

term iteratively defined by the solution of an auxiliary

problem that is simpler than the original Maxwell system.

In what follows we apply the power series method to

identify the dispersion relation for TE modes with

magnetic field parallel to the cylinders. The leading order

term in the power series for the dispersion relation is

given by the complex effective index of refraction

expressed in terms of the effective magnetic permeability

and effective dielectric permittivity tensor. These tensors

are seen to resonate at frequencies related to spectra

intrinsic to the cross-sectional shape and configuration of

the coated rods. It is the interlacing of the eigenvalues

associated with two distinct spectra that determine

frequency intervals over which double negative behavior

occur. The first spectra identified by the power series

method is the Dirichlet spectra of the cross-sectional

shape of the rod core. The spectra are local and depend

only on the shape of each rod core. The second spectra are

a type of electrostatic spectra associated with a three

phase medium and is global and intrinsic to the structural

geometry. The spectra are associated with the config-

uration of the periodic structure and the relative position

of the scatterers with respect to each other. Both spectral

problems emerge naturally from the power series method

and are not part of any imposed hypotheses. Electrostatic

spectra for two phase materials has been recognized as

useful in characterizing electromagnetic properties of

periodic nanostructures see, for example [37]. Earlier

pioneering work [4,23], identified electrostatic modes

and showed how their use allows for the separation of the

dielectric properties of the component materials from

underlying geometric effects due to the structure of
two-phase composites. Numerical methods for computa-

tion of electrostatic spectra for complex two-phase

structures are developed in [24].

For the problem at hand we apply the strategy

developed by the authors in [12,11] to express the

complex effective dielectric constant in terms of a new

type of three phase electrostatic spectra. The effective

dielectric constant is expressed in a spectral representa-

tion formula that explicitly links the configuration of the

scatters to effective properties. Similarly the Dirichlet

spectra deliver a representation formula for the magnetic

permittivity. This formula agrees with the representation

formula for the magnetic permittivity developed in the

work of [9] for periodic arrays of high dielectric rods. In

this article we provide explicit power series for the

associated Bloch wave solutions and dispersion relations.

The full details of all higher order boundary value

problems can be found in [12,11]. We apply the power

series representation to calculate the average Poynting

vector to show that in the homogenization limit the

energy flow and phase velocity are in opposite directions

over frequency intervals associated with double negative

behavior. We also point out that the double negative

behavior is not the necessary and sufficient condition for

the energy flow to be opposite to the phase velocity and

identify necessary and sufficient conditions for which it is

so see, Section 4. We compute center frequency and

bandwidth of double negative intervals for several

choices of inner and outer radii of the rod coating and

compare these with the dispersion curves for the

imaginary part of the wave number versus frequency.

From this we can identify which design delivers a double

negative interval associated with the least attenuation of

average electromagnetic energy flow (4.3) see, Fig. 4 of

Section 3 and the following discussion.

We conclude the introduction noting that formulas

for frequency-dependent effective magnetic permeabil-

ity together with conditions for generation of negative

effective permeability are developed in [7–9,14,16,21].

For periodic arrays made from metal fibers a homo-

genization theory delivering negative effective dielec-

tric constant [6] has been established. A novel method

for creating metamaterials with prescribed effective

dielectric permittivity and effective magnetic perme-

ability at a fixed frequency is developed in [26]. New

methodologies and issues for computing homogenized

properties for metamaterials using top down approaches

are presented in [2,3,38]. Earlier work on the power

series approach to sub-wavelength analysis has been

developed and applied in [17] for characterizing the

dynamic dispersion relations for Bloch waves inside

plasmonic crystals. It has also been applied to assess
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the influence of effective negative permeability on the

propagation of Bloch waves inside high contrast

dielectrics [18], the generation of negative permeability

inside metallic – dielectric resonators [36], and for

concentric coated cylinder assemblages generating a

double negative media [13].

2. Power series representations

We start with a metamaterial crystal characterized by

a period cell containing a centered coated cylinder with

plasmonic coating and high dielectric core. The core

radius and the coating radius are denoted by a and b

respectively (Fig. 2). The cylinder is parallel to the x3

axis and is periodically arranged within a square lattice

over the transverse x = (x1, x2) plane. The period of the

lattice is denoted by d. For TE-polarized Bloch-waves,

the magnetic field is aligned with the cylinders and the

electric field lies in the transverse plane. The direction

of propagation is described by the unit vector k̂ ¼
ðk1; k2Þ and k is the complex wave number is the

complex wave number and the fields are of the form

H3 ¼ H3ðxÞeiðkk̂�x�tvÞ; E1 ¼ E1ðxÞeiðkk̂�x�tvÞ;

E2 ¼ E2ðxÞeiðkk̂�x�tvÞ
(2.1)

where H3(x), E1(x), and E2(x) are d-periodic for x in R2.

Here c denotes the speed of light in free space. We

denote the unit vector pointing along the x3 direction by

e3, and the periodic dielectric permittivity and magnetic

permeability are denoted by ad and m respectively. The
o

y

b

theta

x

G

R

P

H

r

0.5a

Fig. 2. The period cell: R represents the high dielectric core, P the

plasmonic coating and H denotes the connected host material.
electric field component E = (E1, E2) of the wave is

determined by

E ¼ � ic

vad
e3 � rH3: (2.2)

The materials are assumed non-magnetic hence the

magnetic permeability m is set to unity inside the coated

cylinder and host. The oscillating dielectric permittivity

for the crystal is a d periodic function in the transverse

plane and is described by ad = ad(x/d) where ad(y) is the

unit periodic dielectric function taking the values

adðyÞ ¼
eH in the host material;
ePðvÞ in the frequency dependent

‘‘plasmonic00 coating;
eR ¼ g=d2 in the high dielectric core:

8>><
>>:

(2.3)

Here g is a complex number and has dimensions of area

and the frequency dependent permittivity eP of the

plasmonic coating is given by

ePðvÞ ¼ 1 �
v2

p

v2 þ ivcv
; (2.4)

where the parameters are the incident frequency v, the

damping constant vc and the plasma frequency vp.

Setting hdðxÞ ¼ H3ðxÞeiðkk̂�xÞ the Maxwell equations

take the form of the Helmholtz equation given by

�rx � a�1
d

x

d

� �
rxhdðxÞ

� �
¼ v2

c2
hd in R2: (2.5)

We set x = dy for y inside the unit period Y = [� 0.5,

0.5]2, put b ¼ dkk̂ and write u(y) = H3(dy). The depen-

dent variable is written ud(y) = hd(dy) = u(y) exp ib�y,

and we recover the equivalent problem over the unit

period cell given by

�ry � ða�1
d ðyÞryudÞ ¼ d2v2

c2
ud in Y : (2.6)

We start by introducing the power series in terms of the

ratio of period size to wavelength h = dk and frequency

j ¼ v
kc.

For these parameters the dielectric permittivity in the

coating takes the value ePðjkÞ ¼ 1 � v2
p=c2=ðjkÞ2þ

iðvc=cÞðjkÞ, and (2.6) is given by

�ry � ða�1
d ðyÞryudðyÞÞ ¼ h2j2udðyÞ in Y : (2.7)

The unit period cell for the generic metamaterial system

is represented in Fig. 2. In what follows R represents the

rod core cross section containing high dielectric mate-

rial, P the coating containing the plasmonic material

and H denotes the connected host material. The jump
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conditions implied by (2.7) are given by

n � ryud
jH ¼ n � e�1

P ðjkÞn � ryud
jP ; H�P interface;

(2.8)

n � e�1
P ðjkÞryud

jP ¼ n � d
2

g
ryud

jR ; R�P interface:

(2.9)

Here ‘‘H–P’’ interface denotes the interface separating

host from the plasmonic coating and ‘‘R–P’’ interface

denotes the interface separating the rod core material

and the plasmonic coating and n denotes the normal

vectors pointing from the core into the coating on the

‘‘R–P’’ interface and the coating into the host on the

‘‘H–P’’ interface.

Expanding the Bloch wave ud eigenvalue j pair in

power series

ud ¼ u0

X1
m¼0

hmimcmeik̂�try (2.10)

j ¼
X1
m¼0

hmjm (2.11)

and substitution of (2.10) and (2.11) into (2.7)–(2.9) we

equate like powers of h to identify the boundary value

problem satisfied by each term in the power series. Here u0

is an arbitrary constant factor appearing in front of the sum

(2.10). The leading order dispersion relation is given by

j2
0 ¼ n�2

eff ðj0kÞ; (2.12)

where the complex effective index of diffraction n2
eff

depends upon the direction of propagation k̂ and is written

n2
eff ðj0kÞ ¼

meff ðj0kÞ
e�1

eff ðj0kÞk̂ � k̂: (2.13)

The frequency dependent complex effective magnetic

permeability meff and complex effective dielectric per-

mittivity eeff are given by

meff ðj0Þ ¼
Z

Y

c0 ¼ uH þ uP þ
X1
n¼1

mn < fn >
2
R

mn � gk2j2
0

(2.14)

and

e�1
eff ðj0Þk̂ � k̂ ¼

Z
YnR

a�1
d ðyÞðrc1 þ k̂Þ � k̂ dy

¼ uH þ e�1
P ðj0kÞuP �

X
�1=2 < lh < 1=2

�
jað1Þlh
j2 þ 2e�1

P ðj0kÞað1Þlh
a
ð2Þ
lh
þ e�2

P ðj0kÞjað2Þlh
j2

1 þ ðe�1
P ðj0kÞ � 1Þð1

2
� lhÞ

  !
;

(2.15)
where uH and uP are the areas occupied by regions H and

P respectively. The magnetic Bloch wave solution of

(2.5) is given by

H3¼u0 c0

x

d

� �
þ
X1
l¼1

ðtrÞlilcl

x

d

� �  !

� exp i kk̂ � x � tvð Þf g: (2.16)

These expansions and leading order dispersion relations

are found following the methods developed in [12]. The

poles mn of the effective magnetic permeability function

(2.14) are given by the Mie resonances of the rod core

which for this case are given by the Dirichlet spectrum

of the core cross section. The poles lh of the effective

dielectric permittivity function (2.15) occur at the elec-

trostatic resonances (also known as plasmon reso-

nances) of the structure. For a lattice of period d the

power series representation applies and the leading

order dispersion relation dominates provided that the

dielectric constant eR in the rod core is large and on the

order of 1/d2.

From a physical perspective the plasmon resonances

are associated with source free fields. These resonances

occur at frequencies for which free-space wavelengths

are large in comparison with the transverse dimension

of the rods, i.e., |h| = |kd| < 1. For this case the time

harmonic electromagnetic fields surrounding the coated

rod and within the coating vary almost with the same

phase. Hence at any instant of time these fields appear to

be electrostatic. When the dielectric permittivity of the

metallic coating is negative, source-free electrostatic

fields will appear within the coating and in the region

surrounding the rods. It is these electrostatic resonances

or plasmons that provide the poles of the effective

dielectric permittivity function. Here the electrostatic

resonances can occur only in media with dispersive

dielectric properties for which the real part of the

dielectric permittivity assumes negative values for some

range of frequencies. For the metal coating used here,

this frequency range is below the plasma frequency

given by the Drude model (2.4).

3. Dispersion curves

In this section, we recover leading order behavior for

the dispersive behavior of the metamaterial for periods

with finite size d > 0. To proceed we fix d = c/vp. In

these variables the power series expansion for the

dispersion relation is given by

v

v p

� �2

¼ v0

v p

� �2

þ
X1
l¼1

ðdkÞl vl

v p

� �2

; (3.1)
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where higher order terms vl are functions of v0. To

leading order the dispersion relation is given by [12,11],

ðdkÞ2 ¼ v0

v p

� �2

n2
eff (3.2)

where the complex effective refractive index neff

depends on the direction of propagation k̂ and normal-

ized frequency v0/vp and is given by

n2
eff ¼ meff

v0=v p

e�1
eff ðv0=v pÞk̂ � k̂ : (3.3)

Note that dk = dkr + idki where kr and ki are the real and

imaginary parts of k.

With this choice we can write out the real and

imaginary parts of meff explicitly as follows

Reðmeff Þ ¼ uH þ uP

þ
X1
n¼1

mn < fn >
2
Rðe0Rmn � e0Rðv0=v pÞ2Þ

m2
n � 2mne

0
Rðv0=v pÞ2 þ jeRj2ðv0=v pÞ

(3.4)

and

Imðmeff Þ ¼
X1
n¼1

mn < fn >
2
Re00Rðv0=v pÞ2

m2
n � 2mne

0
Rðv0=v pÞ2 þ jeRj2ðv0=v pÞ4

(3.5)

where eR ¼ e0R þ ie00R. Before writing out the real and

imaginary parts of e�1
eff k̂ � k̂, for convenience, we set

Ah ¼
v0

v p

� �2

� 1

  !2

� vc

v p

� �2
v0

v p

� �2
0
@

1
Ajað1Þlh

j2

þ 2
v0

v p

� �2
v0

v p

� �2

� vc

v p

� �2

� 1

  !
a
ð1Þ
lh

a
ð2Þ
lh

þ v0

v p

� �2
v0

v p

� �2

� vc

v p

� �2
  !

jað2Þlh
j2;

Bh ¼ 2
vc

v p

� �
v0

v p

� �
v0

v p

� �2

� 1

  !
jað1Þlh
j2 þ 2

vc

v p

� �

� v0

v p

� �
2

v0

v p

� �2

� 1

  !
a
ð1Þ
lh

a
ð2Þ
lh

þ 2
vc

v p

� �
v0

v p

� �3

jað2Þlh
j2;
Ch ¼
v0

v p

� �2

� 1

  !2

� vc

v p

� �2
v0

v p

� �2

þ 1

2
� lh

� �

� v0

v p

� �2

� 1

  !
;

Dh ¼ 2
vc

v p

� �
v0

v p

� �
v0

v p

� �2

� 1

  !
þ 1

2
� lh

� �

� vc

v p

� �
v0

v p

� �
:

Then the real and imaginary parts of e�1
eff k̂ � k̂ are

given by

Reðe�1
eff k̂ � k̂Þ

¼ uH þ
ðv0=v pÞ2ððv0=v pÞ2 þ ðvc=v pÞ2 � 1Þ
ððv0=v pÞ2 � 1Þ þ ðvc=v pÞ2ðv0=v pÞ2

uP

�
X

�1=2 < lh < 1=2

AhCh þ BhDh

C2
h þ D2

h

(3.6)

and

Imðe�1
eff k̂ � k̂Þ

¼ � ðvc=v pÞðv0=v pÞ
ððv0=v pÞ2 � 1Þ þ ðvc=v pÞ2ðv0=v pÞ2

uP

þ
X

�1=2 < lh < 1=2

AhDh � BhCh

C2
h þ D2

h

:

(3.7)

Table 1 shows the changes of the double negative

interval when inner radius and outer radius vary. In each

cell, the upper number denotes the length of the

frequency interval where both real parts of meff and

e�1
eff k̂ � k̂ are negative. The lower number shows the

center value of v0/vp in the double negative interval.

Fig. 3 shows the real and imaginary parts of meff and

e�1
eff k̂ � k̂ associated with different choice of inner radius

a and outer radius b when eR = 200 + i5 and vc/

vp = 0.01. Here Imðe�1
eff k̂ � k̂Þ � 0 and the imaginary

part of the effective dielectric constant ei given by (4.5)

is positive. The green strip gives the interval in which

both real parts of meff and eeff are negative. (a) is for the

case a = 0.5b, b = 0.4, (b) for a = 0.6b, b = 0.4, and (c)

for a = 0.5b, b = 0.45, and (d) for a = 0.65b, b = 0.45. It

highlights the changes of the double negative interval

with respect to the change in the inner and outer radii of

the coating. Fig. 4 shows the dispersion curves

ndamentals and Applications 11 (2013) 442–452 447
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Fig. 3. Real and imaginary part of the effective permittivity and permeability associated with different choice of inner and outer radii for the coating,

when eR = 200 + i5 and vc/vp = 0.01. The green strip gives the interval where the real parts of mr = meff and er ¼ e�1
eff k̂ � k̂=je�1

eff k̂ � k̂j2 are both

negative. (a) For a = 0.5b, b = 0.4; (b) for a = 0.6b, b = 0.4; (c) for a = 0.5b, b = 0.45; (d) for a = 0.65b, b = 0.45. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
associated with different choices of inner radius a and

outer radius b when, eR = 200 + i5 and vc/vp = 0.01.

The dashed line corresponds to the imaginary part

dki while the solid line corresponds to the real part

dkr. The green strip denotes the interval where

mr = Re(meff) and er ¼ Reðe�1
eff k̂ � k̂Þ=je�1

eff k̂ � k̂j2 are

both negative. (a) For the case a = 0.5b, b = 0.4, (b)

for a = 0.6b, b = 0.4, (c) for a = 0.5b, b = 0.45, and (d)

for a = 0.65b, b = 0.45. From Fig. 4 we see that the

double negative interval associated with case (a), the

inner and outer coating radii of a = 0.5b and b = 0.4, is

associated with the least attenuation  of average

electromagnetic energy flow (4.3) along the direction

of propagation.

4. Homogenization and energy flow in the
double negative regime

For TE-polarized waves, the magnetic field H(x/

d) = (0, 0, H3(x/d)) where H3(x/d) is given by (2.16) and
the electric field E(x/d) = (E1(x/d), E2(x/d), 0). Both

fields are related through (2.2). Therefore

E
x

d

� �
¼ ic

vad
@x2

H3

x

d

� �
e1 �

ic

vad
@x1

H3

x

d

� �
e2; (4.1)

where ei is the unit vector along the xi direction for i = 1,

2, 3. The time average of the Poynting vector is given by

Pd ¼ 1

2
Re E

x

d

� �
� H

x

d

� �� �

¼ 1

2
Re E2

x

d

� �
H3

x

d

� �
e1 � E1

x

d

� �
H3

x

d

� �
e2

� �
:

(4.2)

Consider any fixed averaging domain D transverse to

the cylinders and the spatial average of the electromag-

netic energy flow along the direction k̂ over this domain

is written hPd � k̂iD. Substituting (2.16) and (4.1) into

(4.2) and taking the limit of (4.2) as d ! 0 shows that
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Fig. 4. Dispersion curves associated with different choice of inner and outer radii for the coating, when eR = 200 + i5 and vc/vp = 0.01. The dashed

line corresponds to the imaginary part dki, the solid line corresponds to the real part dkr. The green stip gives the interval where Re(meff) and

Reðe�1
eff k̂ � k̂Þ are both negative. (a) is for a = 0.5b, b = 0.4; (b) for a = 0.6b, b = 0.4; (c) for a = 0.5b, b = 0.45; (d) for a = 0.65b, b = 0.45. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the average electromagnetic energy flow along the

direction k̂ is given by

lim
d ! 0
hPd � k̂iD ¼ Re

meff

neff

� �
ju0j2

2
expð�2ImðkÞk̂ � xÞ:

(4.3)

In the d ! 0 limit, the phase velocity of the effective

medium is along the direction k̂ and determined by

v p ¼
c

Reðneff Þ
k̂: (4.4)

For future reference we denote mr = Re(meff), mi = Im(-

meff) and

er ¼ Reðeeff Þ ¼
Reðe�1

eff k̂ � k̂Þ
je�1

eff k̂ � k̂j2
;

ei ¼ Imðeeff Þ ¼
�Imðe�1

eff k̂ � k̂Þ
je�1

eff k̂ � k̂j2
:

(4.5)
There are two resultant complex refractive indices,

neff � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meff eeff
p

where meff = mr + imi and eef-

f = er + iei. Now neff� can be written as

neff � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmeff jjeeff j

q
expðifnÞ; fn ¼

fe þ fm

2
:

(4.6)

Here fe and fm are the arguments of eeff and meff

respectively. They satisfy 0 � fe, fm � p. Therefore

fn 2 [0, p]. Then we find that

Re
meff

neff þ

� �
> 0 and Re

meff

neff �

� �
< 0: (4.7)

Hence when Re(neff+) < 0 (and Re(neff�) > 0), (4.3) and

(4.4) show that in the homogenization limit the energy

flow and phase velocity are in opposite directions.

Re(neff+) < 0 indicates that fn 2 [p/2, p]. Three cases

should be considered: (i) p/2 � fe � p, p � fe �
fm � p/2; (ii) p/2 � fm � p, p � fm � fe � p/2; (iii)
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p/2 � fe, fm � p. Straightforward calculation shows

that Re(neff+) < 0 is equivalent to the following

inequality

mrjeeff j þ erjmeff j < 0: (4.8)

We notice that if mr < 0 and er < 0, then (4.8) holds. In

other words, if Re(meff) < 0 and Reðe�1
eff k̂ � k̂Þ < 0, then

Re(neff+) < 0, hence in the homogenization limit the

energy flow and phase velocity are in opposite direc-

tions. However it should remarked that mr < 0 and

er < 0 are not the necessary and sufficient condition

for (4.8). That is, the frequency interval such that the

phase velocity is opposite to the energy flow should be

larger than the interval in which the real parts of meff and

e�1
eff k̂ � k̂ are both negative.

5. Electrostatic resonances, plasmons, and Mie

resonances

In what follows we describe the eigenvalue problems

for the source free fields associated with electrostatic

resonances (i.e., plasmon resonances) and Mie reso-

nances. Here the Mie resonances are associated with the

rod core and are precisely the eigenfunctions associated

with the Dirichlet spectrum of the core cross section.

While the electrostatic resonances are expressed by

generalized source free fields permeating the rod

coating and host. These resonances while not interact-

ing directly control the physics of the dispersion relation

to leading order by fixing the poles of the frequency

dependent dielectric permittivity (electrostatic reso-

nances) and the poles of the effective magnetic

permeability (Dirichlet resonances). The first two terms

in the power series expansion for the magnetic field c0

and c1 are expressed in terms of the eigenfunctions

associated with these resonances. To start we write

down the boundary value problems determining c0 and

c1 obtained by equating like powers of the series

expansion. The first term c0 solves the following

problem outside the rod core R on the domain Y \ R

given by

�ry � ða�1
0 ðyÞryc0ðyÞÞ ¼ 0 in YnR (5.1)

with n � r yc0 = 0 on the boundary of R. Here a�1
0 ¼ 1

in the host and a�1
0 ¼ e�1

P ðj0kÞ in the coating. Equation

(5.1) is an electrostatic resonance problem associated

with a period cell containing a coated rod with core of

infinite dielectric constant immersed in a host of unit

dielectric constant. As written it appears to depend on

the material properties of the coating. However we

follow [12,11] to see that it can be written as an
equivalent electrostatic spectral problem depending

only on the periodic coated rod configuration. The

eigenpairs cln
; ln for the electrostatic problem depend

only on geometry and are independent of the dielectric

properties of the coating and solve the following elec-

trostatic resonance problem intrinsic to the structure

given by

ry � ðsðyÞrycln
Þ ¼ lnDycln

; on YnR; (5.2)

with n � rycln
¼ 0 on the boundary of R and s = �1/2

in the coating and s = 1/2 in the host. It is shown in [12]

that the only non-constant solutions of (5.1) are given by

the plasmons cln
and only when e�1

P ðj0kÞ ¼ ðlnþ
1=2Þ=ðln � 1=2Þ. Hence we suppose that e�1

P ðj0kÞ 6¼
ðln þ 1=2Þ=ðln � 1=2Þ and we can choose c0 = 1 for

points inside Y \ R. The theory developed in [12] shows

the generalized electrostatic spectra {ln} lies in the

open interval (� 1/2, 1/2) with zero being the only

accumulation point. The plasmons fcln
g1n¼0 associated

with the electrostatic resonances flng1n¼1 form a com-

plete orthonormal set of functions in the space of mean

zero periodic functions belonging to H1
perðYnRÞ that are

harmonic in P and H, [12]. Here orthonormality is with

respect to the inner product ðu; vÞ ¼
R

YnRru � rv dx.

The complete orthonormal systems of eigenfunctions

associated with electrostatic resonances and Dirichlet

eigenvalues are used to solve for c0 and c1 in H [ P.

We follow [12] to find that

�Dc0 ¼ gk2j2
0c0; in R (5.3)

with c0 = 1 on the boundary of R. We also find that c1 is

the solution of

�Dc1 ¼ 0; in P and in H (5.4)

and the corresponding transmission conditions for c1

are given by

n � ðrc1 þ k̂ÞjH ¼ n � e�1
P ðj0kÞðrc1 þ k̂ÞjP ;

H�P interface;
(5.5)

n � e�1
P ðj0kÞðrc1 þ k̂ÞjP ¼ 0; R�P interface: (5.6)

Expanding c1 in terms of the complete set of

orthonormal eigenfunctions fcln
g we obtain the

representation

c1 ¼ �
X

�1=2 < ln < 1=2

ða1
ln
þ e�1

P ðj0kÞa2
ln
Þ

1 þ ðe�1
P ðj0kÞ � 1Þð1

2
� lnÞ

  !
cln

;

in YnR
(5.7)
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with

a1
ln
¼ k̂ �

Z
H

rcln
dy; and a2

ln
¼ k̂ �

Z
P

rcln
dy:

(5.8)

A straight forward calculation gives c0 in R in terms of

the complete set of Dirichlet eigenfunctions and eigen-

values {mn} and {fn}:

c0 ¼
X1
n¼1

mn < fn > R

mn � gk2j2
0

fn; in R; with (5.9)

< fn > R ¼
Z

R

fn dy: (5.10)
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