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HÖLDER SPACE∗

PRASHANT K. JHA† AND ROBERT LIPTON†

Abstract. In this work, we calculate the convergence rate of the finite difference approximation
for a class of nonlocal fracture models. We consider two point force interactions characterized by a
double well potential. We show the existence of a evolving displacement field in Hölder space with
Hölder exponent γ ∈ (0, 1]. The rate of convergence of the finite difference approximation depends
on the factor Cshγ/ε2 where ε gives the length scale of nonlocal interaction, h is the discretization
length, and Cs is the maximum of Hölder norm of the solution and its second derivatives during
the evolution. It is shown that the rate of convergence holds for both the forward Euler scheme
as well as general single step implicit schemes. A stability result is established for the semidiscrete
approximation. The Hölder continuous evolutions are seen to converge to a brittle fracture evolution
in the limit of vanishing nonlocality.
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finite difference approximation
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1. Introduction. Nonlocal formulations have been proposed to describe the
evolution of deformations which exhibit loss of differentiability and continuity; see [28]
and [31]. These models are commonly referred to as peridynamic models. The main
idea is to define the strain in terms of displacement differences and allow nonlocal
interactions between material points. This generalization of strain allows for the
participation of a larger class of deformations in the dynamics. Numerical simulations
based on peridynamic modeling exhibit formation and evolution of sharp interfaces
associated with phase transformation and fracture [9], [32], [27], [15], [1], [12], [24],
[6], [19], [30], [34], [16]. A recent summary of the state of the art can be found in [14].

In this work, we provide a numerical analysis for the class of nonlocal models
introduced in [22] and [23]. These models are defined by a double well two point po-
tential. Here one potential well is centered at zero and associated with elastic response
while the other well is at infinity and associated with surface energy. The rationale
for studying these models is that they are shown to be well posed over the class of
square integrable nonsmooth displacements and, in the limit of vanishing nonlocality,
their dynamics recover features associated with sharp fracture propagation; see [22]
and [23]. The numerical simulation of prototypical fracture problems using this model
is carried out in [24]. In order to develop an L2 approximation theory, we show the
nonlocal evolution is well posed over a more regular space of functions. To include
displacement fields which have no well-defined derivatives, we consider displacement
fields in the Hölder space C0,γ with Hölder exponent γ taking any value in (0, 1]. We
show that a unique evolution exists in C0,γ for C0,γ initial data and body force. The
semidiscrete approximation to the Hölder continuous evolution is considered and it is
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 907

shown that at any time its energy is bounded by the initial energy and the work done
by the body force. We develop an approximation theory for the forward Euler scheme
and show that these ideas can be easily extended to the backward Euler scheme as well
as other implicit one step time discretization schemes. It is found that the discrete
approximation converges to the exact solution in the L2 norm uniformly over finite
time intervals with the rate of convergence proportional to (Ct∆t+ Csh

γ/ε2), where
∆t is the size of time step, h is the size of spatial mesh discretization, and ε is the
length scale of nonlocal interaction relative to the size of the domain. The constant
Ct depends on the L2 norm of the time derivatives of the solution and Cs depends
on the Hölder norm of the solution and the Lipschitz constant of peridynamic force.
We point out that the constants appearing in the convergence estimates with respect
to h can be dependent on the horizon and be large when ε is small. This is discussed
in section 3 and an example is provided in section 6. These results show that while
errors can grow with each time step, they can be controlled over finite times t by suit-
able spatial temporal mesh refinement. We then apply the methods developed in [22]
and [23] to show that in the limit ε→ 0, the Hölder continuous evolutions converge to
a limiting sharp fracture evolution with bounded Griffith’s fracture energy. Here the
limit evolution is differentiable off the crack set and satisfies the linear elastic wave
equation.

In the language of nonlocal operators, the integral kernel associated with the non-
local model studied here is Lipschitz continuous guaranteeing global stability of the
finite difference approximation. This is in contrast to PDE based evolutions where
stability can be conditional. In addition we examine local stability. Unfortunately
the problem is nonlinear so we don’t establish Courant–Friedrichs–Lewy (CFL) con-
ditions but instead identify a mode of dynamic instability that can arise during the
evolution. This type of instability is due to a radial perturbation of the solution and
causes error to grow with each time step for the Euler scheme. For implicit schemes
this perturbation can become unstable in parts of the computational domain where
there is material softening; see subsection 3.4. Of course stability conditions like
the CFL conditions for linear nonlocal equations are of importance for guidance in
implementations. In the case of d = 1, a CFL type condition is obtained for the
finite difference and finite element approximation of the linear peridynamic equation;
see [17]. Recent work develops a new simple CFL condition for one dimensional lin-
earized peridynamics in the absence of body forces [20]. Related analysis for the linear
peridynamic equation in one dimension is taken up in [35] and [7]. The recent and
related work [13] and [18] addresses numerical approximation for problems of nonlocal
diffusion.

There is now a large body of contemporary work addressing the numerical ap-
proximation of singular kernels with application to nonlocal diffusion, advection, and
mechanics. Numerical formulations and convergence theory for nonlocal p-Laplacian
formulations are developed in [10] and [26]. Numerical analysis of nonlocal steady
state diffusion is presented in [33], [25], and [8]. The use of fractional Sobolev spaces
for nonlocal problems is investigated and developed in [13]. Quadrature approxima-
tions and stability conditions for linear peridynamics are analyzed in [35] and [29].
The interplay between nonlocal interaction length and grid refinement for linear peri-
dynamic models is presented in [7]. Analysis of adaptive refinement and domain
decomposition for linearized peridynamics are provided in [3], [21], and [2]. This
list is by no means complete and the literature on numerical methods and analysis
continues to grow.

The paper is organized as follows. In section 2, we describe the nonlocal model.
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908 PRASHANT K. JHA AND ROBERT LIPTON

In subsection 2.2, we state theorems which show Lipschitz continuity of the nonlocal
force (Theorem 1) and the existence and uniqueness of an evolution over any finite
time interval (Theorem 2). In section 3, we compute the convergence rate of the
forward Euler scheme as well as implicit one step methods. We identify stability
of the semidiscrete approximation with respect to the energy in subsection 3.3. In
subsection 3.4, we identify local instabilities in the fully discrete evolution caused
by suitable radial perturbations of the solution. In section 4, we give the proof of
Theorems 1, 6, and 2. The convergence of Hölder continuous evolutions to sharp
fracture evolutions as ε → 0 is shown in section 5. In section 6, we present an
example showing the effect of the constants Ct and Cs on the convergence rate and
summarize our results.

2. Double well potential and existence of a solution. In this section, we
present the nonlinear nonlocal model. Let D ⊂ Rd, d = 2, 3, be the material domain
with characteristic length-scale of unity. Let ε ∈ (0, 1] be the size of horizon across
which nonlocal interaction between points takes place. The material point x ∈ D
interacts nonlocally with all material points inside a horizon of length ε. Let Hε(x)
be the ball of radius ε centered at x containing all points y that interact with x.
After deformation the material point x assumes position z = x + u(x). In this
treatment we assume infinitesimal displacements and the strain is written in terms of
the displacement u as

S = S(y,x;u) :=
u(y)− u(x)

|y − x|
· y − x
|y − x|

.

Let W ε(S,y − x) be the nonlocal potential density per unit length between ma-
terial point y and x. The energy density at x is given by

W ε(S,x) =
1

εdωd

∫
Hε(x)

|y − x|W ε(S,y − x)dy,

where ωd is the volume of a unit ball in d-dimension and εdωd is the volume of the
ball of radius ε. The potential energy is written as

PDε(u) =

∫
D

W ε(S(u),x)dx,

and the displacement field satisfies the following equation of motion:

ρ∂2
ttu(t,x) = −∇PDε(u) + b(t,x)(1)

for all x ∈ D. Here we have

−∇PDε(u)(x) =
2

εdωd

∫
Hε(x)

∂SW
ε(S,y − x)

y − x
|y − x|

dy,

where b(t,x) is the body force, ρ is the density, and ∂SW
ε is the derivative of potential

with respect to the strain.
We prescribe the zero Dirichlet condition on the boundary of D,

u(x) = 0 ∀x ∈ ∂D,(2)

where we have denoted the boundary by ∂D. We extend the zero boundary condition
outside D to R3.

The peridynamic equation, boundary conditions, and initial conditions

u(0,x) = u0(x), ∂tu(0,x) = v0(x)(3)

determine the peridynamic evolution u(t,x).
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 909

Peridynamics energy. The total energy Eε(u)(t) is given by the sum of kinetic
and potential energy given by

Eε(u)(t) =
1

2
||u̇(t)||L2(D;Rd) + PDε(u(t)),(4)

where potential energy PDε is given by

PDε(u) =

∫
D

[
1

εdωd

∫
Hε(x)

W ε(S(u),y − x)dy

]
dx.

Differentiation of (4) gives the identity

d

dt
Eε(u)(t) = (ü(t), u̇(t))− (−∇PDε(u(t)), u̇(t)),(5)

where (·, ·) is the inner product on L2(Rd, D) and ‖ · ‖L2(Rd,D) is the associated norm.

2.1. Nonlocal potential. We consider the nonlocal two point interaction po-
tential density W ε of the form

W ε(S,y − x) = ω(x)ω(y)
Jε(|y − x|)
ε |y − x|

f(|y − x|S2),(6)

where f : R+ → R is assumed to be positive, smooth, and concave with the following
properties:

lim
r→0+

f(r)

r
= f ′(0), lim

r→∞
f(r) = f∞ <∞.(7)

The potential W ε(S,y−x) is of double well type and convex near the origin where
it has one well and is concave and bounded at infinity where it has the second well.
Jε(|y − x|) models the influence of separation between points y and x. We define Jε

by rescaling J(|ξ|), i.e., Jε(|ξ|) = J(|ξ| /ε). Here J is zero outside the ball H1(0) and
satisfies 0 ≤ J(|ξ|) ≤M for all ξ ∈ H1(0). The domain function ω enforces boundary
conditions on ∂SW

ε at the boundary of the body D. Here the boundary is denoted
by ∂D and ω is a nonnegative differentiable function 0 ≤ ω ≤ 1. On the boundary
ω = 0 and ω = 1 for points x inside D with distance greater than ε away from the
boundary. We continue ω by zero for all points outside D.

The potential described in (6) gives the convex-concave dependence of W (S,y−x)
on the strain S for fixed y − x; see Figure 1. Initially the force is elastic for small
strains and then softens as the strain becomes larger; see Figure 2. The critical strain
where the force between x and y begins to soften is given by Sc(y,x) := r̄/

√
|y − x|

and the force decreases monotonically for

|S(y,x;u)| > Sc.

Here r̄ is the inflection point of r :→ f(r2) and is the root of the following equation:

f ′(r2) + 2r2f ′′(r2) = 0.
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910 PRASHANT K. JHA AND ROBERT LIPTON

Fig. 1. Two point potential W ε(S,y − x) as a function of strain S for fixed y − x.

Fig. 2. Nonlocal force ∂SW
ε(S,y − x) as a function of strain S for fixed y − x. Second

derivative of W ε(S,y − x) is zero at ±r̄/
√
|y − x|.

2.2. Existence of solution. Let C0,γ(D;Rd) be the Hölder space with exponent
γ ∈ (0, 1]. The closure of continuous functions with compact support on D in the
supremum norm is denoted by C0(D). We identify functions in C0(D) with their
unique continuous extensions to D. It is easily seen that functions belonging to
this space take the value zero on the boundary of D; see, e.g., [11]. We introduce
C0,γ

0 (D) = C0,γ(D)∩C0(D). In this paper we extend all functions in C0,γ
0 (D) by zero

outside D. The norm of u ∈ C0,γ
0 (D;Rd) is taken to be

‖u‖C0,γ(D;Rd) := sup
x∈D
|u(x)|+ [u]C0,γ(D;Rd) ,

where [u]C0,γ(D;Rd) is the Hölder seminorm and given by

[u]C0,γ(D;Rd) := sup
x 6=y,
x,y∈D

|u(x)− u(y)|
|x− y|γ

,

and C0,γ
0 (D;Rd) is a Banach space with this norm. Here we make the hypothesis that

the domain function ω belongs to C0,γ
0 (D;Rd).
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We write the evolution equation (1) as an equivalent first order system with
y1(t) = u(t) and y2(t) = v(t) with v(t) = ∂tu(t). Let y = (y1, y2)T where y1, y2 ∈
C0,γ

0 (D;Rd), and let F ε(y, t) = (F ε1 (y, t), F ε2 (y, t))T such that

F ε1 (y, t) := y2,(8)

F ε2 (y, t) := −∇PDε(y1) + b(t).(9)

The initial boundary value associated with the evolution equation (1) is equivalent to
the initial boundary value problem for the first order system given by

d

dt
y = F ε(y, t),(10)

with initial condition given by y(0) = (u0,v0)T ∈ C0,γ
0 (D;Rd)× C0,γ

0 (D;Rd).
The function F ε(y, t) satisfies the Lipschitz continuity given by the following

theorem.

Theorem 1 (Lipschitz continuity and bound). Let X = C0,γ
0 (D;Rd)×C0,γ

0 (D;Rd).
The function F ε(y, t) = (F ε1 , F

ε
2 )T , as defined in (8) and (9), is Lipschitz continuous

in any bounded subset of X. We have, for any y, z ∈ X and t > 0,

‖F ε(y, t)− F ε(z, t)‖X

≤
(
L1 + L2

(
‖ω‖C0,γ(D) + ‖y‖X + ‖z‖X

))
ε2+α(γ)

‖y − z‖X ,(11)

where L1, L2 are independent of u,v and depend upon peridynamic potential function
f and influence function J and the exponent α(γ) is given by

α(γ) =

{
0 if γ ≥ 1/2,

1/2− γ if γ < 1/2.

Furthermore, for any y ∈ X and any t ∈ [0, T ], we have the bound

‖F ε(y, t)‖X ≤
L3

ε2+α(γ)
(1 + ‖ω‖C0,γ(D) + ‖y‖X) + b,(12)

where b = supt ‖b(t)‖C0,γ(D;Rd) and L3 is independent of y.

We easily see that on choosing z = 0 in (11) that −∇PDε(u)(x) is in C0,γ(D;R3)
provided that u belongs to C0,γ(D;R3). Since −∇PDε(u)(x) takes the value 0 on
∂D, we conclude that −∇PDε(u)(x) belongs to C0,γ

0 (D;R3).
In Theorem 6.1 of [23], the Lipschitz property of a peridynamic force is shown in

X = L2(D;Rd)× L2(D;Rd). It is given by

‖F ε(y, t)− F ε(z, t)‖X ≤
L

ε2
‖y − z‖X ∀y, z ∈ X,∀t ∈ [0, T ](13)

for all y, z ∈ L2
0(D;Rd)2. For this case L does not depend on u,v. We now state the

existence theorem.
The following theorem gives the existence and uniqueness of solution in any given

time domain I0 = (−T, T ).

Theorem 2 (existence and uniqueness of Hölder solutions of cohesive dynamics
over finite time intervals). For any initial condition x0∈X=C0,γ

0 (D;Rd)×C0,γ
0 (D;Rd),
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912 PRASHANT K. JHA AND ROBERT LIPTON

time interval I0 = (−T, T ), and right-hand side b(t) continuous in time for t ∈ I0 such
that b(t) satisfies supt∈I0 ||b(t)||C0,γ <∞, there is a unique solution y(t) ∈ C1(I0;X)
of

y(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ,

or, equivalently,

y′(t) = F ε(y(t), t), with y(0) = x0,

where y(t) and y′(t) are Lipschitz continuous in time for t ∈ I0.

The proof of this theorem is given in section 4. We now describe the finite differ-
ence scheme and analyze its convergence to Hölder continuous solutions of cohesive
dynamics.

3. Finite difference approximation. In this section, we present the finite
difference scheme and compute the rate of convergence. We first consider the semidis-
crete approximation and prove the bound on energy of semidiscrete evolution in terms
of initial energy and the work done by body forces.

Let h be the size of a mesh and let ∆t be the size of the time step. We will keep
ε fixed and assume that h < ε < 1. Let Dh = D ∩ (hZ)d be the discretization of
material domain; see Figure 3. Let i ∈ Zd be the index such that xi = hi ∈ D. Let Ui
be the unit cell of volume hd corresponding to the grid point xi. The exact solution
evaluated at grid points is denoted by (ui(t),vi(t)).

3.1. Time discretization. Let [0, T ] ∩ (∆tZ) be the discretization of time do-
main where ∆t is the size of the time step. Denote the fully discrete solution at
(tk = k∆t,xi = ih) as (ûki , v̂

k
i ). Similarly, the exact solution evaluated at grid points

is denoted by (uki ,v
k
i ). We enforce boundary condition ûki = 0 for all xi /∈ D and for

all k.
We begin with the forward Euler time discretization, with respect to velocity, and

the finite difference scheme for (ûki , v̂
k
i ) is written as

ûk+1
i − ûki

∆t
= v̂k+1

i ,(14)

v̂k+1
i − v̂ki

∆t
= −∇PDε(ûk)(xi) + bki .(15)

The scheme is complemented with the discretized initial conditions û0
i = (û0)i and

v̂0
i = (v̂0)i. If we substitute (14) into (15), we get a standard central difference scheme

in time for a second order in time differential equation. Here we have assumed, without
loss of generality, ρ = 1.

The piecewise constant extensions of the discrete sets {ûki }i∈Zd and {v̂ki }i∈Zd are
given by

ûk(x) :=
∑

i,xi∈D
ûki χUi(x),

v̂k(x) :=
∑

i,xi∈D
v̂ki χUi(x).

In this way we represent the finite difference solution as a piecewise constant function.
We will show this function provides an L2 approximation of the exact solution.
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Fig. 3. (a) Typical mesh of size h. (b) Unit cell Ui corresponding to material point xi.

3.1.1. Convergence results. In this section we provide upper bounds on the
rate of convergence of the discrete approximation to the solution of the peridynamic
evolution. The L2 approximation error Ek at time tk, for 0 < tk ≤ T, is defined as

Ek :=
∥∥∥ûk − uk∥∥∥

L2(D;Rd)
+
∥∥∥v̂k − vk∥∥∥

L2(D;Rd)
.

The upper bound on the convergence rate of the approximation error is given by the
following theorem.

Theorem 3 (convergence of finite difference approximation (forward Euler time
discretization)). Let ε > 0 be fixed. Let (u,v) be the solution of peridynamic equation
(10). We assume u,v ∈ C2([0, T ];C0,γ

0 (D;Rd)). Then the finite difference scheme
given by (14) and (15) is consistent in both time and spatial discretization and con-
verges to the exact solution uniformly in time with respect to the L2(D;Rd) norm. If
we assume the error at the initial step is zero, then the error Ek at time tk is bounded
and to leading order in the time step ∆t satisfies

sup
0≤k≤T/∆t

Ek ≤ O
(
Ct∆t+ Cs

hγ

ε2

)
,(16)

where constants Cs and Ct are independent of h and ∆t and Cs depends on the
Hölder norm of the solution and Ct depends on the L2 norms of time derivatives of
the solution.

Here we have assumed the initial error to be zero for ease of exposition only.
We remark that the explicit constants leading to (16) can be large. The inequality

that delivers (16) is given to leading order by

sup
0≤k≤T/∆t

Ek ≤ exp
[
T (1 + 6C̄/ε2)

]
T
[
Ct∆t+ (Cs/ε

2)hγ
]
,(17)

where the constants C̄, Ct, and Cs are given by (35), (37), and (38). The explicit
constant Ct depends on the spatial L2 norm of the time derivatives of the solution
and Cs depends on the spatial Hölder continuity of the solution and the constant
C̄. This constant is bounded independently of horizon ε. Although the constants
are necessarily pessimistic they deliver a priori error estimates and an example is
discussed in section 6.
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914 PRASHANT K. JHA AND ROBERT LIPTON

An identical convergence rate can be established for the general one step scheme
and we state it below.

Theorem 4 (convergence of finite difference approximation (general single step
time discretization)). Let us assume that the hypothesis of Theorem 3 holds. Fix
θ ∈ [0, 1], and let (ûk, v̂k)T be the solution of the following finite difference equation:

ûk+1
i − ûki

∆t
= (1− θ)v̂ki + θv̂k+1

i ,

(18)

v̂k+1
i − v̂ki

∆t
= (1− θ)

(
−∇PDε(ûk)(xi) + bki

)
+ θ

(
−∇PDε(ûk+1)(xi) + bk+1

i

)
.

(19)

Then, for any fixed θ ∈ [0, 1], there exists a constant K > 0 independent of (ûk, v̂k)T

and (uk,vk)T , such that for ∆t < Kε2 the finite difference scheme given by (18) and
(19) is consistent in time and spatial discretization. If we assume the error at the
initial step is zero, then the error Ek at time tk is bounded and satisfies

sup
0≤k≤T/∆t

Ek ≤ O
(
Ct∆t+ Cs

hγ

ε2

)
.

The constant K is given by the explicit formula K = 1/C̄ where C̄ is described by
(35). Furthermore for the Crank–Nicolson scheme, θ = 1/2, if we assume the solutions
u,v belong to C3([0, T ];C0,γ

0 (D;Rd)), then the approximation error Ek satisfies

sup
0≤k≤T/∆t

Ek ≤ O
(
C̄t(∆t)

2 + Cs
hγ

ε2

)
,

where C̄t is independent of ∆t and h and is given by (49).

As before we assume that the error in the initial data is zero for ease of exposition.
The proofs of Theorems 3 and 4 are given in the following sections.

Remark. In Theorem 4, we have stated a condition on ∆t for which the conver-
gence estimate holds. This condition naturally occurs in the analysis and is related
to the Lipschitz continuity of the peridnamic force with respect to the L2 norm; see
(41).

3.1.2. Error analysis. Theorems 3 and 4 are proved along similar lines. In both
cases we define the L2-projections of the actual solutions onto the space of piecewise
constant functions defined over the cells Ui. These are given as follows. Let (ũki , ṽ

k
i )

be the average of the exact solution (uk,vk) in the unit cell Ui given by

ũki :=
1

hd

∫
Ui

uk(x)dx,

ṽki :=
1

hd

∫
Ui

vk(x)dx,

and the L2 projection of the solution onto piecewise constant functions are (ũk, ṽk)
given by

ũk(x) :=
∑

i,xi∈D
ũki χUi(x),(20)

ṽk(x) :=
∑

i,xi∈D
ṽki χUi(x).(21)

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 915

The error between (ûk, v̂k)T with (u(tk),v(tk))T is now split into two parts. From
the triangle inequality, we have

∥∥∥ûk − u(tk)
∥∥∥
L2(D;Rd)

≤
∥∥∥ûk − ũk∥∥∥

L2(D;Rd)
+
∥∥∥ũk − uk∥∥∥

L2(D;Rd)
,∥∥∥v̂k − v(tk)

∥∥∥
L2(D;Rd)

≤
∥∥∥v̂k − ṽk∥∥∥

L2(D;Rd)
+
∥∥∥ṽk − vk∥∥∥

L2(D;Rd)
.

In subsubsection 3.1.3 and subsection 3.2 we will show that the error between the
L2 projections of the actual solution and the discrete approximation for both forward
Euler and implicit one step methods decay according to

sup
0≤k≤T/∆t

(∥∥∥ûk − ũk∥∥∥
L2(D;Rd)

+
∥∥∥v̂k − ṽk∥∥∥

L2(D;Rd)

)
= O

(
∆t+

hγ

ε2

)
.(22)

In what follows we can estimate the terms∥∥∥ũk − u(tk)
∥∥∥
L2

and
∥∥∥ṽk − v(tk)

∥∥∥
L2

(23)

and show they go to zero at a rate of hγ uniformly in time. The estimates given by
(22) together with the O(hγ) estimates for (23) establish Theorems 3 and 4. We now
establish the L2 estimates for the differences ũk − u(tk) and ṽk − v(tk).

We write∥∥∥ũk − uk∥∥∥2

L2(D;Rd)

=
∑

i,xi∈D

∫
Ui

∣∣∣ũk(x)− uk(x)
∣∣∣2 dx

=
∑

i,xi∈D

∫
Ui

∣∣∣∣ 1

hd

∫
Ui

(uk(y)− uk(x))dy

∣∣∣∣2 dx
=

∑
i,xi∈D

∫
Ui

[
1

h2d

∫
Ui

∫
Ui

(uk(y)− uk(x)) · (uk(z)− uk(x))dydz

]
dx

≤
∑

i,xi∈D

∫
Ui

[
1

hd

∫
Ui

∣∣uk(y)− uk(x)
∣∣2 dy] dx,(24)

where we used Cauchy’s inequality and Jensen’s inequality. For x,y ∈ Ui, |x− y| ≤
ch, where c =

√
2 for d = 2 and c =

√
3 for d = 3. Since u ∈ C0,γ

0 we have

∣∣uk(x)− uk(y)
∣∣ = |x− y|γ

∣∣uk(y)− uk(x)
∣∣

|x− y|γ

≤ cγhγ
∥∥uk∥∥

C0,γ(D;Rd)
≤ cγhγ sup

t
‖u(t)‖C0,γ(D;Rd)(25)

and substitution in (24) gives∥∥∥ũk − uk∥∥∥2

L2(D;Rd)
≤ c2γh2γ

∑
i,xi∈D

∫
Ui

dx

(
sup
t
‖u(t)‖C0,γ(D;Rd)

)2

≤ c2γ |D|h2γ

(
sup
t
‖u(t)‖C0,γ(D;Rd)

)2

.
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916 PRASHANT K. JHA AND ROBERT LIPTON

A similar estimate can be derived for ||ṽk−vk||L2 and substitution of the estimates
into (23) gives

sup
k

(∥∥∥ũk − u(tk)
∥∥∥
L2(D;Rd)

+
∥∥∥ṽk − v(tk)

∥∥∥
L2(D;Rd)

)
= O(hγ).

In the next section we establish the error estimate (22) for both forward Euler
and general one step schemes in subsubsection 3.1.3 and subsection 3.2.

3.1.3. Error analysis for approximation of L2 projection of the exact
solution. In this subsection, we estimate the difference between approximate solution
(ûk, v̂k) and the L2 projection of the exact solution onto piecewise constant functions
given by (ũk, ṽk); see (20) and (21). Let the differences be denoted by ek(u) := ûk−ũk
and ek(v) := v̂k − ṽk, and their evaluation at grid points are eki (u) := ûki − ũki and

eki (v) := v̂ki − ṽki . Subtracting (ũk+1
i − ũki )/∆t from (14) gives

ûk+1
i − ûki

∆t
− ũ

k+1
i − ũki

∆t

= v̂k+1
i − ũ

k+1
i − ũki

∆t

= v̂k+1
i − ṽk+1

i +

(
ṽk+1
i − ∂ũk+1

i

∂t

)
+

(
∂ũk+1

i

∂t
− ũ

k+1
i − ũki

∆t

)
.

Taking the average over unit cell Ui of the exact peridynamic equation (10) at time
tk, we will get

ṽk+1
i − ∂ũk+1

i

∂t
= 0.

Therefore, the equation for eki (u) is given by

ek+1
i (u) = eki (u) + ∆tek+1

i (v) + ∆tτki (u),(26)

where we identify the discretization error as

τki (u) :=
∂ũk+1

i

∂t
− ũ

k+1
i − ũki

∆t
.(27)

Similarly, we subtract (ṽk+1
i − ṽki )/∆t from (15) and add and subtract terms to

get

v̂k+1
i − v̂ki

∆t
− ṽ

k+1
i − ṽki

∆t
= −∇PDε(ûk)(xi) + bki −

∂vki
∂t

+

(
∂vki
∂t
− ṽ

k+1
i − ṽki

∆t

)

= −∇PDε(ûk)(xi) + bki −
∂vki
∂t

+

(
∂ṽki
∂t
− ṽ

k+1
i − ṽki

∆t

)
+

(
∂vki
∂t
− ∂ṽki

∂t

)
,(28)

where we identify τki (v) as follows:

τki (v) :=
∂ṽki
∂t
− ṽ

k+1
i − ṽki

∆t
.(29)
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 917

Note that in τk(u) we have

∂ũk+1
i

∂t
and from the exact peridynamic equation, we have

bki −
∂vki
∂t

= ∇PDε(uk)(xi).(30)

Combining (28), (29), and (30), we get

ek+1
i (v) = eki (v) + ∆tτki (v) + ∆t

(
∂vki
∂t
− ∂ṽki

∂t

)
+ ∆t

(
−∇PDε(ûk)(xi) + ∇PDε(uk)(xi)

)
= eki (v) + ∆tτki (v) + ∆t

(
∂vki
∂t
− ∂ṽki

∂t

)
+ ∆t

(
−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

)
+ ∆t

(
−∇PDε(ũk)(xi) + ∇PDε(uk)(xi)

)
.

The spatial discretization errors σki (u) and σki (v) are given by

σki (u) :=
(
−∇PDε(ũk)(xi) + ∇PDε(uk)(xi)

)
,(31)

σki (v) :=
∂vki
∂t
− ∂ṽki

∂t
.(32)

We finally have

ek+1
i (v) = eki (v) + ∆t

(
τki (v) + σki (u) + σki (v)

)
+ ∆t

(
−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

)
.(33)

We now show the consistency and stability properties of the numerical scheme.

3.1.4. Consistency. We deal with the error in time discretization and the error
in spatial discretization error separately. The time discretization error follows easily
using the Taylor series while the spatial discretization error uses properties of the
nonlinear peridynamic force.

Time discretization. We first estimate the time discretization error. A Taylor
series expansion is used to estimate τki (u) as follows:

τki (u) =
1

hd

∫
Ui

(
∂uk(x)

∂t
− u

k+1(x)− uk(x)

∆t

)
dx,

=
1

hd

∫
Ui

(
−1

2

∂2uk(x)

∂t2
∆t+O((∆t)2)

)
dx.

Computing the L2 norm of τki (u) and using Jensen’s inequality gives∥∥τk(u)
∥∥
L2(D;Rd)

≤ ∆t

2

∥∥∥∥∂2uk

∂t2

∥∥∥∥
L2(D;Rd)

+O((∆t)2)

≤ ∆t

2
sup
t

∥∥∥∥∂2u(t)

∂t2

∥∥∥∥
L2(D;Rd)

+O((∆t)2).
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918 PRASHANT K. JHA AND ROBERT LIPTON

Similarly, we have∥∥τk(v)
∥∥
L2(D;Rd)

=
∆t

2
sup
t

∥∥∥∥∂2v(t)

∂t2

∥∥∥∥
L2(D;Rd)

+O((∆t)2).

Spatial discretization. We now estimate the spatial discretization error. Sub-
stituting the definition of ṽk and following the similar steps employed in (25) gives∣∣σki (v)

∣∣ =

∣∣∣∣∂vki∂t − 1

hd

∫
Ui

∂vk(x)

∂t
dx

∣∣∣∣ ≤ cγhγ ∫
Ui

1

|xi − x|γ
∣∣∣∣∂vk(xi)

∂t
− ∂vk(x)

∂t

∣∣∣∣ dx
≤ cγhγ

∥∥∥∥∂vk∂t
∥∥∥∥
C0,γ(D;Rd)

≤ cγhγ sup
t

∥∥∥∥∂v(t)

∂t

∥∥∥∥
C0,γ(D;Rd)

.

Taking the L2 norm of error σki (v) and substituting the estimate above delivers∥∥σk(v)
∥∥
L2(D;Rd)

≤ hγcγ
√
|D| sup

t

∥∥∥∥∂v(t)

∂t

∥∥∥∥
C0,γ(D;Rd)

.

Now we estimate
∣∣σki (u)

∣∣. We use the notation ūk(x) := uk(x+ εξ)−uk(x) and

ũ
k
(x) := ũ(x+ εξ)− ũk(x) and choose u = uk and v = ũk in (76) to find that∣∣σki (u)

∣∣ =
∣∣∣−∇PDε(ũk)(xi) + ∇PDε(uk)(xi)

∣∣∣
≤ 2C2

εωd

∣∣∣∣∣∣
∫
H1(0)

J(|ξ|)

∣∣∣uk(xi + εξ)− ũk(xi + εξ)− (uk(xi)− ũk(xi))
∣∣∣

ε |ξ|
dξ

∣∣∣∣∣∣ .(34)

Here C2 is the maximum of the second derivative of the profile describing the potential
given by (71). Following the earlier analysis (see (25)), we find that∣∣∣uk(xi + εξ)− ũk(xi + εξ)

∣∣∣ ≤ cγhγ sup
t
‖u(t)‖C0,γ(D;Rd),∣∣∣uk(xi)− ũk(xi)

∣∣∣ ≤ cγhγ sup
t
‖u(t)‖C0,γ(D;Rd).

For reference, we define the constant

C̄ =
C2

ωd

∫
H1(0)

J(|ξ|) 1

|ξ|
dξ.(35)

We now focus on (34). We substitute the above two inequalities to get∣∣σki (u)
∣∣ ≤ 2C2

ε2ωd

∫
H1(0)

J(|ξ|) 1

|ξ|(∣∣∣uk(xi + εξ)− ũk(xi + εξ)
∣∣∣+
∣∣∣uk(xi)− ũk(xi)

∣∣∣) dξ
≤ 4hγcγ

C̄

ε2
sup
t
‖u(t)‖C0,γ(D;Rd).

Therefore, we have∥∥σk(u)
∥∥
L2(D;Rd)

≤ hγ
(

4cγ
√
|D| C̄

ε2
sup
t
‖u(t)‖C0,γ(D;Rd)

)
.

This completes the proof of consistency of numerical approximation.
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3.1.5. Stability. Let ek be the total error at the kth time step. It is defined as

ek :=
∥∥ek(u)

∥∥
L2(D;Rd)

+
∥∥ek(v)

∥∥
L2(D;Rd)

.

To simplify the calculations, we define the new term τ as

τ := sup
t

(∥∥τk(u)
∥∥
L2(D;Rd)

+
∥∥τk(v)

∥∥
L2(D;Rd)

+
∥∥σk(u)

∥∥
L2(D;Rd)

+
∥∥σk(v)

∥∥
L2(D;Rd)

)
.

From our consistency analysis, we know that to leading order

τ ≤ Ct∆t+
Cs
ε2
hγ ,(36)

where

Ct :=
1

2
sup
t

∥∥∥∥∂2u(t)

∂t2

∥∥∥∥
L2(D;Rd)

+
1

2
sup
t

∥∥∥∥∂3u(t)

∂t3

∥∥∥∥
L2(D;Rd)

,(37)

Cs := cγ
√
|D|

[
ε2 sup

t

∥∥∥∥∂2u(t)

∂t2

∥∥∥∥
C0,γ(D;Rd)

+ 4C̄ sup
t
‖u(t)‖C0,γ(D;Rd)

]
.(38)

We take the L2 norms of (26) and (33) and add them. Noting the definition of τ
as above, we get

ek+1 ≤ ek + ∆t
∥∥ek+1(v)

∥∥
L2(D;Rd)

+ ∆tτ

+ ∆t

(∑
i

hd
∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2)1/2

.(39)

We need only estimate the last term in above equation. Similar to (34), we have∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)
∣∣∣

≤ 2C2

ε2ωd

∫
H1(0)

J(|ξ|) 1

|ξ|

∣∣∣ûk(xi + εξ)− ũk(xi + εξ)− (ûk(xi)− ũk(xi))
∣∣∣ dξ

=
2C2

ε2ωd

∫
H1(0)

J(|ξ|) 1

|ξ|
∣∣ek(u)(xi + εξ)− ek(u)(xi)

∣∣ dξ
≤ 2C2

ε2ωd

∫
H1(0)

J(|ξ|) 1

|ξ|
(∣∣ek(u)(xi + εξ)

∣∣+
∣∣ek(u)(xi)

∣∣) dξ.
By ek(u)(x) we mean evaluation of piecewise extension of set {eki (u)}i at x. We
proceed further as follows:∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2
≤
(

2C2

ε2ωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)J(|η|) 1

|ξ|
1

|η|(∣∣ek(u)(xi + εξ)
∣∣+
∣∣ek(u)(xi)

∣∣) (∣∣ek(u)(xi + εη)
∣∣+
∣∣ek(u)(xi)

∣∣) dξdη.D
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920 PRASHANT K. JHA AND ROBERT LIPTON

Using inequality |ab| ≤ (|a|2 + |b|2)/2, we get(∣∣ek(u)(xi + εξ)
∣∣+
∣∣ek(u)(xi)

∣∣) (∣∣ek(u)(xi + εη)
∣∣+
∣∣ek(u)(xi)

∣∣)
≤ 3

(∣∣ek(u)(xi + εξ)
∣∣2 +

∣∣ek(u)(xi + εη)
∣∣2 +

∣∣ek(u)(xi)
∣∣2)

and ∑
xi∈D

hd
∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2
≤
(

2C2

ε2ωd

)2 ∫
H1(0)

∫
H1(0)

J(|ξ|)J(|η|) 1

|ξ|
1

|η|∑
xi∈D

hd3
(∣∣ek(u)(xi + εξ)

∣∣2 +
∣∣ek(u)(xi + εη)

∣∣2 +
∣∣ek(u)(xi)

∣∣2) dξdη.
Since ek(u)(x) =

∑
xi∈D e

k
i (u)χUi(x), we have∑

xi∈D
hd
∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2 ≤ (6C̄)2

ε4
∥∥ek(u)

∥∥2

L2(D;Rd)
,(40)

where C̄ is given by (35). In summary, (40) shows the Lipschitz continuity of the
peridynamic force with respect to the L2 norm; see (13), expressed in this context as

‖∇PDε(ûk)(x)−∇PDε(ũk)‖L2(D;Rd) ≤
(6C̄)

ε2
‖ek(u)‖L2(D;Rd).(41)

Finally, we substitute the above inequality in (39) to get

ek+1 ≤ ek + ∆t
∥∥ek+1(v)

∥∥
L2(D;Rd)

+ ∆tτ + ∆t
6C̄

ε2
∥∥ek(u)

∥∥
L2(D;Rd)

.

We add the positive quantity ∆t||ek+1(u)||L2(D;Rd) + ∆t6C̄/ε2||ek(v)||L2(D;Rd) to the
right-hand side of the above equation to get

ek+1 ≤ (1 + ∆t6C̄/ε2)ek + ∆tek+1 + ∆tτ

⇒ek+1 ≤ (1 + ∆t6C̄/ε2)

1−∆t
ek +

∆t

1−∆t
τ.

We recursively substitute ej on the above as follows:

ek+1 ≤ (1 + ∆t6C̄/ε2)

1−∆t
ek +

∆t

1−∆t
τ

≤
(

(1 + ∆t6C̄/ε2)

1−∆t

)2

ek−1 +
∆t

1−∆t
τ

(
1 +

(1 + ∆t6C̄/ε2)

1−∆t

)
≤ · · ·

≤
(

(1 + ∆t6C̄/ε2)

1−∆t

)k+1

e0 +
∆t

1−∆t
τ

k∑
j=0

(
(1 + ∆t6C̄/ε2)

1−∆t

)k−j
.(42)

Since 1/(1−∆t) = 1 + ∆t+ ∆t2 +O(∆t3), we have

(1 + ∆t6C̄/ε2)

1−∆t
≤ 1 + (1 + 6C̄/ε2)∆t+ (1 + 6C̄/ε2)∆t2 +O(C̄/ε2)O(∆t3).
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 921

Now, for any k ≤ T/∆t, using identity (1 + a)k ≤ exp[ka] for a ≤ 0, we have(
1 + ∆t6C̄/ε2

1−∆t

)k
≤ exp

[
k(1 + 6C̄/ε2)∆t+ k(1 + 6C̄/ε2)∆t2 + kO(C̄/ε2)O(∆t3)

]
≤ exp

[
T (1 + 6C̄/ε2) + T (1 + 6C̄/ε2)∆t+O(TC̄/ε2)O(∆t2)

]
.

We write the above equation in more compact form as follows:(
1 + ∆t6C̄/ε2

1−∆t

)k
≤ exp

[
T (1 + 6C̄/ε2)(1 + ∆t+O(∆t2))

]
.

We use the above estimate in (42) and get the following inequality for ek:

ek+1 ≤ exp
[
T (1 + 6C̄/ε2)(1 + ∆t+O(∆t2))

] (
e0 + (k + 1)τ∆t/(1−∆t)

)
≤ exp

[
T (1 + 6C̄/ε2)(1 + ∆t+O(∆t2))

] (
e0 + Tτ(1 + ∆t+O(∆t2)

)
,

where we used the fact that 1/(1−∆t) = 1 + ∆t+O(∆t2).
Assuming the error in initial data is zero, i.e., e0 = 0, and noting the estimate of

τ in (36), we have

sup
k
ek ≤ exp

[
T (1 + 6C̄/ε2)

]
Tτ,

and we conclude to leading order that

sup
k
ek ≤ exp

[
T (1 + 6C̄/ε2)

]
T
[
Ct∆t+ (Cs/ε

2)hγ
]
.(43)

Here the constants Ct and Cs are given by (37) and (38). This shows the stability of
the numerical scheme. We now address the general one step time discretization.

3.2. Extension to the implicit schemes. Let θ ∈ [0, 1] be the parameter
which controls the contribution of the implicit and explicit schemes. Let (ûk, v̂k) be
the solution of (18) and (19) for given fixed θ.

The forward Euler scheme, backward Euler scheme, and Crank–Nicolson scheme
correspond to the choices θ = 0, θ = 1, and θ = 1/2, respectively.

To simplify the equations, we define Θ acting on discrete set {fk}k as Θfk :=
(1− θ)fk + θfk+1. By Θ

∥∥fk∥∥, we mean (1− θ)
∥∥fk∥∥+ θ

∥∥fk+1
∥∥. Following the same

steps as in the case of forward Euler, we write down the equation for eki (u) := ûki − ũki
and eki (v) := v̂ki − ṽki as follows:

ek+1
i (u) = eki (u) + ∆tΘeki (v) + ∆tΘτki (u),(44)

ek+1
i (v) = eki (v) + ∆tΘσki (u) + ∆tΘσki (v) + ∆tΘτki (v)

+ ∆t(1− θ)
(
−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

)
+ ∆tθ

(
−∇PDε(ûk+1)(xi) + ∇PDε(ũk+1)(xi)

)
,(45)

where τki (v), σki (u), σki (v) are defined in (29), (31), and (32), respectively. In this
section τk(u) is defined as follows:

τki (u) :=
∂ũki
∂t
− ũ

k+1
i − ũki

∆t
.
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922 PRASHANT K. JHA AND ROBERT LIPTON

We take the L2 norm of ek(u)(x) and ek(v)(x), and for brevity we denote the L2

norm by || · ||. Recall that ek(u) and ek(v) are the piecewise constant extensions of
{eki (u)}i and {eki (v)}i, and we get

∥∥ek+1(u)
∥∥ ≤ ∥∥ek(u)

∥∥+ ∆tΘ
∥∥ek(v)

∥∥+ ∆tΘ
∥∥τk(u)

∥∥ ,
(46)

∥∥ek+1(v)
∥∥ ≤ ∥∥ek(v)

∥∥+ ∆t
(
Θ
∥∥σk(u)

∥∥+ Θ
∥∥σk(v)

∥∥+ Θ
∥∥τk(v)

∥∥)
+ ∆t(1− θ)

 ∑
i,xi∈D

hd
∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2
1/2

+ ∆tθ

 ∑
i,xi∈D

hd
∣∣∣−∇PDε(ûk+1)(xi) + ∇PDε(ũk+1)(xi)

∣∣∣2
1/2

.(47)

From our consistency analysis, we have

τ = sup
k

(∥∥τk(u)
∥∥
L2(D;Rd)

+
∥∥τk(v)

∥∥
L2(D;Rd)

+
∥∥σk(u)

∥∥
L2(D;Rd)

+
∥∥σk(v)

∥∥
L2(D;Rd)

)
≤ Ct∆t+ Cs

hγ

ε2
,(48)

where Ct and Cs are given by (37) and (38). Since 0 ≤ 1 − θ ≤ 1 and 0 ≤ θ ≤ 1 for
all θ ∈ [0, 1], we have

Θ
(∥∥τk(u)

∥∥+
∥∥τk(v)

∥∥+
∥∥σk(u)

∥∥+
∥∥σk(v)

∥∥) ≤ 2τ.

Crank–Nicolson scheme. If θ = 1/2 and if u,v ∈ C3([0, T ];C0,γ(D;Rd)), then
we can show that

1

2
τki (u) +

1

2
τk+1
i (u) =

(∆t)2

12

∂3ũ
k+1/2
i

∂t3
+O((∆t)3).

A similar result holds for 1/2τki (v)+1/2τk+1
i (v). Therefore, the consistency error will

be bounded by C̄t∆t
2 + Csh

γ/ε2 with

C̄t :=
1

12
sup
t

∥∥∥∥∂3u(t)

∂t3

∥∥∥∥
L2(D;Rd)

+
1

12
sup
t

∥∥∥∥∂4u(t)

∂t4

∥∥∥∥
L2(D;Rd)

,(49)

and Cs is given by (38).
We now estimate (47). Similar to (40), we have ∑

i,xi∈D
hd
∣∣∣−∇PDε(ûk)(xi) + ∇PDε(ũk)(xi)

∣∣∣2
1/2

≤ C̄

ε2
∥∥ek(u)

∥∥ ,(50)

 ∑
i,xi∈D

hd
∣∣∣−∇PDε(ûk+1)(xi) + ∇PDε(ũk+1)(xi)

∣∣∣2
1/2

≤ C̄

ε2
∥∥ek+1(u)

∥∥ ,(51)D
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 923

where C̄ is the constant given by (35). Let ek :=
∥∥ek(u)

∥∥ +
∥∥ek(v)

∥∥. Adding (46)
and (47) and noting (50), (51), and (48), we get

ek+1 ≤
(

1 + ∆t(1− θ) C̄
ε2

)
ek + ∆tθ

C̄

ε2
ek+1 + 2τ∆t,

where we assumed C̄/ε2 ≥ 1. We further simplify the equation and write

ek+1 ≤ 1 + ∆t(1− θ)C̄/ε2

1−∆tθC̄/ε2
ek +

2

1−∆tθC̄/ε2
τ∆t,(52)

where we have assumed that 1−∆tθC̄/ε2 > 0, i.e.,

∆t <
ε2

C̄
= Kε2.(53)

Thus, for fixed ε > 0, the error calculation in this section applies when the time step
∆t satisfies (53). We now define a and b by

a :=
1 + ∆t(1− θ)C̄/ε2

1−∆tθC̄/ε2
,

b :=
1

1−∆tθC̄/ε2
.

We use the fact that, for ∆t small, (1− α∆t)−1 = 1 + α∆t+ α2(∆t)2 +O((∆t)3), to
get

b = 1 + ∆tθC̄/ε2 +O
((

∆t/ε2
)2)

= 1 +O
(
∆t/ε2

)
.

Now since ∆t < ε2/C̄, we have

b = O(1).(54)

We have the estimates for a given by

a ≤ (1 + ∆t(1− θ)C̄/ε2)(1 + ∆tθC̄/ε2 +O((∆t/ε2)2))

= 1 + ∆t(θ + (1− θ))C̄/ε2 +O((∆t/ε2)2)

= 1 + ∆tC̄/ε2 +O((∆t/ε2)2).

Therefore, for any k ≤ T/∆t, we have

ak ≤ exp

[
k∆t

C̄

ε2
+ kO

((
∆t

ε2

)2
)]

≤ exp

[
TC̄/ε2 +O

(
∆t

(
1

ε2

)2
)]

≤ exp

[
TC/ε2 +O

(
1

ε2

)]
,

where we simplified the bound by incorporating (53). Then, from (52), we get

ek+1 ≤ ak+1e0 + 2τ

∆t

k∑
j=0

aj

 b.D
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924 PRASHANT K. JHA AND ROBERT LIPTON

From the estimates on ak, we have

∆t

k∑
j=0

aj ≤ T exp[TC/ε2 +O(1/ε2)].(55)

Combining (54) and (55), we get

ek ≤ exp[TC/ε2 +O(1/ε2)]
(
e0 + 2TτO(1)

)
.

Since τ = O(Ct∆t+ Csh
γ/ε2), we conclude that, for any ε > 0 fixed,

sup
k
ek ≤ O(Ct∆t+ Csh

γ/ε2),

where we assumed e0 = 0. Similarly, for θ = 1/2, we have supk e
k+1 ≤ O(C̄t(∆t)

2 +
Csh

γ/ε2). Therefore, the scheme is stable and consistent for any θ ∈ [0, 1].

3.3. Stability of the energy for the semidiscrete approximation. We
first spatially discretize the peridynamics equation (1). Let {ûi(t)}i,xi∈D denote the
semidiscrete approximate solution which satisfies the following: for all t ∈ [0, T ] and
i such that xi ∈ D,

¨̂ui(t) = −∇PDε(û(t))(xi) + bi(t),(56)

where û(t) is the piecewise constant extension of discrete set {ûi(t)}i and is defined
as

û(t,x) :=
∑

i,xi∈D
ûi(t)χUi(x).(57)

The scheme is complemented with the discretized initial conditions ûi(0) = u0(xi)
and v̂i(0) = v0(xi). We apply the boundary condition by setting ûi(t) = 0 for all t
and for all xi /∈ D.

We have the stability of semidiscrete evolution.

Theorem 5 (energy stability of the semidiscrete approximation). Let {ûi(t)}i
satisfy (56) and let û(t) be its piecewise constant extension. Similarily let b̂(t,x)
denote the piecewise constant extension of {b(t,xi)}i,xi∈D. Then the peridynamic
energy Eε as defined in (4) satisfies, for all t ∈ [0, T ],

Eε(û)(t) ≤

(√
Eε(û)(0) +

TC

ε3/2
+

∫ T

0

||b̂(s)||L2(D;Rd)ds

)2

.(58)

The constant C, defined in (63), is independent of ε and h.

Proof. We multiply (56) by χUi(x) and sum over i and use the definition of
piecewise constant extension in (57) to get

¨̂u(t,x) = −∇ ˆPDε(û(t))(x) + b̂(t,x)

= −∇PDε(û(t))(x) + b̂(t,x)

+ (−∇ ˆPDε(û(t))(x) + ∇PDε(û(t))(x)),
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NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 925

where −∇ ˆPDε(û(t))(x) and b̂(t,x) are given by

−∇ ˆPDε(û(t))(x) =
∑

i,xi∈D
(−∇PDε(û(t))(xi))χUi(x),

b̂(t,x) =
∑

i,xi∈D
b(t,xi)χUi(x).

We define the set as follows:

σ(t,x) := −∇ ˆPDε(û(t))(x) + ∇PDε(û(t))(x).(59)

We use the following result which we will show after a few steps:

||σ(t)||L2(D;Rd) ≤
C

ε3/2
.(60)

We then have

¨̂u(t,x) = −∇PDε(û(t))(x) + b̂(t,x) + σ(t,x).(61)

Multiplying above with ˙̂u(t) and integrating over D, we get

(¨̂u(t), ˙̂u(t)) = (−∇PDε(û(t)), ˙̂u(t))

+ (b̂(t), ˙̂u(t)) + (σ(t), ˙̂u(t)).

Consider energy Eε(û)(t) given by (4) and note the identity (5) in order to have

d

dt
Eε(û)(t) = (b̂(t), ˙̂u(t)) + (σ(t), ˙̂u(t))

≤
(
||b̂(t)||L2(D;Rd) + ||σ(t)||L2(D;Rd)

)
|| ˙̂u(t)||L2(D;Rd),

where we used the Hölder inequality in the last step. Since PDε(u) is positive for
any u, we have

|| ˙̂u(t)|| ≤ 2

√
1

2
|| ˙̂u(t)||2

L2(D;Rd)
+ PDε(û(t)) = 2

√
Eε(û)(t).

Using the above equation, we get

1

2

d

dt
Eε(û)(t) ≤

(
||b̂(t)||L2(D;Rd) + ||σ(t)||L2(D;Rd)

)√
Eε(û)(t).

Let δ > 0 be some arbitrary but fixed real number and let A(t) = δ+ Eε(û)(t). Then

1

2

d

dt
A(t) ≤

(
||b̂(t)||L2(D;Rd) + ||σ(t)||L2(D;Rd)

)√
A(t).

Using the fact that 1√
A(t)

d
dtA(t) = 2 d

dt

√
A(t), we have

√
A(t) ≤

√
A(0) +

∫ t

0

(
||b̂(s)||L2(D;Rd) + ||σ(s)||L2(D;Rd)

)
ds

≤
√
A(0) +

TC

ε3/2
+

∫ T

0

||b̂(s)||L2(D;Rd)ds,
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926 PRASHANT K. JHA AND ROBERT LIPTON

where we used the bound on ||σ(s)||L2(D;Rd) from (60). Noting that δ > 0 is arbitrary,
we send it to zero to get

√
Eε(û)(t) ≤

√
Eε(û)(0) +

TC

ε3/2
+

∫ T

0

||b̂(s)||ds,

and (58) follows by taking the square of above equation.
It remains to show (60). To simplify the calculations, we use following notation:

let ξ ∈ H1(0) and let

sξ = ε|ξ|, eξ =
ξ

|ξ|
, ω̄(x) = ω(x)ω(x+ εξ),

Sξ(x) =
û(t,x+ εξ)− û(t,x)

sξ
· eξ.

With the above notation and using the expression of −∇PDε from (73), we have for
x ∈ Ui

|σ(t,x)| = |−∇PDε(û(t))(xi) + ∇PDε(û(t))(x)|

=

∣∣∣∣∣ 2

εωd

∫
H1(0)

J(|ξ|)
√
sξ

(
ω̄(xi)F

′
1(
√
sξSξ(xi))− ω̄(x)F ′1(

√
sξSξ(x))

)
eξdξ

∣∣∣∣∣
≤ 2

εωd

∫
H1(0)

J(|ξ|)
√
sξ

∣∣ω̄(xi)F
′
1(
√
sξSξ(xi))− ω̄(x)F ′1(

√
sξSξ(x))

∣∣ dξ
≤ 2

εωd

∫
H1(0)

J(|ξ|)
√
sξ

(∣∣ω̄(xi)F
′
1(
√
sξSξ(xi))

∣∣+
∣∣ω̄(x)F ′1(

√
sξSξ(x))

∣∣) dξ.(62)

Using the fact that 0 ≤ ω(x) ≤ 1 and |F ′1(r)| ≤ C1, where C1 is supr |F ′1(r)|, we get

|σ(t,x)| ≤
4C1J̄1/2

ε3/2
,

where J̄1/2 = (1/ωd)
∫
H1(0)

J(|ξ|)|ξ|−1/2dξ.

Taking the L2 norm of σ(t,x), we get

||σ(t)||2L2(D;Rd) =
∑

i,xi∈D

∫
Ui

|σ(t,x)|2dx ≤
(

4C1J̄1/2

ε3/2

)2 ∑
i,xi∈D

∫
Ui

dx,

and thus

||σ(t)||L2(D;Rd) ≤
4C1J̄1/2

√
|D|

ε3/2
=

C

ε3/2
,

where

C := 4C1J̄1/2

√
|D|.(63)

This completes the proof.
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3.4. Local instability under radial perturbations. We observe that both
explicit and implicit schemes treated in previous sections show that any increase in
local truncation error is controlled at each time step. From the proofs above (and
the general approximation theory for ODEs), this control is adequate to establish
convergence rates as ∆t → 0. We now comment on a source of error that can grow
with time steps in regions where the strain is large and peridynamic bonds between
material points begin to soften.

We examine the Jacobian matrix of the peridynamic system associated by per-
turbing about a displacement field and seek to understand the stability of the per-
turbation. Suppose the solution is near the displacement field u(x) and let s(t,x) =
u(t,x)− u(x) be the perturbation. We write the associated strain as S(y,x;u) and
S(y,x; s). Expanding the peridynamic force in Taylor series about u assuming s is
small gives

∂tts(t,x) =
2

Vd

{∫
Hε(x)

∂2
SWε(S(y,x;u))S(y,x; s)

y − x
|y − x|

dy

}
−∇PDε(u)(x) + b(t,x) +O(|s|2),

where Wε(S,y − x) = W ε(S,y − x)/|y − x| and W ε is given by (6).
To recover a local stability formula in terms of a spectral radius we consider local

radial perturbations s with spatially constant strain S(y,x; s) of the form S(y,x; s) =
−δ(t)µ ·e, where µ is in Rd and s has radial variation about x with s(y) = δ(t)µ(1−
|y − x|). This delivers the local ODE

δ′′(t)µ = Aδ(t)µ+ b,

where the stability matrix A is self-adjoint and given by

A = − 2

Vd

{∫
Hε(x)

∂2
SWε(S(y,x;u))

y − x
|y − x|

⊗ y − x
|y − x|

dy

}
(64)

and

b = −∇PDε(u)(x) + b(t,x) +O(|s|2).

A stability criterion for the perturbation is obtained by analyzing the linear system
δ′′(t)µ = Aδ(t)µ. Writing it as a first order system gives

δ′1(t)µ = δ2(t)µ,

δ′2(t)µ = Aδ1(t)µ,

where µ is a vector in Rd. The eigenvalues of A are real and denoted by λi, i = 1, . . . , d,
and the associated eigenvectors are denoted by vi. Choosing µ = vi gives

δ′1(t)vi = δ2(t)vi,

δ′2(t)vi = λiδ1(t)vi.

Applying the forward Euler method to this system gives the discrete iterative system

δk+1
1 = δk1 + ∆tδk2 ,

δk+1
2 = λi∆tδ

k
1 + δk2 .
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928 PRASHANT K. JHA AND ROBERT LIPTON

The spectral radius of the matrix associated with this iteration is

ρ = max
i=1,...,d

|1±∆t
√
λi|.

It is easy to see that the spectral radius is larger than 1 for any choice of λi and we
conclude local instability for the forward Euler scheme under radial perturbation.

For the implicit scheme given by backward Euler we get the discrete iterative
system

δk1 = δk+1
1 −∆tδk+1

2 ,

δk2 = −λi∆tδk+1
1 + δk+1

2 ,

and [
δk+1
1

δk+1
2

]
=

[
1 −∆t

−∆tλi 1

]−1 [
δk1
δk2

]
.

The spectral radius for the iteration matrix is

ρ = max
i=1,...,d

∣∣∣∣1θ ± ∆t
√
λi|
|θ|

∣∣∣∣,
where θ = 1 − λi(∆t)2. If we suppose that the stability matrix A is not negative
definite and there is a λj > 0, then the spectral radius is larger than one, i.e.,

1 <
|1 +

√
λj∆t|

|1− λj(∆t)2|
≤ ρ.(65)

Thus it follows from (65) that we can have local instability of the backward Euler
scheme for radial perturbations. Inspection of (64) shows the sign of the eigenvalues
of the matrix A depend explicitly on the sign of ∂2

SWε(S(y,x;u)). It is shown in [23]
that

∂2
SWε(S(y,x;u)) > 0 for |S(y,x;u)| < Sc,(66)

∂2
SWε(S(y,x;u)) < 0 for |S(y,x;u)| > Sc.(67)

From the model we see that bonds are losing stiffness when |S(y,x;u)| > Sc and the
points for which A is nonnegative definite correspond to points where (67) holds for
a preponderance of bonds inside the horizon. We conclude noting that both explicit
and implicit schemes treated in previous sections have demonstrated convergence rates
O((Ct∆t + Csh

γ/ε2)) as ∆t → 0. However, the results of this section show that the
error can grow with time for this type of radial perturbation.

4. Lipschitz continuity in Hölder norm and existence of a solution. In
this section, we prove Theorems 1, 6, and 2.

4.1. Proof of Theorem 1. Let I = [0, T ] be the time domain and let X =
C0,γ

0 (D;Rd)×C0,γ
0 (D;Rd). Recall that F ε(y, t) = (F ε1 (y, t), F ε2 (y, t)), where F ε1 (y, t) =

y2 and F ε2 (y, t) = −∇PDε(y1) + b(t). Given t ∈ I and y = (y1, y2), z = (z1, z2) ∈ X,
we have

‖F ε(y, t)− F ε(z, t)‖X
≤
∥∥y2 − z2

∥∥
C0,γ(D;Rd)

+
∥∥−∇PDε(y1) + ∇PDε(z1)

∥∥
C0,γ(D;Rd)

.(68)
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Therefore, to prove (11), we need only analyze the second term in the above
inequality. Let u,v ∈ C0,γ

0 (D;Rd); then we have

‖−∇PDε(u)− (−∇PDε(v))‖C0,γ(D;Rd)

= sup
x∈D
|−∇PDε(u)(x)− (−∇PDε(v)(x))|

+ sup
x 6=y,
x,y∈D

|(−∇PDε(u) + ∇PDε(v))(x)− (−∇PDε(u) + ∇PDε(v))(y)|
|x− y|γ

.(69)

Note that the force −∇PDε(u)(x) can be written as follows:

−∇PDε(u)(x)

=
4

εd+1ωd

∫
Hε(x)

ω(x)ω(y)J

(
|y − x|

ε

)
f ′(|y − x|S(y,x;u)2)S(y,x;u)

y − x
|y − x|

dy

=
4

εωd

∫
H1(0)

ω(x)ω(x+ εξ)J(|ξ|)f ′(ε |ξ|S(x+ εξ,x;u)2)S(x+ εξ,x;u)
ξ

|ξ|
dξ,

where we substituted ∂SW
ε using (6). In the second step, we introduced the change

in the variable y = x+ εξ.
Let F1 : R→ R be defined as F1(S) = f(S2). Then F ′1(S) = f ′(S2)2S. Using the

definition of F1, we have

2Sf ′(ε |ξ|S2) =
F ′1(
√
ε |ξ|S)√
ε |ξ|

.

Because f is assumed to be positive, smooth, and concave, and is bounded far
away, we have following bound on derivatives of F1:

sup
r
|F ′1(r)| = F ′1(r̄) =: C1,(70)

sup
r
|F ′′1 (r)| = max{F ′′1 (0), F ′′1 (û)} =: C2,(71)

sup
r
|F ′′′1 (r)| = max{F ′′′1 (ū2), F ′′′1 (ũ2)} =: C3,(72)

where r̄ is the inflection point of f(r2), i.e., F ′′1 (r̄) = 0. {0, û} are the maxima of
F ′′1 (r). {ū, ũ} are the maxima of F ′′′1 (r). By the chain rule and by considering the
assumption on f , we can show that r̄, û, ū2, ũ2 exists and the C1, C2, C3 are bounded.
Figures 4, 5, and 6 show the generic graphs of F ′1(r), F ′′1 (r), and F ′′′1 (r), respectively.

The nonlocal force −∇PDε can be written as

−∇PDε(u)(x)

=
2

εωd

∫
H1(0)

ω(x)ω(x+ εξ)J(|ξ|)F ′1(
√
ε |ξ|S(x+ εξ,x;u))

1√
ε |ξ|

ξ

|ξ|
dξ.(73)

To simplify the calculations, we use following notation:

ū(x) := u(x+ εξ)− u(x),

ū(y) := u(y + εξ)− u(y),

(u− v)(x) := u(x)− v(x),
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930 PRASHANT K. JHA AND ROBERT LIPTON

Fig. 4. Generic plot of F ′1(r). |F ′1(r)| is bounded by
∣∣F ′1(r̄)

∣∣.

r

F ′′1 (r)

r̄−r̄

û−û

Fig. 5. Generic plot of F ′′1 (r). At ±r̄, F ′′1 (r) = 0. At ±û, F ′′′1 (r) = 0.

and (u− v)(x) is defined similarly to ū(x). Also, let

s = ε |ξ| , e =
ξ

|ξ|
.

In what follows, we will come across the integral of type
∫
H1(0)

J(|ξ|) |ξ|−α dξ.

Recall that 0 ≤ J(|ξ|) ≤M for all ξ ∈ H1(0) and J(|ξ|) = 0 for ξ /∈ H1(0). Therefore,
let

J̄α :=
1

ωd

∫
H1(0)

J(|ξ|) |ξ|−α dξ.(74)

With the notation above, we note that S(x+ εξ,x;u) = ū(x) · e/s. −∇PDε can be
written as

−∇PDε(u)(x) =
2

εωd

∫
H1(0)

ω(x)ω(x+ εξ)J(|ξ|)F ′1(ū(x) · e/
√
s)

1√
s
edξ.(75)

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL ANALYSIS OF NONLOCAL FRACTURE 931

r

F ′′′1 (r)

ū2

−ū2
û

−û
ũ2

−ũ2

Fig. 6. Generic plot of F ′′′1 (r). At ±ū2 and ±ũ2, F ′′′′1 = 0.

We first estimate the term |−∇PDε(u)(x)− (−∇PDε(v)(x))| in (69). We then
have

|−∇PDε(u)(x)− (−∇PDε(v)(x))|

≤

∣∣∣∣∣ 2

εωd

∫
H1(0)

ω(x)ω(x+ εξ)J(|ξ|) (F ′1(ū(x) · e/
√
s)− F ′1(v̄(x) · e/

√
s))√

s
edξ

∣∣∣∣∣
≤

∣∣∣∣∣ 2

εωd

∫
H1(0)

J(|ξ|) 1√
s

∣∣F ′1(ū(x) · e/
√
s)− F ′1(v̄(x) · e/

√
s)
∣∣ dξ∣∣∣∣∣

≤ sup
r
|F ′′1 (r)|

∣∣∣∣∣ 2

εωd

∫
H1(0)

J(|ξ|) 1√
s

∣∣ū(x) · e/
√
s− v̄(x) · e/

√
s
∣∣ dξ∣∣∣∣∣

≤ 2C2

εωd

∣∣∣∣∣
∫
H1(0)

J(|ξ|) |ū(x)− v̄(x)|
ε |ξ|

dξ

∣∣∣∣∣ .(76)

Here we have used the fact that |ω(x)| ≤ 1, and for a vector e such that |e| = 1,
|a · e| ≤ |a| holds and |αe| ≤ |α| holds for all a ∈ Rd, α ∈ R. Using the fact that
u,v ∈ C0,γ

0 (D;Rd), we have

|ū(x)− v̄(x)|
s

=
|(u− v)(x+ εξ)− (u− v)(x)|

(ε |ξ|)γ
1

(ε |ξ|)1−γ

≤ ‖u− v‖C0,γ(D;Rd)

1

(ε |ξ|)1−γ .

Substituting the estimate given above, we get

|−∇PDε(u)(x)− (−∇PDε(v)(x))| ≤ 2C2J̄1−γ

ε2−γ
‖u− v‖C0,γ(D;Rd),(77)

where C2 is given by (71) and J̄1−γ is given by (74).
We now estimate the second term in (69). To simplify notation, we write ω̃(x, ξ) =
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ω(x)ω(x+ εξ) and with the help of (75), we get

1

|x− y|γ
|(−∇PDε(u) + ∇PDε(v))(x)− (−∇PDε(u) + ∇PDε(v))(y)|

=
1

|x− y|γ
| 2

εωd

∫
H1(0)

J(|ξ|) 1√
s
×
(
ω̃(x, ξ)

(
F ′1

(
ū(x) · e√

s

)
− F ′1

(
v̄(x) · e√

s

))
− ω̃(y, ξ)

(
F ′1

(
ū(y) · e√

s

)
− F ′1

(
v̄(y)) · e√

s

)))
edξ|

≤ 1

|x− y|γ
| 2

εωd

∫
H1(0)

J(|ξ|) 1√
s

× |ω̃(x, ξ)

(
F ′1

(
ū(x) · e√

s

)
− F ′1

(
v̄(x) · e√

s

))
− ω̃(y, ξ)

(
F ′1

(
ū(y) · e√

s

)
− F ′1

(
v̄(y) · e√

s

))
|dξ.

(78)

We analyze the integrand in the above equation. We let H be defined by

H :=

∣∣∣∣ω̃(x, ξ)

(
F ′1

(
ū(x) · e√

s

)
− F ′1

(
v̄(x) · e√

s

))
− ω̃(y, ξ)

(
F ′1

(
ū(y) · e√

s

)
− F ′1

(
v̄(y) · e√

s

))∣∣∣∣
|x− y|γ

.

Let r : [0, 1]×D → Rd be defined as

r(l,x) = v̄(x) + l(ū(x)− v̄(x)).

Note ∂r(l,x)/∂l = ū(x)− v̄(x). Using r(l,x), we have

F ′1(ū(x) · e/
√
s)− F ′1(v̄(x) · e/

√
s) =

∫ 1

0

∂F ′1(r(l,x) · e/
√
s)

∂l
dl(79)

=

∫ 1

0

∂F ′1(r · e/
√
s)

∂r
|r=r(l,x) ·

∂r(l,x)

∂l
dl.(80)

Similarly, we have

F ′1(ū(y) · e/
√
s)− F ′1(v̄(y) · e/

√
s) =

∫ 1

0

∂F ′1(r · e/
√
s)

∂r
|r=r(l,y) ·

∂r(l,y)

∂l
dl.(81)

Note that

∂F ′1(r · e/
√
s)

∂r
|r=r(l,y) = F ′′1 (r(l,x) · e/

√
s)
e√
s
.(82)

Combining (80), (81), and (82) gives

H =
1

|x− y|γ
∫ 1

0

(
ω̃(x, ξ)F ′′1 (r(l,x) · e/

√
s)(ū(x)− v̄(x))

− ω̃(y, ξ)F ′′1 (r(l,y) · e/
√
s)(ū(y)− v̄(y))

)
· e√

s
dl

≤ 1

|x− y|γ
1√
s
|
∫ 1

0

|ω̃(x, ξ)F ′′1 (r(l,x) · e/
√
s)(ū(x)− v̄(x))

− ω̃(y, ξ)F ′′1 (r(l,y) · e/
√
s)(ū(y)− v̄(y))|dl|.D
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Adding and subtracting ω̃(x, ξ)F ′′1 (r(l,x) · e/
√
s)(ū(y) − v̄(y)), and noting 0 ≤

ω̃(x, ξ) ≤ 1, gives

H ≤ 1

|x− y|γ
1√
s
|
∫ 1

0

|F ′′1 (r(l,x) · e/
√
s)| |ū(x)− v̄(x)− ū(y) + v̄(y)| dl|

+
1

|x− y|γ
1√
s

∫ 1

0

|(ω̃(x, ξ)F ′′1 (r(l,x) · e/
√
s)− ω̃(y, ξ)F ′′1 (r(l,y) · e/

√
s))|

× |ū(y)− v̄(y)| dl
=: H1 +H2.

We estimate H1 first. Note that |F ′′1 (r)| ≤ C2. Since u,v ∈ C0,γ
0 (D;Rd), it is

easily seen that

|ū(x)− v̄(x)− ū(y) + v̄(y)|
|x− y|γ

≤ 2‖u− v‖C0,γ(D;Rd).

Therefore, we have

H1 ≤
2C2√
s
‖u− v‖C0,γ(D;Rd).(83)

We now estimate H2. We add and subtract ω̃(x, ξ)F ′′1 (r(l,y) · e/
√
s)) in H2 to

get

H2 ≤ H3 +H4,

where

H3 =
1

|x− y|γ
1√
s

∫ 1

0

|(F ′′1 (r(l,x) · e/
√
s)− F ′′1 (r(l,y) · e/

√
s))| |ū(y)− v̄(y)| dl

and

H4 =
1

|x− y|γ
1√
s

∫ 1

0

|(ω̃(x, ξ)− ω̃(y, ξ)|F ′′1 (r(l,y) · e/
√
s))| |ū(y)− v̄(y)| dl.

Now we estimate H3. Since |F ′′′1 (r)| ≤ C3 (see (72)), we have

1

|x− y|γ
|F ′′1 (r(l,x) · e/

√
s)− F ′′1 (r(l,y) · e/

√
s)|

≤ 1

|x− y|γ
sup
r
|F ′′′(r)| |r(l,x) · e− r(l,y) · e|√

s

≤ C3√
s

|r(l,x)− r(l,y)|
|x− y|γ

=
C3√
s

(
|1− l| |v̄(x)− v̄(y)|

|x− y|γ
+
|l| |ū(x)− ū(y)|
|x− y|γ

)
≤ C3√

s

(
|v̄(x)− v̄(y)|
|x− y|γ

+
|ū(x)− ū(y)|
|x− y|γ

)
,(84)
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where we have used the fact that |1− l| ≤ 1, |l| ≤ 1, as l ∈ [0, 1]. Also, note that

|ū(x)− ū(y)|
|x− y|γ

≤ 2‖u‖C0,γ(D;Rd),

|v̄(x)− v̄(y)|
|x− y|γ

≤ 2‖v‖C0,γ(D;Rd),

|ū(y)− v̄(y)| ≤ sγ‖u− v‖C0,γ(D;Rd).

We combine the above estimates with (84) to get

H3 ≤
1√
s

C3√
s

(
‖u‖C0,γ(D;Rd) + ‖v‖C0,γ(D;Rd)

)
sγ‖u− v‖C0,γ(D;Rd)

=
C3

s1−γ

(
‖u‖C0,γ(D;Rd) + ‖v‖C0,γ(D;Rd)

)
‖u− v‖C0,γ(D;Rd).(85)

Next we estimate H4. Here we add and subtract ω(y)ω(x+ εξ) to get

H4 =
1

|x− y|γ
1√
s

∫ 1

0

|(ω(x,x+ εξ)(ω(x)− ω(y)) + ω(y)(ω(x+ εξ)− ω(y + εξ))

× |F ′′1 (r(l,y) · e/
√
s))| |ū(y)− v̄(y)| dl.

Recalling that ω belongs to C0,γ
0 (D;Rd) and in view of the previous estimates, a

straightforward calculation gives

H4 ≤
4C2

s1/2−γ ‖ω‖C0,γ(D;Rd)‖u− v‖C0,γ(D;Rd).(86)

Combining (83), (85), and (86) gives

H ≤
(

2C2√
s

+
4C2

s1/2−γ ‖ω‖C0,γ(D;Rd)

+
C3

s1−γ

(
‖u‖C0,γ(D;Rd) + ‖v‖C0,γ(D;Rd)

))
‖u− v‖C0,γ(D;Rd).

Substituting H in (78) gives

1

|x− y|γ
|(−∇PDε(u) + ∇PDε(v))(x)− (−∇PDε(u) + ∇PDε(v))(y)|

≤ | 2

εωd

∫
H1(0)

J(|ξ|) 1√
s
Hdξ|

≤
(

4C2J̄1

ε2
+

4C2J̄1−γ

ε2−γ
‖ω‖C0,γ(D;Rd)

+
2C3J̄3/2−γ

ε2+1/2−γ

(
‖u‖C0,γ(D;Rd) + ‖v‖C0,γ(D;Rd)

))
‖u− v‖C0,γ(D;Rd).(87)

We combine (69), (77), and (87), and get

‖−∇PDε(u)− (−∇PDε(v))‖C0,γ

(88)

≤
(

4C2J̄1

ε2
+

2C2J̄1−γ

ε2−γ
(1 + ‖ω‖C0,γ ) +

2C3J̄3/2−γ

ε2+1/2−γ (‖u‖C0,γ + ‖v‖C0,γ )

)
‖u− v‖C0,γ

≤
C̄1 + C̄2‖ω‖C0,γ + C̄3(‖u‖C0,γ + ‖v‖C0,γ )

ε2+α(γ)
‖u− v‖C0,γ ,
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where we introduce new constants C̄1, C̄2, C̄3. We let α(γ) = 0 if γ ≥ 1/2, and
α(γ) = 1/2− γ if γ ≤ 1/2. One can easily verify that, for all γ ∈ (0, 1] and 0 < ε ≤ 1,

max

{
1

ε2
,

1

ε2+1/2−γ ,
1

ε2−γ

}
≤ 1

ε2+α(γ)
.

To complete the proof, we combine (88) and (68), and get

‖F ε(y, t)− F ε(z, t)‖X ≤
L1 + L2(‖ω‖C0,γ + ‖y‖X + ‖z‖X)

ε2+α(γ)
‖y − z‖X .

This proves the Lipschitz continuity of F ε(y, t) on any bounded subset of X. The
bound on F ε(y, t) (see (12)) follows easily from (75). This completes the proof of
Theorem 1.

4.2. Existence of solution in Hölder space. In this section, we prove Theo-
rem 2. We begin by proving a local existence theorem. We then show that the local
solution can be continued uniquely in time to recover Theorem 2.

The existence and uniqueness of local solutions is stated in the following theorem.

Theorem 6 (local existence and uniqueness). Given X = C0,γ
0 (D;Rd) ×

C0,γ
0 (D;Rd), and b(t) ∈ C0,γ

0 (D;Rd), and initial data x0 = (u0,v0) ∈ X, we sup-
pose that b(t) is continuous in time over the interval I0 = (−T, T ) and satisfies
supt∈I0 ‖b(t)‖C0,γ(D;Rd) < ∞. Then, there exist a time interval I ′ = (−T ′, T ′) ⊂ I0
and unique solution y = (y1, y2) such that y ∈ C1(I ′;X) and

(89) y(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ for t ∈ I ′

or, equivalently,

y′(t) = F ε(y(t), t),with y(0) = x0 for t ∈ I ′,

where y(t) and y′(t) are Lipschitz continuous in time for t ∈ I ′ ⊂ I0.

To prove Theorem 6, we proceed as follows. We write y(t) = (y1(t), y2(t)) and
||y||X = ||y1(t)||C0,γ + ||y2(t)||C0,γ . Define the ball B(0, R) = {y ∈ X : ||y||X < R}
and choose R > ||x0||X . Let r = R−‖x0‖X , and we consider the ball B(x0, r) defined
by

(90) B(x0, r) = {y ∈ X : ||y − x0||X < r} ⊂ B(0, R);

see Figure 7.
To recover the existence and uniqueness we introduce the transformation

(91) Sx0(y)(t) = x0 +

∫ t

0

F ε(y(τ), τ) dτ.

Introduce 0 < T ′ < T and the associated set Y (T ′) of Hölder continuous functions
taking values in B(x0, r) for I ′ = (−T ′, T ′) ⊂ I0 = (−T, T ). The goal is to find the
appropriate interval I ′ = (−T ′, T ′) for which Sx0

maps into the corresponding set
Y (T ′). Writing out the transformation with y(t) ∈ Y (T ′) gives

S1
x0

(y)(t) = x1
0 +

∫ t

0

y2(τ) dτ,(92)

S2
x0

(y)(t) = x2
0 +

∫ t

0

(−∇PDε(y1(τ)) + b(τ)) dτ,(93)
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and there is a positive constant K = C/ε2+α(γ) (see (12)), independent of y1(t), for
−T ′ < t < T ′, such that the estimation in (93) gives

||S2
x0

(y)(t) − x2
0||C0,γ

≤
(
K

(
1 +

1

εγ
+ sup
t∈(−T ′,T ′)

||y1(t)||C0,γ

)
+ sup
t∈(−T,T )

||b(t)||C0,γ

)
T ′,(94)

and from (92)

||S1
x0

(y)(t)− x1
0||C0,γ ≤ sup

t∈(−T ′,T ′)

||y2(t)||C0,γT ′.(95)

We write b = supt∈I0 ||b(t)||C0,γ , and adding (94) and (95) gives the upper bound

(96) ||Sx0(y)(t)− x0||X ≤
(
K

(
1 +

1

εγ
+ sup
t∈(−T ′,T ′)

||y(t)||X
)

+ b

)
T ′.

Since B(x0, r) ⊂ B(0, R) (see 90)), we make the choice T ′ so that

(97) ||Sx0
(y)(t)− x0||X ≤

((
K

(
1 +

1

εγ
+R

)
+ b

))
T ′ < r = R− ||x0||X .

For this choice we see that

(98) T ′ < θ(R) =
R− ||x0||X

K(R+ 1 + 1
εγ ) + b

.

Now it is easily seen that θ(R) is increasing with R > 0 and

(99) lim
R→∞

θ(R) =
1

K
.

So given R and ||x0||X we choose T ′ according to

(100)
θ(R)

2
< T ′ < θ(R),

and set I ′ = (−T ′, T ′). We have found the appropriate time domain I ′ such that the
transformation Sx0

(y)(t) as defined in (91) maps Y (T ′) into itself. We now proceed
using standard arguments (see, e.g., [11, Theorem 6.10]) to complete the proof of
existence and uniqueness of solution for given initial data x0 over the interval I ′ =
(−T ′, T ′).

We now prove Theorem 2. From the proof of Theorem 6 above, we see that

a unique local solution exists over a time domain (−T ′, T ′) with θ(R)
2 < T ′. Since

θ(R)↗ 1/K as R↗∞, we can fix a tolerance η > 0 so that [(1/2K)− η] > 0. Then
given any initial condition with bounded Hölder norm and b = supt∈[−T,T ) ||b(t)||C0,γ ,
we can choose R sufficiently large so that ||x0||X < R and 0 < (1/2K)) − η < T ′.
Thus we can always find local solutions for time intervals (−T ′, T ′) for T ′ larger than
[(1/2K) − η] > 0. Therefore, we apply the local existence and uniqueness result to
uniquely continue local solutions up to an arbitrary time interval (−T, T ).
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x0
B(x0, r)

0 R

B(0, R)

Fig. 7. Geometry.

5. Limit behavior of Hölder solutions in the limit of vanishing nonlocal-
ity. In this section, we consider the behavior of bounded Hölder continuous solutions
as the peridynamic horizon tends to zero. We find that the solutions converge to a
limiting sharp fracture evolution with bounded Griffith’s fracture energy and satisfy
the linear elastic wave equation away from the fracture set. We look at a subset of
Hölder solutions that are differentiable in the spatial variables to show that sharp
fracture evolutions can be approached by spatially smooth evolutions in the limit of
vanishing nonlocality. As ε approaches zero, derivatives can become large but must
localize to surfaces across which the limiting evolution jumps.

We consider a sequence of peridynamic horizons εk = 1/k, k = 1, . . . , and the
associated Hölder continuous solutions uεk(t,x) of the peridynamic initial value prob-
lem (1), (2), and (3). We assume that the initial conditions uεk0 ,v

εk
0 have uniformly

bounded peridynamic energy and mean square initial velocity given by

sup
εk

PDεk(uεk0 ) <∞ and sup
εk

||vεk0 ||L2(D;Rd) <∞.

Moreover, we suppose that uεk0 ,v
εk
0 are differentiable on D and that they converge in

L2(D;R) to u0
0,v

0
0 with bounded Griffith’s free energy given by∫
D

2µ|Eu0
0|2 + λ|divu0

0|2 dx+ GcHd−1(Ju0
0
) ≤ C <∞,

where Ju0
0

denotes an initial fracture surface given by the jumps in the initial defor-

mation u0
0 and H2(Ju0(t)) is its 2 dimensional Hausdorff measure of the jump set.

Here Eu0
0 is the elastic strain and divu0

0 = Tr(Eu0
0). The constants µ, λ are given by

the explicit formulas

µ = λ =
1

5
f ′(0)

∫ 1

0

rdJ(r)dr, d = 2, 3,

and

Gc =
3

2
f∞

∫ 1

0

rdJ(r)dr, d = 2, 3,
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where f ′(0) and f∞ are defined by (7). Here µ = λ and is a consequence of the central
force model used in cohesive dynamics. Last we suppose as in [23] that the solutions
are uniformly bounded, i.e.,

sup
εk

sup
[0,T ]

||uεk(t)||L∞(D;Rd) <∞.

The Hölder solutions uεk(t,x) naturally belong to L2(D;Rd) for all t ∈ [0, T ] and
we can directly apply the Gronwall inequality (equation (6.9) of [23]) together with
Theorems 6.2 and 6.4 of [23] to conclude similarly to Theorems 5.1 and 5.2 of [23]
that there are at least one “cluster point” u0(t,x) belonging to C([0, T ];L2(D;Rd))
and a subsequence, also denoted by uεk(t,x), for which

lim
εk→0

max
0≤t≤T

{
‖uεk(t)− u0(t)‖L2(D;Rd)

}
= 0.

Moreover, it follows from [23] that the limit evolution u0(t,x) has a weak derivative
u0
t (t,x) belonging to L2([0, T ]×D;Rd). For each time t ∈ [0, T ] we can apply methods

outlined in [23] to find that the cluster point u0(t,x) is a special function of bounded
deformation (see [4] and [5]) and has bounded linear elastic fracture energy given by∫

D

2µ|Eu0(t)|2 + λ|divu0(t)|2 dx+ GcH2(Ju0(t)) ≤ C

for 0 ≤ t ≤ T , where Ju0(t) denotes the evolving fracture surface. The deforma-
tion crack set pair (u0(t), Ju0(t)) records the brittle fracture evolution of the limit
dynamics.

Arguments identical to [23] show that away from sets where |S(y,x;uεk)| > Sc
the limit u0 satisfies the linear elastic wave equation. This is stated as follows: Fix
δ > 0, and for εk < δ and 0 ≤ t ≤ T consider the open set D′ ⊂ D for which points x
in D′ and y for which |y − x| < εk satisfy

|S(y,x;uεk(t))| < Sc(y,x).

Then the limit evolution u0(t,x) evolves elastodynamically on D′ and is governed
by the balance of linear momentum expressed by the Navier–Lamé equations on the
domain [0, T ]×D′ given by

u0
tt(t) = divσ(t) + b(t) on [0, T ]×D′,

where the stress tensor σ is given by

σ = λIdTr(E u0) + 2µEu0,

where Id is the identity on Rd and Tr(E u0) is the trace of the strain. Here the second
derivative u0

tt is the time derivative in the sense of distributions of u0
t , and divσ is the

divergence of the stress tensor σ in the distributional sense. This shows that sharp
fracture evolutions can be approached by spatially smooth evolutions in the limit of
vanishing nonlocality.

6. Conclusions. In this article, we have presented a numerical analysis for a
class of nonlinear nonlocal peridynamic models. We have shown that the convergence
rate applies, even when the fields do not have well-defined spatial derivatives. We
treat the forward Euler scheme as well as the general implicit single step method.
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The convergence rate is found to be the same for both schemes and is given by
C(∆t+hγ/ε2). Here the constant C depends on ε and Hölder and the L2 norm of the
solution and its time derivatives. The Lipschitz property of the nonlocal, nonlinear
force together with boundedness of the nonlocal kernel plays an important role. It
ensures that the error in the nonlocal force remains bounded when replacing the exact
solution with its approximation. This, in turn, implies that even in the presence of
mechanical instabilities the global approximation error remains controlled by the local
truncation error in space and time.

Taking γ = 1, a straightforward estimate of (38) using (12) gives to leading order

sup
0≤k≤T/∆t

Ek ≤
[
C1∆tCt + C2h sup

0<t<T
‖u‖C0,1(D;R3)

]
,(101)

where Ct is independent of ε and depends explicitly on the L2 norms of time derivatives
of the solution; see (37) and

C1 = exp
[
T (1 + 6C̄/ε2)

]
T,

C2 = exp
[
T (1 + 6C̄/ε2)

]
T

(
1 +
√

3C̄

(
1 +

1

ε

)
+

4
√

3C̄

ε2

)
.

It is evident that the exponential factor could be large. However, we can choose
times T for which the effects of the exponential factor can be diminished and C1

and C2 are not too large. To fix these ideas, we consider a 1 cubic meter sample
and a corresponding 1400 meter per second shear wave speed. This wave speed is
characteristic of plexiglass. Then the time for a shear wave to traverse the sample is
718 µ-seconds. This is the characteristic time T ∗ and a fracture experiment can last a
few hundred µ-seconds. The actual time in µ-seconds of a fracture simulation is given
by TT ∗ where T is the nondimensional simulation time. The dimensionless constant
C̄ is 1.19, and we take ε = 1/10 and dimensionless body force unity. For a simulation
cycle of length TT ∗ = 1.5µ-seconds the constants C1 and C2 in (101) are 0.0193 and
7.976, respectively. The solution after cycle time T can be used as initial conditions
for a subsequent run and the process can be iterated. Unfortunately, these estimates
predict a total simulation time of 15µ-second before the relative error becomes greater
than one even for a large number of spatial degrees of freedom. We point out that
because the constants in the a priori bound are necessarily pessimistic, the predicted
simulation time is an order of magnitude below what is seen in the experiment. Future
work will focus on a posteriori estimates for simulations and adaptive implementations
of the finite difference scheme.

In conclusion, the analysis shows that the method is stable, and one can con-
trol the error by choosing the time step and spatial discretization sufficiently small.
However, errors do accumulate with time steps and this limits the time interval for
simulation. We have identified local perturbations for which the error accumulates
with the time step for the implicit Euler method. These unstable local perturbations
correspond to regions for which a preponderance of bonds are in the softening regime.
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