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Abstract
We establish the a priori convergence rate for finite element approximations of a class of 
nonlocal nonlinear fracture models. We consider state-based peridynamic models where 
the force at a material point is due to both the strain between two points and the change in 
volume inside the domain of the nonlocal interaction. The pairwise interactions between 
points are mediated by a bond potential of multi-well type while multi-point interactions 
are associated with the volume change mediated by a hydrostatic strain potential. The 
hydrostatic potential can either be a quadratic function, delivering a linear force–strain 
relation, or a multi-well type that can be associated with the material degradation and cavi-
tation. We first show the well-posedness of the peridynamic formulation and that peridy-
namic evolutions exist in the Sobolev space H2 . We show that the finite element approxi-
mations converge to the H2 solutions uniformly as measured in the mean square norm. 
For linear continuous finite elements, the convergence rate is shown to be C

t
Δt + C

s
h2∕�2 , 

where � is the size of the horizon, h is the mesh size, and Δt is the size of the time step. The 
constants C

t
 and C

s
 are independent of Δt and h and may depend on � through the norm of 

the exact solution. We demonstrate the stability of the semi-discrete approximation. The 
stability of the fully discrete approximation is shown for the linearized peridynamic force. 
We present numerical simulations with the dynamic crack propagation that support the the-
oretical convergence rate.

Keywords Nonlocal fracture models · Peridynamic · State-based peridynamic · Numerical 
analysis · Finite element approximation

Mathematics Subject Classification 34A34 · 34B10 · 74H55 · 74S05

 * Robert Lipton 
 lipton@math.lsu.edu

 Prashant K. Jha 
 prashant.j16o@gmail.com

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA

http://orcid.org/0000-0003-2158-364X
http://orcid.org/0000-0002-1382-3204
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-019-00039-4&domain=pdf


94 Communications on Applied Mathematics and Computation (2020) 2:93–128

1 3

1 Introduction

In this work, we study the state-based peridynamic theory and obtain an a priori error bound 
for the finite element approximation. The peridynamic theory is a reformulation of classi-
cal continuum mechanics carried out in the work of Silling in [34, 37]. The strain inside the 
medium is expressed in terms of displacement differences as opposed to the displacement gra-
dients. Acceleration of a point is now due to the sum of the forces acting on the point from 
nearby points. The new kinematics bypasses the difficulty incurred by juxtaposing displace-
ment gradients and discontinuities as in the case of classical fracture theories. The nonlocal 
fracture theory has been applied numerically to model the complex fracture phenomenon in 
materials; see [1, 3, 11, 15, 17, 19, 27, 35, 36, 38, 40]. Every point interacts with its neighbors 
inside a ball of fixed radius is called the horizon. The size of the horizon sets the length scale 
of the nonlocal interaction. When the forces between points are linear and the nonlocal length 
scale tends to zero, it is seen that peridynamic models converge to the classic model of the 
linear elasticity; see [2, 14, 32, 36]. The work of [39] provides an analytic framework for ana-
lyzing FEM for the linear bond and state-based peridynamics. For nonlinear forces associated 
with double well potentials, the peridynamic evolution converges in the small horizon limit 
to an evolution with a sharp evolving fracture set and the evolution is governed by the classic 
linear elastic wave equation away from the fracture set; see [21, 25, 26]. A recent review of the 
state of the art can be found in [4] and [9].

In this work, we assume small deformation and work with the linearized bond-strain. Let 
D ⊂ ℝd , for d = 2, 3 , be the material domain. For a displacement field u ∶ D × [0,T] → ℝd , 
the bond-strain between two material points x, y ∈ D is given by

Let 𝜖 > 0 be the size of the horizon and H
𝜖
(x) = {y ∈ ℝd ∶ |y − x| < 𝜖} be the neighbor-

hood of a material point x . For pairwise interaction, we assume the following form of pair-
wise interaction potential:

where J�(|y − x|) is the influence function. We assume J�(|y − x|) = J(|y − x|∕�) where 
0 ⩽ J(r) ⩽ M for r < 1 and J(r) = 0 for r ⩾ 1 . The potential f, see Fig. 1a, is assumed to be 
convex for small strains and becomes concave for larger strains. In the widely used proto-
typical micro-elastic brittle (PMB) peridynamic material, the strain vs force profile is lin-
ear up to some critical strain Sc and is zero for any strain above Sc . In contrast, the peridy-
namic force given by �SW

� is linear near zero strain and as the strain gets larger and 
reaches the critical strain, S+

c
 ( S−

c
 ) for positive (negative) strain, the bond starts to soften, 

see Fig. 1b. For a given potential function f, the critical strain is given by S+
c
=

r+√�y−x� and 
S−
c
=

r−√�y−x� , where r+ > 0, r− < 0 are the inflection points of the potential function f as 
shown in Fig. 1a.

The spherical or hydrostatic strain �(x, t;u) at material point is given by

(1)S(y, x, t;u) =
u(y, t) − u(x, t)

|y − x| ⋅

y − x

|y − x| .

(2)W
�(S(y, x, t;u)) =

J�(�y − x�)
��y − x� f (

√�y − x�S(y, x, t;u)),

(3)�(x, t;u) =
1

�
d
�d

∫H
�
(x)

J�(|y − x|)S(y, x, t;u)|y − x| dy,
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where �d is the volume of the unit ball in dimension d = 2, 3 . The potential for hydrostatic 
interaction is of the form

where g is the potential function associated with the hydrostatic strain. Here g can be of 
two types: (i) a quadratic function with only one well at zero strain, and (ii) a convex–con-
cave function with a wells at the origin and at ±∞ ; see Fig. 2a. If g is assumed to be quad-
ratic, then the force due to the spherical strain is linear. If g is a multi-well potential, the 
material softens as the hydrostatic strains exceed the critical value. For the convex–concave 
type g, the critical values are 0 < 𝜃

+
c
 and 𝜃−

c
< 0 beyond which the force begins to soften is 

related to the inflection point r+
∗
 and r−

∗
 of g as follows:

(4)V
�(�(x, t;u)) =

g(�(x, t;u))

�
2

,

Fig. 1  a Potential function f(r) for tensile force. C+ and C− are two extreme values of f. b Cohesive tensile 
force

Fig. 2  a Two types of potential function g(r) for hydrostatic force. Dashed line corresponds to the quadratic 
potential g(r) = �r2∕2 . Solid line corresponds to the convex–concave type potential g(r). For the convex–
concave type potential, there are two special points r−

∗
 and r+

∗
 at which material points start to soften. C+

∗
 and 

C−
∗
 are two extreme values. b Hydrostatic forces
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The critical compressive hydrostatic strain where the force begins to soften for negative 
hydrostatic strain is chosen much larger in magnitude than �+

c
 , i.e., 𝜃+

c
<< |𝜃−

c
|.

The finite element approximation has been applied to the peridynamic fracture; 
however, there remains a paucity of literature addressing the rigorous a priori conver-
gence rate of the finite element approximation to peridynamic problems in the pres-
ence of material failure. This aspect provides the motivation for the present work. In 
this paper, we first prove the existence of peridynamic evolutions taking values in 
H2(D;ℝd) ∩ H1

0
(D;ℝd) that are twice differentiable in time; see Theorem  2. We note 

that as these evolutions will become more fracture like as the region of the nonlo-
cal interaction decreases. These evolutions can be thought of as inner approxima-
tions to fracture evolutions. On passing to subsequences it is possible to show that the 
H2(D;ℝd) ∩ H1

0
(D;ℝd) evolutions converge in the limit of vanishing non-locality to a 

limit solution taking values in the space of special functions of bounded deformation 
SBD. Here the limit evolution has a well-defined Griffith fracture energy bounded by 
the initial data; see [26] and [23]. We show here that the higher temporal regularity 
can be established if the body force changes smoothly in time. Motivated by these con-
siderations, we develop finite element error estimates for solutions that take values in 
H2(D;ℝd) ∩ H1

0
(D;ℝd) and for a bounded time interval.

In this paper, we obtain an a priori L2 error bound for the finite element approximation 
of the displacement and velocity using a central in time discretization. Due to the nonlin-
ear nature of the problem, we get a convergence rate using the Lax–Richtmyer stability 
together with the consistency. Both the stability and consistency are shown to follow from 
the Lipschitz continuity of the peridynamic force in L2(D;ℝd) ; see Sects. 4.2.1 and 4.2.2. 
The bound on the L2 error is uniform in time and is given by CtΔt + Csh

2∕�2 , where the 
constants Ct and Cs are independent of Δt and the mesh size h; see Theorem 6. A more 
elaborate discussion of the a priori bound is presented in Sect.  4.2. For the linearized 
model, we obtain a stability condition on Δt , Theorem 9, that is of the same form as those 
given for linear local and nonlocal wave equations [18, 24]. We demonstrate the stabil-
ity for the linearized model noting that for small strains the material behaves like a linear 
elastic material and that the stability of the linearized model is necessary for the stability of 
nonlinear model. We believe a more constructive CFL stability condition is possible for the 
linear case and will pursue this in future work.

Previous work [21] treated spatially Lipschitz continuous solutions and addressed the 
finite difference approximation and obtained bounds on the L2 error for the displacement 
and velocity that are uniform in time and of the form CtΔt + Csh∕�

2 , where the constants 
Ct and Cs are as before. For finite elements, the convergence rate is seen to be slower than 
for the FEM model introduced here and is of order h∕�2 as opposed to h2∕�2 . On the other 
hand, the FEM method increases the computational work due to the inversion of the mass 
matrix.

We carry out numerical experiments for dynamic crack propagation and obtain conver-
gence rates for Plexiglass that are in line with the theory; see Sect. 5. We also compare the 
Griffith’s fracture energy with the peridynamic energy of the material softening zone; we 
show good agreement between the two energies; see Sect. 5.2. Finite difference methods 
are less expensive than finite element approximations for nonlocal problems; however, the 
latter offers more control on the accuracy of solution; see [10, 13, 16, 30, 31].

Here the a priori L2 convergence rates for the FEM given by Theorem  6 include the 
effects of material degradation through the softening of material properties. The FEM 

(5)�
+
c
= r+

∗
, �

−
c
= r−

∗
.
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simulations presented in this paper show that the material develops localized softening 
zones (region where bonds exceed the critical tensile strain) as it deforms. This is in con-
trast to linear peridynamic models which are incapable of developing softening zones. For 
nonlinear peridynamic models with material failure, the localization of zones of soften-
ing and damage is the hallmark of the peridynamic modeling [15, 19, 34, 37]. One notes 
that the a priori error involves � in the denominator and in many cases � is chosen small. 
However, typical dynamic fracture experiments last only hundreds of microseconds and the 
a priori error is controlled by the product of simulation time multiplied by h2∕�2 . So for 
material properties characteristic of Plexiglass and � of size 4 mm, the a priori estimates 
predict a relative error of 1

10
 for simulations lasting around 100 μ s. We point out that the 

a priori error estimates assume the appearance of nonlinearity anywhere in the computa-
tional domain. On the other hand, the numerical simulation and independent theoretical 
estimates show that the nonlinearity concentrates along “fat” cracks of finite length and 
width equal to � ; see [25, 26]. Moreover, the remainder of the computational domain is 
seen to behave linearly and to leading order can be modeled as a linear elastic material up 
to an error proportional to � ; see [Proposition 6, [22]]. Future work will use these obser-
vations to focus on the adaptive implementation and a posteriori estimates. A posteriori 
convergence for FEM models of peridynamics with material degradation can be seen in the 
work [7, 31, 33]. For other nonlinear and nonlocal models, the adaptive mesh refinement 
within FE framework for nonlocal models has been explored in [13] and convergence of 
the adaptive FE approximation is rigorously shown. A posteriori error analysis of linear 
nonlocal models is carried out in [12].

The paper is organized as follows. We introduce the equation of motion in Sect. 2 and 
present the Lipschitz continuity of the force, existence of peridynamic solution, and the 
higher temporal regularity necessary for the finite element error analysis. In Sect. 3, we 
consider the finite element discretization. We prove the stability of a semi-discrete approxi-
mation in Sect. 3.1. In Sect. 4, we analyze the fully discrete approximation and obtain an a 
priori bound on errors. The stability of the fully discrete approximation linearized peridy-
namic force is shown in Sect. 4.3. We present our numerical experiments in Sect. 5. Proofs 
of the Lipschitz bound on the peridynamic force and higher temporal regularity of solu-
tions is provided in Sect. 6. In Sect. 7, we present our conclusions.

We conclude the introduction by listing the notation used throughout the paper. We 
denote material domain as D, where D ⊂ ℝd for d = 2, 3 . Points and vectors in ℝd are 
denoted as bold letters. Some of the key notations are as follows:

[0, T] Time domain
� Size of horizon
� Density
H

�
(x) Horizon of x ∈ D , a ball of radius � centered at x

�
d

Volume of unit ball in dimension d = 2, 3

�(x) ∈ [0, 1] Boundary function defined on D taking value 1 in the interior and smoothly decaying 
to 0 as x approaches �D

u Displacement field defined over D × [0,T] . We may also use notation u to denote field 
defined over just D

u0, v0 Initial condition on displacement
b Body force defined over D × [0,T]

ey−x The unit vector pointing from a point y to the point x
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S = S(y, x, t;u) Bond strain S =
u(y,t)−u(x,t)

|y−x| ⋅ ey−x . We may also use S(y, x;u) if u is a filed defined over 
just D

� = �(x, t;u) Spherical or hydrostatic strain. We may also use �(x;u) if u is a filed defined over just 
D

S+
c
, S−

c
Critical bond strain

�
+
c
, �−

c
Critical hydrostatic strain

J�(r) = J(r∕�) Influence function where J is integrable with J(r) = 0 for r ⩾ 1 and 0 ⩽ J(r) ⩽ M for 
r < 1

J̄
𝛼

Moment of function J over H1(�) with weight 1∕(�
d
|�|�)

f, g Potential functions for pairwise and state-based interaction
W

�

,V
� Pairwise and state-based potential energy density

PD�(u(t)) Total peridynamic potential energy at time t
E
�(u)(t) Total dynamic energy at time t

L
�

,L
�

T
,L

�

D
Total peridynamic force, pairwise peridynamic force, and state-based peridynamic 

force, respectively
a�(u, v) Nonlinear operator where u, v are vector fields over D
a
�

T
, a�

D
Nonlinear pairwise and state-based operator

|| ⋅ ||, || ⋅ ||∞, || ⋅ ||n L2 norm over D, L∞ norm over D, and Sobolev Hn norm over D (for n = 1, 2 ), respec-
tively

h,Δt Size of mesh and size of time step
T
h

Triangulation of D given by triangular/tetrahedral elements
I
h

Continuous piecewise linear interpolation operator on T
h

W Space of functions in H2(D;ℝd) such that trace of function is zero on boundary �D , 
i.e., W = H2(D;ℝd) ∩ H

1

0
(D;ℝd)

V
h

Space of continuous piecewise linear interpolations on T
h

�
i

Interpolation function of mesh node i
r
h
(u) Finite element projection of u onto V

h

Ek Total error in mean square norm at time step k
uk
h
, vk

h
Approximate displacement and velocity field at time step k

uk, vk Exact displacement and velocity field at time step k

2  Equation of Motion, Existence, Uniqueness, and Higher Regularity

We assume D to be an open set with C1 boundary. To enforce zero displacement boundary 
conditions at �D and to insure a well-posed evolution, we introduce the boundary function 
�(x) . This function is introduced as a factor into the potentials W � and V � . Here the bound-
ary function takes value 1 in the interior of domain and is zero on the boundary. We assume 
supx |∇𝜔(x)| < ∞ and supx |∇2

𝜔(x)| < ∞ in our analysis. The hydrostatic strain is modified 
to include the boundary and is given by

The peridynamic potentials, Eqs. 2 and 4, are modified to see the boundary as follows:

(6)�(x, t;u) =
1

�
d
�d

∫H
�
(x)

�(y)J�(|y − x|)S(y, x, t;u)|y − x| dy.

(7)W
�(S(y, x, t;u)) = �(x)�(y)

J�(�y − x�)
��y − x� f (

√�y − x�S(y, x, t;u)),
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We assume that the potential function f is at least four times differentiable and satisfies the 
following regularity condition:

If the potential function g is convex–concave type, then we assume that g satisfies the same 
regularity condition as f. We denote constants Cg

i
 , for i = 0, 1,⋯ , 4 , similar to Cf

i
 above.

The total potential energy at time t is given by

where potential W � and V� are described above. The material is assumed to be homogene-
ous and the density is given by � . The applied body force is denoted by b(x, t) . We define 
the Lagrangian

here u̇ is the velocity given by the time derivative of u . Applying the principal of least 
action together with a straight forward calculation (see, for example, [28] for detailed deri-
vation) gives the nonlocal dynamics

where

L
�

T
(u) is the peridynamic force due to the bond-based interaction and is given by

and L�

D
(u) is the peridynamic force due to the state-based interaction and is given by

The dynamics is complemented with the initial data

We prescribe the zero Dirichlet boundary condition on the boundary �D

(8)V
�(�(x, t;u)) = �(x)

g(�(x, t;u))

�
2

.

(9)C
f

0
∶= sup

r

|f (r)| < ∞, C
f

i
∶= sup

r

|f (i)(r)| < ∞, ∀i = 1, 2, 3, 4.

(10)

PD�(u(t)) =
1

�
d
�d

∫D ∫H
�
(x)

|y − x|W �(S(y, x, t;u)) dydx

+ ∫D

V
�(�(x, t;u)) dx,

L(u, 𝜕tu, t) =
𝜌

2
||u̇||2 − PD𝜖(u(t)) + ∫D

b(t) ⋅ u(t)dx,

(11)𝜌ü(x, t) = L
𝜖(u)(x, t) + b(x, t) for x ∈ D,

(12)L
�(u)(x, t) = L

�

T
(u)(x, t) + L

�

D
(u)(x, t),

(13)

L
�

T
(u)(x, t)

=
2

�
d
�d

∫H
�
(x)

�(x)�(y)
J�(�y − x�)
��y − x� �Sf (

√�y − x�S(y, x, t;u))ey−x dy,

(14)

L
�

D
(u)(x, t)

=
1

�
d
�d

∫H
�
(x)

�(x)�(y)
J�(|y − x|)

�
2

[
�
�
g(�(y, t;u)) + �

�
g(�(x, t;u))

]
ey−x dy.

(15)u(x, 0) = u0(x), �tu(x, 0) = v0(x).
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We extend the zero boundary condition outside D to whole ℝd . In our analysis, we will 
assume the mass density � = 1 without loss of generality.

2.1  Existence of Solutions and Higher Regularity in Time

We recall that the space Hn
0
(D;ℝd) is the closure in the Hn norm of the functions that are 

infinitely differentiable with compact support in D. For suitable initial conditions and body 
force, we show that solutions exist in

where � is the trace of the function v on the boundary of D. We will assume that u ∈ W is 
extended by zero outside D. We first exhibit the Lipschitz continuity property and bound-
edness of the peridynamic force for displacements in W. We will then apply [Theorem 3.2, 
[20]] to conclude the existence of unique solutions.

We note the following Sobolev embedding properties of H2(D;ℝd) when D is a C1 
domain.

• From Theorem  2.72 of [8], there exists a constant Ce1
 independent of u ∈ H2(D;ℝd) 

such that 

• Further application of standard embedding theorems (e.g., Theorem 2.72 of [8]) shows 
there exists a constant Ce2

 independent of u such that 

for any q such that 2 ⩽ q < ∞ when d = 2 and 2 ⩽ q ⩽ 6 when d = 3.
We have the following result which shows the Lipschitz continuity property of a peridy-
namic force L�.

Theorem 1 (Lipschitz continuity of peridynamic force) Let f be a convex–concave func-
tion satisfying Cf

i
< ∞ for i = 0,⋯ , 4 and let g either be a quadratic function, or g be a 

convex–concave function with Cg

i
< ∞ for i = 0,⋯ , 4 . Also, let the boundary function 

� ∶ D → [0, 1] be such that sup
x∈D

|∇𝜔(x)| < ∞ and sup
x∈D

|∇2
𝜔(x)| < ∞ . Then, for any 

u, v ∈ W , we have

where constant L̄1 does not depend on � nor u, v . Also, for u ∈ W , we have

where constant L̄2 does not depend on � nor u.

(16)u(x) = �, ∀x ∈ �D.

(17)W = H2(D;ℝd) ∩ H1
0
(D;ℝd) = {v ∈ H2(D;ℝd) ∶ �v = 0 on �D},

(18)||u||∞ ⩽ Ce1
||u||2.

(19)||∇u||Lq(D;ℝd×d) ⩽ Ce2
||∇u||1 ⩽ Ce2

||u||2,

(20)||L𝜖(u) − L
𝜖(v)||2 ⩽

L̄1(1 + ||u||2 + ||v||2)2
𝜖
3

||u − v||2,

(21)||L𝜖(u)||2 ⩽
L̄2(||u||2 + ||u||2

2
)

𝜖
5∕2

,
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Now let T > 0 be any positive number, a straight-forward application of [Theorem 3.2, 
[20]] gives:

Theorem 2 (Existence and uniqueness of solutions over finite time intervals) Let f, g, and 
� satisfy the hypothesis of Theorem 1. For any initial condition u0, v0 ∈ W , time interval 
I0 = (−T , T) , and right-hand side b(t) continuous in time for t ∈ I0 such that b(t) satisfies 
sup
t∈I0

||b(t)||2 < ∞ , there is a unique solution u(t) ∈ C2(I0;W) of peridynamic Eq. 11. Also, 

u(t) and u̇(t) are Lipschitz continuous in time for t ∈ I0.

We can also show higher regularity in time of evolutions under suitable assumptions on 
the body force:

Theorem 3 (Higher regularity) Suppose the initial data and righthand side b(t) satisfy the 
hypothesis of Theorem 2 and suppose further that ̇b(t) exists and is continuous in time for 
t ∈ I0 and  sup

t∈I0

|| ̇b(t)||2 < ∞ . Then, u ∈ C3(I0;W) and

where C is a positive constant independent of u.

The proofs of Theorems 1 and 3 are given in Sect. 6. For future reference, we note that 
for any u, v ∈ L2

0
(D;ℝd) , we have

where constant L is given by

and J̄𝛼 = (
1

𝜔d

) ∫
H1(�)

J(|�|)
|�|𝛼 d�.

2.2  Weak Form

We multiply Eq. 11 by a test function ũ in H1
0
(D;ℝd) and integrate over D to get

We have the following integration by parts formula:

Lemma 1 For any u, v ∈ L2
0
(D;ℝd) , we have

(22)
||𝜕3

ttt
u(x, t)||2 ⩽

C

(
1 + sup

s∈I0

||u(s)||2
)2

𝜖
3

sup
s∈I0

||𝜕tu(s)||2 + || ̇b(x, t)||2,

(23)||L�(u) − L
�(v)|| ⩽ L

�
2
||u − v||,

(24)L ∶=

{
4(C

f

2
J̄1 + C

g

2
J̄2
0
) if g is a convex–concave type,

4(C
f

2
J̄1 + g��(0)J̄2

0
) if g is a quadratic function,

(25)(ü(t), ũ) = (L𝜖(u(t)), ũ) + (b(t), ũ).

(26)(L�(u), v) = −a�(u, v),
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where

and

The proof of above lemma is identical to the proof of Lemma 4.2 in [28].
Using the above lemma, the weak form of the peridynamic evolution is given by

Total dynamic energy We define the total dynamic energy as follows:

where PD� is defined in Eq. 10. The time derivative of the total energy satisfies

Remark 1 It is readily verified that the peridynamic force and energy are bounded for all 
functions in L2(D;ℝd) . Here the bound on the force follows from the Lipschitz property of 
the force in L2(D;ℝd) ; see Eq. 23. The peridynamic force is also bounded for functions u in 
H1(D;ℝd) . This again follows from the Lipschitz property of the force in H1(D;ℝd) using 
arguments established in Sect. 6. The boundedness of the energy PD�(u) in both L2(D;ℝd) 
and H1(D;ℝd) follows from the boundedness of the bond potential energy W �(S(y, x, t;u)) 
and V�(�(x, t;u)) used in the definition of PD�(u) ; see Eqs. 7 and  8. More generally, this 
also shows that PD𝜖(u) < ∞ for u ∈ L1(D;ℝd).

We next discuss the spatial and the time discretization of peridynamic equation.

3  Finite Element Approximation

Let Vh be given by linear continuous interpolations over tetrahedral or triangular elements 
Th , where h denotes the size of the finite element mesh. Here we assume the elements are 
conforming and the finite element mesh is shape regular and Vh ⊂ H1

0
(D;ℝd).

For a continuous function u on D̄ , Ih(u) is the continuous piecewise linear interpolant 
on Th . It is given by

(27)a�(u, v) = a�
T
(u, v) + a�

D
(u, v)

(28)

⎧⎪⎪⎨⎪⎪⎩

a�
T
(u, v) =

1

�
d+1

�d
∫D ∫D

�(x)�(y)J�(�y − x�)

⋅ �Sf (
√�y − x�S(y, x;u))S(y, x;v)dydx,

a�
D
(u, v) =

1

�
2 ∫D

�(x)g�(�(x;u))�(x;v)dx.

(29)(ü(t), ũ) + a𝜖(u(t), ũ) = (b(t), ũ).

(30)E
𝜖(u)(t) =

1

2
||u̇(t)||2

L2
+ PD𝜖(u(t)),

(31)
d

dt
E
𝜖(u)(t) = (ü(t), u̇(t)) + a𝜖(u(t), u̇(t)).

(32)Ih(u)|T = IT (u), ∀T ∈ Th,
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where IT (u) is the local interpolant defined over the finite element T and is given by

Here n is the number of vertices in an element T, xi is the position of vertex i, and �i is the 
linear interpolant associated to vertex i.

Application of Theorem 4.4.20 and Remark 4.4.27 in [5] gives

Let rh(u) denote the projection of u ∈ W on Vh . For the L2 norm it is defined as

and satisfies

Since Ih(u) ∈ Vh and Eq. 34, we see that

3.1  Semi‑discrete Approximation

Let uh(t) ∈ Vh be the approximation of u(t) satisfying following for all t ∈ [0, T],

We have the following result:

Theorem 4 (Energy stability of semi-discrete approximation) The semi-discrete scheme is 
stable and the energy E�(uh)(t) , defined in Eq. 30, satisfies the following bound:

We note that while proving the stability of semi-discrete scheme corresponding to non-
linear peridynamics, we do not require any assumption on the strain S(y, x, t;uh) . The proof 
is similar to [Section 6.2, [26]].

Proof Letting ũ = u̇h(t) in Eq. 38 and noting the identity Eq. 31, we get

We also have

(33)IT (u) =

n∑
i=1

u(xi)�i.

(34)||u − Ih(u)|| ⩽ ch2||u||2, ∀u ∈ W.

(35)||u − rh(u)|| = inf
ũ∈Vh

||u − ũ||

(36)(rh(u), ũ) = (u, ũ), ∀ũ ∈ Vh.

(37)||u − rh(u)|| ⩽ ch2||u||2, ∀u ∈ W.

(38)(üh, ũ) + a𝜖(uh(t), ũ) = (b(t), ũ), ∀ũ ∈ Vh.

E
�(uh)(t) ⩽

[√
E
�(uh)(0) + ∫

t

0

||b(�)||d�
]2
.

(39)
d

dt
E
𝜖(uh)(t) = (b(t), u̇h(t)) ⩽ ||b(t)|| ||u̇h(t)||.

||u̇h(t)|| ⩽ 2

√
1

2
||u̇h||2 + PD𝜖(uh(t)) = 2

√
E
𝜖(uh)(t),
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where we use the fact that PD�(u)(t) is nonnegative. We substitute above inequality in 
Eq. 39 to get

We fix 𝛿 > 0 and define A(t) as A(t) = E
�(uh)(t) + � . Then, from the above equation, we 

easily have

Noting that 1√
a(t)

da(t)

dt
= 2

d

dt

√
a(t) , integrating from t = 0 to � and relabeling � as t, we get

Proof is complete once we let � → 0 and take the square of both sides.

4  Central Difference Time Discretization

In Sect. 4.2, we calculate the convergence rate for the central difference time discretization of 
the fully nonlinear problem. We then present a CFL-like condition on the time step Δt for the 
linearized peridynamic equation in Sect. 4.3.

At time step k, the exact solution is given by (uk, vk) , where vk = �uk∕�t , and their pro-
jection onto Vh is given by (rh(uk), rh(vk)) . The solution of fully discrete problem at time 
step k is given by (uk

h
, vk

h
).

We approximate the initial data on displacement u0 and the velocity v0 by their projec-
tions rh(u0) and rh(v0) . Let u0

h
= rh(u0) and v0

h
= rh(v0) . For k ⩾ 1 , (uk

h
, vk

h
) satisfies, for all 

ũ ∈ Vh,

where we have denoted the projection of b(tk) , i.e., rh(b(tk)) , as bk
h
 . Combining the two 

equations delivers central difference equation for uk
h
 . We have

d

dt
E
�(uh)(t) ⩽ 2

√
E
�(uh)(t) ||b(t)||.

d

dt
A(t) ⩽ 2

√
A(t) ��b(t)�� ⇒

1

2

d

dt
A(t)

√
A(t)

⩽ ��b(t)��.

√
A(t) ⩽

√
A(0) + ∫

t

0

��b(s)��ds.

(40)

⎧
⎪⎪⎨⎪⎪⎩

�
uk+1
h

− uk
h

Δt
, ũ

�
= (vk+1

h
, ũ),

�
vk+1
h

− vk
h

Δt
, ũ

�
= (L𝜖(uk

h
), ũ) + (bk

h
, ũ),

(41)

(
uk+1
h

− 2uk
h
+ uk−1

h

Δt2
, ũ

)
= (L𝜖(uk

h
), ũ) + (bk

h
, ũ), ∀ũ ∈ Vh.
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For k = 0 , we have ∀ũ ∈ Vh,

4.1  Implementation Details

For completeness, we describe the implementation of the time stepping method using FEM 
interpolants. Let N be the shape tensor. Then, uk

h
, ũ ∈ Vh are given by

where Uk and ̃U are Nd-dimensional vectors, where N is the number of nodal points in the 
mesh and d is the dimension.

From Eq. 41, for all ̃U ∈ ℝNd with elements of ̃U zero on the boundary, then the follow-
ing holds for k ⩾ 1:

Here the mass matrix M and the force vector Fk are given by

where Fk
pd

 is defined by

We remark that a similar equation holds for k = 0.
At the time step k, we must invert M to solve for Uk+1 using

As is well known, this inversion amounts to an increase of computational complexity asso-
ciated with discrete approximation of the weak formulation of the evolution. Further, the 
matrix–vector multiplication M−1Fk needs to be carried out at each time step. On the other 
hand, the quadrature error in the computation of the force vector Fk

pd
 is reduced when using 

the weak form.
We next show the convergence of approximation.

4.2  Convergence of Approximation

In this section, we prove the uniform bound on the error and show that the approximate solu-
tion converges to the exact solution with rate given by CtΔt + Csh

2∕�2 . Here the horizon 
𝜖 > 0 is assumed to be fixed. We first compare the exact solution with its projection in Vh and 
then compare the projection with the approximate solution. We further divide the calculation 

(42)

(
u1
h
− u0

h

Δt2
, ũ

)
=

1

2
(L𝜖(u0

h
), ũ) +

1

Δt
(v0

h
, ũ) +

1

2
(b0

h
, ũ).

(43)uk
h
= NUk, ũ = N ̃U,

(44)
(
M

Uk+1 − 2Uk + Uk−1

Δt2

)
⋅
̃U = Fk

⋅
̃U.

(45)

⎧⎪⎨⎪⎩

M ∶= ∫D

NTNdx,

Fk ∶= Fk
pd
+ ∫D

NTb(x, tk)dx,

(46)Fk
pd

∶= ∫D

NT(L�(uk
h
)(x))dx.

(47)Uk+1 = Δt2M−1Fk + 2Uk − Uk−1.
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of error between the projection and the approximate solution in two parts, namely the consist-
ency analysis and error analysis.

The error Ek is given by

The error is split into two parts as follows:

where the first term is the error between the exact solution and projection, and the second 
term is the error between the projection and approximate solution. Let

and

Using Eq. 37, we have

where

We have the following a-priori convergence rate given by

Theorem  5 (Convergence of central difference approximation) Let (u, v) be the 
exact solution of the peridynamic Eq. 11 and (uk

h
, vk

h
) be the FE solution of Eq.  40. If 

u, v ∈ C2([0, T];W) , then the scheme is consistent and the error Ek satisfies the following 
bound:

where the constants Cp , Ct , and Cs are given by Eqs. 51 and  58. The constant L∕�2 is the 
Lipschitz constant of the peridynamic force L�(u) in L2 ; see Eq. 23. If the error in initial 
data is zero, then Ek is of the order of CtΔt + Csh

2∕�2.

In Theorem  3, we have shown that u, v ∈ C2([0, T];W) for righthand side 
b ∈ C1([0, T];W) . In Sect. 7, we discuss the behavior of the exponential constant appearing in 
Theorem 5 for evolution times seen in fracture experiments. Since we are approximating the 
solution of an ODE on a Banach space, the proof of Theorem 5 will follow from the Lipschitz 
continuity of the force L�(u) with respect to the L2 norm. The proof is given in the following 
two sections.

Ek ∶= ||uk
h
− u(tk)|| + ||vk

h
− v(tk)||.

Ek
⩽
(||uk − rh(u

k)|| + ||vk − rh(v
k)||) + (||rh(uk) − uk

h
|| + ||rh(vk) − vk

h
||),

(48)ek
h
(u) ∶= rh(u

k) − uk
h
, ek

h
(v) ∶= rh(v

k) − vk
h
,

(49)ek ∶= ||ek
h
(u)|| + ||ek

h
(v)||.

(50)Ek
⩽ Cph

2 + ek,

(51)Cp ∶= c

(
sup
t

||u(t)||2 + sup
t

‖‖‖‖
�u(t)

�t

‖‖‖‖2
)
.

(52)

sup
k⩽T∕Δt

Ek

= Cph
2 + exp

[
T

(
1 +

L

�

2
)(

1

1 − Δt

)][
e0 +

(
T

1 − Δt

)(
CtΔt + Cs

h2

�
2

)]
,
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4.2.1  Truncation Error Analysis and Consistency

The results in this section follow the same steps as in [20] and, therefore, we will 
just highlight the major steps. We can write the discrete evolution equation for 
(ek

h
(u) = rh(u

k) − uk
h
, ek

h
(v) = rh(v

k) − vk
h
) as follows:

where consistency error terms �k
h
(u), �k

h
(v),�k

h
(u) are given by

When u, v are C2 in time, we easily see that

To estimate �k
h
(u) , we recall the Lipschitz continuity property of the peridynamic force in 

the L2 norm; see Eq. 23. This leads us to

where the constant L is defined in Eq. 24.
We now state the consistency of this approach.

Lemma 2 (Consistency) Let � be given by

Then, the approach is consistent in that

where

(53)

⎧
⎪⎨⎪⎩

(ek+1
h

(u), ũ) = (ek
h
(u), ũ) + Δt(ek+1

h
(v), ũ) + Δt(�k

h
(u), ũ),

(ek+1
h

(v), ũ) = (ek
h
(v), ũ) + Δt(L𝜖(uk

h
) − L

𝜖(r
h
(uk)), ũ)

+ Δt(�k
h
(v), ũ) + Δt(�k

h
(u), ũ),

(54)

⎧⎪⎪⎨⎪⎪⎩

�k
h
(u) ∶=

�uk+1

�t
−

uk+1 − uk

Δt
,

�k
h
(v) ∶=

�vk

�t
−

vk+1 − vk

Δt
,

�k
h
(u) ∶= L

�(rh(u
k)) − L

�(uk).

||�k
h
(u)|| ⩽ Δt sup

t

‖‖‖‖
�
2u

�t2

‖‖‖‖ and ||�k
h
(v)|| ⩽ Δt sup

t

‖‖‖‖
�
2v

�t2

‖‖‖‖.

(55)||�k
h
(u)|| ⩽ L

�
2
||uk − rh(u

k)|| ⩽ Lc

�
2
h2 sup

t

||u(t)||2,

(56)� ∶= sup
k

(||�k
h
(u)|| + ||�k

h
(v)|| + ||�k

h
(u)||).

(57)� ⩽ CtΔt + Cs

h2

�
2
,

(58)Ct ∶=
‖‖‖‖
�
2u

�t2

‖‖‖‖ +
‖‖‖‖
�
2v

�t2

‖‖‖‖ and Cs ∶= Lc sup
t

||u(t)||2.
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4.2.2  Stability Analysis

In equation for ek
h
(u) , we take ũ = ek+1

h
(u) . We have

which implies

Similarly, we can show

We have from Eq. 23

After adding Eqs. 59 and 60, and substituting Eq. 61, we get

where � is defined in Eq.  56. Since ek = ||ek
h
(u)|| + ||ek

h
(v)|| , we can show, assuming 

L∕�2 ⩾ 1,

Substituting for ek recursively in the equation above, we get

Noting that

and (1 + aΔt)k ⩽ exp(kaΔt) ⩽ exp(Ta) for a > 0 , we have

This implies

||ek+1
h

(u)||2 = (ek
h
(u), ek+1

h
(u)) + Δt(ek+1

h
(v), ek+1

h
(u)) + Δt(�k

h
(u), ek+1

h
(u)),

(59)||ek+1
h

(u)|| ⩽ ||ek
h
(u)|| + Δt||ek+1

h
(v)|| + Δt||�k

h
(u)||.

(60)

||ek+1
h

(v)|| ⩽ ||ek
h
(v)|| + Δt||L�(uk

h
) − L

�(rh(u
k))||

+ Δt
(
||�k

h
(v)|| + ||�k

per,h
(u)||

)
.

(61)||L�(uk
h
) − L

�(rh(u
k))|| ⩽ L

�
2
||uk

h
− rh(u

k)|| = L

�
2
||ek

h
(u)||.

||ek+1
h

(u)|| + ||ek+1
h

(v)|| ⩽ ||ek
h
(u)|| + ||ek

h
(v)|| + Δt||ek+1

h
(v)|| + L

�
2
Δt||ek

h
(u)|| + Δt�,

ek+1 ⩽ ek + Δtek+1 + Δt
L

�
2
ek + Δt�

⇒ ek+1 ⩽
1 +

ΔtL

�
2

1 − Δt
ek +

Δt

1 − Δt
�.

ek+1 ⩽

(
1 +

ΔtL

�
2

1 − Δt

)k+1

e0 +
Δt

1 − Δt
�

k∑
j=0

(
1 +

ΔtL

�
2

1 − Δt

)k−j

.

1 +
ΔtL

�
2

1 − Δt
= 1 +

1 +
L

�
2

1 − Δt
Δt

(62)
⎛⎜⎜⎝
1 +

ΔtL1

�
2

1 − Δt

⎞⎟⎟⎠

k

⩽ exp

�T
�
1 +

L1

�
2

�

1 − Δt

�
.
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By substituting above equation in Eq. 50, we get the stability of the scheme.

Lemma 3 (Stability)

After taking sup over k ⩽ T∕Δt and substituting the bound on � from Lemma 2, we get 
the desired result and proof of Theorem 5 is complete.

We now consider a stronger notion of stability for the linearized peridynamics model.

4.3  Linearized Peridynamics and Energy Stability

In this section, we linearize the peridynamics model and obtain a CFL-like stability condi-
tion. For problems, where strains are small, the stability condition for the linearized model 
is expected to apply to the nonlinear model. The slope of peridynamics potential f and g are 
constant for sufficiently small strain and, therefore, for small strain, the nonlinear model 
behaves like a linear model.

In Eq. 13, the linearization gives

The corresponding bilinear form is denoted as a�
T ,l

 and is given by

Similarly, the linearization of L�

D
 in Eq. 14 gives

The associated bilinear form is given by

The total force after linearization is

ek+1 ⩽ exp

⎡
⎢⎢⎢⎣

T
�
1 +

L

�
2

�

1 − Δt

⎤
⎥⎥⎥⎦

�
e0 +

Δt

1 − Δt
�

k�
j=0

1

�

⩽ exp

⎡
⎢⎢⎢⎣

T
�
1 +

L

�
2

�

1 − Δt

⎤
⎥⎥⎥⎦

�
e0 +

kΔt

1 − Δt
�

�
.

(63)Ek
⩽ Cph

2 + exp

⎡⎢⎢⎢⎣

T
�
1 +

L

�
2

�

1 − Δt

⎤⎥⎥⎥⎦

�
e0 +

kΔt

1 − Δt
�

�
.

(64)L
�

T ,l
(u)(x) =

2

�
d+1

�d
∫H

�
(x)

�(x)�(y)J�(|y − x|)f ��(0)S(y, x;u)ey−xdy.

(65)a�
T ,l
(u, v) =

f ��(0)

�
d+1

�d
∫D ∫D

�(x)�(y)J�(|y − x|)|y − x|S(y, x;u)S(y, x;v)dydx.

(66)L
�

D,l
(u)(x) =

g��(0)

�
d+2

�d
∫H

�
(x)

�(x)�(y)J�(|y − x|)[�(y, t;u) + �(x, t;u)
]
ey−x dy.

(67)a�
D,l
(u, v) =

g��(0)

�
2 ∫D

�(x)�(x;u)�(y;v)dx.

(68)L
�

l
(u)(x) = L

�

T ,l
(u)(x) + L

�

D,l
(u)(x)
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and the bilinear operator associated with L�

l
 is given by

We have

We now discuss the stability of the FEM approximation to the linearized problem. Let uk
l,h

 
denote the approximate solution satisfying, for k ⩾ 1,

and, for k = 0,

The following notation will be used to define the discrete energy at each time step k:

We also define

We introduce the discrete energy associated with uk
l,h

 at time step k as follows:

Following [Theorem 4.1, [24]], the stability of central difference scheme is given by

Theorem 6 (Energy stability of the central difference approximation of linearized peridy-
namics) Let uk

l,h
 be the approximate solution of Eqs. 70 and 71. In the absence of body force 

b(t) = 0 for all t, if Δt satisfies the CFL-like condition

then the discrete energy is positive and we have the stability

(69)a�
l
(u, v) = a�

T ,l
(u, v) + a�

D,l
(u, v).

(L�

l
(u), v) = −a�

l
(u, v).

(70)

(
uk+1
l,h

− 2uk
l,h
+ uk−1

l,h

Δt2
, ũ

)
= (L𝜖

l
(uk

l,h
), ũ) + (bk

h
, ũ), ∀ũ ∈ Vh

(71)

(
u1
l,h
− u0

l,h

Δt2
, ũ

)
=

1

2
(L𝜖(u0

l,h
), ũ) +

1

Δt
(v0

l,h
, ũ) +

1

2
(b0

h
, ũ), ∀ũ ∈ Vh.

(72)

⎧⎪⎪⎨⎪⎪⎩

u
k+1

h
∶=

uk+1
h

+ uk
h

2
, u

k

h
∶=

uk
h
+ uk−1

h

2
,

�̄�tu
k
h
∶=

uk+1
h

− uk−1
h

2Δt
, �̄�+

t
uk
h
∶=

uk+1
h

− uk
h

Δt
, �̄�−

t
uk
h
∶=

uk
h
− uk−1

h

Δt
.

�̄�ttu
k
h
∶=

uk+1
h

− 2uk
h
+ uk−1

h

Δt2
=

�̄�
+
t
uk
h
− �̄�

−
t
uk
h

Δt
.

E(uk
l,h
) ∶=

1

2

[
||�̄�+

t
uk
l,h
||2 − Δt2

4
a𝜖
l
(�̄�+

t
uk
l,h
, �̄�+

t
uk
l,h
) + a𝜖

l
(u

k+1

l,h
,u

k+1

l,h
)

]
.

(73)
Δt2

4
sup

u∈Vh⧵{�}

a�
l
(u, u)

(u, u)
⩽ 1,

(74)E(uk
l,h
) = E(u0

l,h
).
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We skip the proof of above theorem as it is straightforward extension of Theorem 5.2 in 
[20].

5  Numerical Experiments

In this section, we present numerical simulations that are consistent with the theoretical 
a-priori bound on the convergence rate. We also compare the peridynamic energy of the 
material softening zone and the classic Griffith’s fracture energy of linear elastic fracture 
mechanics.

We consider Plexiglass at room temperature and specify the density � = 1 200 kg/m3 , the 
bulk modulus K = 25 GPa, the Poisson’s ratio � = 0.245 , and the critical energy release rate 
Gc = 500 Jm−2 . The pairwise interaction and the hydrostatic interaction are characterized by 
potentials f (r) = c(1 − exp(−�r2)) and g(r) = C̄r2∕2 , respectively. Here we have used a 
quadratic hydrostatic interaction potential. The influence function is J(r) = 1 − r . Since the 
pairwise potential f is symmetric for positive and negative strains, the critical strain is given 
by Sc( y, bx) =

±r̄√
y−x

 , where ±r̄ is the inflection point of f(r) given by r̄ = 1√
𝛽

 . Following 
Eqs. 94, 95, and 97 of [29], the relation between peridynamic material parameters and Lamé 
constants (�,�) and the critical energy release rate Gc can be written as (for 2-d)

where MJ is given by

By solving Eq. 75, we get c = 4 712.4 , C̄ = −1.734 9 × 1011 , � = 1.564 7 × 108.
We consider a 2-d domain D = [0, 0.1m]2 (with unit thickness in third direction) with 

the vertical crack of length 0.02m . The boundary conditions are described in Fig. 3. The 

(75)c =
𝜋Gc

4MJ

, 𝛽 =
4𝜇

CMJ

, C̄ =
2(𝜆 − 𝜇)

M2
J

,

MJ = ∫
1

0

J(r)r2dr =
1

12
.

Fig. 3  Material domain 
D = [0, 0.1m]2 with crack of 
length 0.02m . The x-component 
and y-component of displace-
ment are fixed along a collar of 
thickness equal to the horizon on 
top. On the bottom the velocity 
vx = ±1m/s along x-direction 
is specified on either side of the 
crack to make the crack propa-
gate upwards
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simulation time is T = 40 μs and the time step is Δt = 0.004 μs . We consider two horizons 
8mm and 4mm . We run simulations for mesh sizes h = 2, 1, 0.5mm . We consider the cen-
tral difference time discretization described by Eq. 41 on a uniform mesh consisting of lin-
ear triangle elements. The second-order quadrature approximation is used in the simulation 
for each triangle element. To reduce the load on memory and to avoid the matrix–vector 
multiplication at each time step, we approximate the mass matrix by the diagonal mass 
matrix using the lumping (row-sum) technique. Suppose the exact mass matrix is M = [mij] 
where mij is the element of M corresponding to ith row and jth column, then we approxi-
mate M by the diagonal matrix ̂M = [m̂ij] where m̂ii =

∑
j mij and m̂ij = 0 if j ≠ i.

5.1  Convergence Rate

To compute the convergence rate numerically we proceed as follows: consider a fixed hori-
zon � and three different mesh sizes h1, h2, h3 such that r = h1∕h2 = h2∕h3 . Let u1, u2, u3 
be approximate solutions corresponding to meshes of size h1, h2, h3 , and let u be the exact 
solution. We write the error as ||uh − u|| = Ch� for some constant C and 𝛼 > 0 , to get

From the above two equations, it is easy to see that the rate of convergence � is

The convergence result for horizons � = 8mm and � = 4mm is shown in Fig.  4. In the 
simulation, we have considered the second-order approximation of integration using quad-
rature points. The simulations show a rate of convergence that agrees with the a priori esti-
mates given in Theorem 6.

log(||u1 − u2||) = C + � log h2,

log(||u2 − u3||) = C + � log h3.

(76)
log(||u1 − u2||) − log(||u2 − u3||)

log(r)
.

Fig. 4  Convergence rate at dif-
ferent times for two horizons. 
For both horizons � = 4, 8mm , 
the three meshes of size 
h = 2, 1, 0.5mm were considered 
to compute the convergence rate
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5.2  Fracture Energy of Crack Zone

The extent of damage at material point x is given by the function Z(x)

The crack zone is defined as set of material points which have Z > 1 . We compute the 
peridynamic energy of crack zone and compare it with the Griffith’s fracture energy. For 
a crack of length l, the Griffith’s fracture energy (G.E.) will be G.E. = Gc × l . The peridy-
namic fracture energy (P.E.) associated with the material softening zone is given by

where W �(S(y, x;u)) is the bond-based potential; see Eq. 2 and V�(�(x, t;u)) is the hydro-
static interaction potential; see Eq. 4.

In Fig. 5, the classical fracture energy and the peridynamic fracture energy are shown at 
different crack lengths. The error in both energies at different times is shown in Fig. 6. The 
agreement between two energies is good. The damage profile at time 30 μ s and 40 μ s is shown 
in Fig. 7. At each node, the damage function Z is computed by treating edges between mesh 
nodes as bonds. In addition to the damage plots, we show the velocity profile at 30 μ s and 
40 μ s in Fig. 8. In Fig. 9, we show the plot of the xx component of symmetric gradient of the 
displacement. Here the region for which the magnitude of the strain is greater than a multiple 
of the critical strain is the yellow region. It is seen that the high-strain region surrounds the 
crack.

As the crack is propagating vertically it is seen that the high-strain region is next to the 
crack.

6  Lipschitz Continuity of Peridynamic Force and Higher Temporal 
Regularity of Solutions

In this section, we prove Theorems 1 and 3. Here u ∈ W ⊂ H2(D;ℝd) and the ||u||2 norm 
is given by

6.1  Proof of Lipschitz Continuity with Respect to the ‖ ⋅ ‖
2
 Norm

We assume that the potential function f satisfies Cf

i
< ∞ for i = 0, 1, 2, 3, 4 . Recall 

that Cf

0
= supr |f (r)| and Cf

i
= supr |f (r)(r)| for i = 1,⋯ , 4 . Cg

i
 is defined similarly for 

i = 0, 1,⋯ , 4 . If the potential function g is a convex–concave function, then we can 

(77)Z(x) = max
y∈H

�
(x)∩D

S(y, x;u)

S+
c

.

P.E. =∫ x∈D,
Z(x)⩾1

[
1

�
d
�d

∫H
�
(x)

|y − x|W �(S(y, x;u)) dy

]
dx

+ ∫ x∈D,
Z(x)⩾1

V
�(�(x, t;u)) dx,

(78)||u||2 = ||u|| + ||∇u|| + ||∇2u||.
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assume Cg

i
< ∞ for i = 0, 1, 2, 3, 4 . In what follows, we will prove Theorem 1 for con-

vex–concave type g. If g is a purely a quadratic function, the proof follows easily using 
only a subset of the estimates proved in this section.

Let u, v ∈ W . Using the triangle inequality, we get

where L�

T
 and L�

D
 is given by Eqs. 13 and 14.

(79)||L�(u) − L
�(v)||2 ⩽ ||L�

T
(u) − L

�

T
(v)||2 + ||L�

D
(u) − L

�

D
(v)||2,

Fig. 5  Peridynamic energy and 
Griffith’s energy as a function of 
crack length

Fig. 6  Error between Peridy-
namic energy and Griffith’s 
energy at different times
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We first write the peridynamic force L�

T
(u)(x) as follows:

where we substitute �Sf (
√�y − x�S(y, x;u)) = √�y − x�f �(√�y − x�S(y, x;u)) . The form of 

the peridynamic force described above is the same as the one given in [Section 6, [20]]. We 
apply Theorem 3.1 in [20] to show

(80)

L
�

T
(u)(x)

=
2

�
d+1

�d
∫H

�
(x)

�(x)�(y)
J�(�y − x�)√�y − x�

f �(
√�y − x�S(y, x;u))ey−x dy,

Fig. 7  Color plot of damage function Z on deformed material domain at time t = 30 μs and 40 μs . Dark blue 
represents undamaged material Z < 1 , Z ≈ 1 is yellow at crack tip, red is softening material. Here, the dis-
placements are scaled by 100 and damage function is cut off at 5 to highlight the crack zone

Fig. 8  Velocity profile
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and

Next we analyze ||L�

D
(u) − L

�

D
(v)||2 . We define new terms to simplify the calculations. For 

� ∈ H1(�) , we set

Similar notations hold if we exchange x , � ∈ H1(�) , and u ∈ W by y , � ∈ H1(�) , and 
v ∈ W , respectively. We will also encounter various moments of the influence function J; 
therefore, we define the following moments:

(81)

||L�

T
(u) − L

�

T
(v)||2 ⩽

L1(1 + (||u||2 + ||v||2) + (||u||2 + ||v||2)2)
�
3

||u − v||2

⩽
L1(1 + ||u||2 + ||v||2)2

�
3

||u − v||2

(82)||L�

T
(u)||2 ⩽

L2(||u||2 + ||u||2
2
)

�
5∕2

.

(83)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

s� = 𝜖���, e� = �

��� ,
𝜔�(x) = 𝜔(x + 𝜖�)𝜔(x),

ū�(x) = u(x + 𝜖�) − u(x),

(u − v)(x) = u(x) − v(x).

(84)J̄
𝛼
=

1

𝜔d
∫H1(�)

J(|�|)|�|−𝛼d� for 𝛼 ∈ ℝ.

Fig. 9  Magnitude of the xx component of strain ∇u + ∇uT . The region for which the magnitude of the 
strain is greater than a multiple of the critical strain is the yellow region
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Recall that J(|�|) = 0 for � ∉ H1(�) and 0 ⩽ J(|�|) ⩽ M for � ∈ H1(�) . The boundary func-
tion � is assumed to satisfy

We choose finite constants C
�1

 and C
�2

 such that

We now collect the following estimates which will be used to estimate ||L�

D
(u) − L

�

D
(v)||2.

Lemma 4 Let u, v ∈ W , for any � ∈ H1(�) and � ⩽ 2� , we have

Here ∇ in all the equations above is with respect to x . The constants Ce1
,Ce2

 are the con-
stants associated with the Sobolev embedding property of space H2(D;ℝd) ; see Eqs.  18 
and 19.

Proof Using the notation given in Eq. 83, we write �(x;u) as

On noting that |ū�(x)| ⩽ 2||u||∞ and ||u||∞ ⩽ Ce1
||u||2 , we easily see that

(85)sup
x

|∇𝜔(x)| < ∞, sup
x

|∇2
𝜔(x)| < ∞.

(86)

{|∇��(x)| ⩽ C
�
1

, |∇�(x)| ⩽ C
�
1

,

|∇2
��(x)| ⩽ C

�
2

, |∇2
�(x)| ⩽ C

�
2

.

(87)sup
x∈D

|𝜃(x;u)| ⩽ 2Ce1
J̄0||u||2,

(88)∫D

|𝜃(x + 𝛿�;u)|2dx ⩽ 4J̄2
0
||u||2

2
,

(89)∫D

|∇𝜃(x + 𝛿�;u)|2dx ⩽ 8J̄2
0
(1 + C

𝜔1
)2||u||2

2
,

(90)∫D

|𝜃(x + 𝛿�;u − v)|2 |∇𝜃(x + 𝛿�;v)|2dx ⩽ 32J̄4
0
(1 + C

𝜔1
)2||v||2

2
||u − v||2

2
,

(91)∫D

|∇𝜃(x + 𝛿�;u)|4dx ⩽ 128J̄4
0
(C2

e2
+ Ce1

C2
𝜔1
)2||u||4

2
,

(92)∫D

|𝜃(x + 𝛿�;u − v)|2 |∇𝜃(x + 𝛿�;v)|4dx ⩽ 512J̄6
0
C2
e1
(C2

e2
+ Ce1

C2
𝜔1
)2||u − v||2

2
||v||4

2
,

(93)∫D

|∇2
𝜃(x + 𝛿�;u)|2dx ⩽ 16J̄2

0
(1 + 2C

𝜔1
+ C

𝜔2
)2||u||2

2
.

(94)𝜃(x;u) =
1

𝜔d
∫H1(�)

𝜔(x + 𝜖�)J(|�|)ū�(x) ⋅ e�d�.

(95)|𝜃(x;u)| ⩽ J̄02||u||∞ ⩽ 2Ce1
J̄0||u||2.
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In the rest of the proof, we will let y = x + �� , where 0 ⩽ � ⩽ 2� and � ∈ H1(�).
To show Eq. 88, we first introduce an important identity which will be used frequently. 

Let p(�) be some function of � , and �,C ∈ ℝ . Then,

where we used the inequality ab ⩽
a2

2
+

b2

2
 in the first step, and definition of J̄

𝛼
 and sym-

metry of terms in the second step.
From the expression of �(y;u) , we can show

We now prove the bound Eq. 89. Taking the gradient of �(y;u) , with respect to x , noting 
that y = x + �� , we get

We can show using the inequality Eq.  96 and the estimates ∫
D
|∇ū�(y)|2dx

⩽ 4||∇u||2 ⩽ 4||u||2
2
 , |∇�(y + ��)| ⩽ C

�1
 , ∫

D
|ū�(y)|2dx ⩽ 4||u||2

2
 , to conclude

We now show Eq. 90. We will use Eqs. 87 and 89, and proceed as follows:

(96)

||||
C

𝜔d
∫H1(�)

J(|�|)
|�|𝛼 p(�)d�

||||
2

=

(
C

𝜔d

)2

∫H1(�)
∫H1(�)

J(|�|)
|�|𝛼

J(|�|)
|�|𝛼 p(�)p(�)d�d�

⩽

(
C

𝜔d

)2

∫H1(�)
∫H1(�)

J(|�|)
|�|𝛼

J(|�|)
|�|𝛼

p(�)2 + p(�)2

2
d�d�

= C2
J̄
𝛼

𝜔d
∫H1(�)

J(|�|)
|�|𝛼 p(�)2d�,

(97)∫D

|𝜃(y;u)|2dx ⩽ 4J̄2
0
||u||2 ⩽ 4J̄2

0
||u||2

2
.

(98)

∇𝜃(y;u) =
1

𝜔d
∫H1(�)

J(|�|)𝜔(y + 𝜖�)(∇ū�(y))
Te�d�

+
1

𝜔d
∫H1(�)

J(|�|)∇𝜔(y + 𝜖�)ū�(y) ⋅ e�d�.

(99)∫D

|∇𝜃(y;u)|2dx ⩽
2J̄0

𝜔d
∫H1(�)

J(|�|)4||u||2
2
d� +

2J̄0

𝜔d
∫H1(�)

J(|�|)4C2
𝜔1
||u||2

2
d�

= 8J̄2
0
(1 + C2

𝜔1
)||u||2

2
⩽ 8J̄2

0
(1 + C

𝜔1
)2||u||2

2
.

(100)

∫D

|𝜃(y;u − v)|2 |∇𝜃(y;v)|2dx

⩽

(
sup
y

|𝜃(y;u − v)|
)2

∫D

|∇𝜃(y;v)|2dx
⩽ 32J̄4

0
(1 + C

𝜔1
)2||v||2

2
||u − v||2

2
.
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To prove Eq. 91 we note expression of ∇�(y;u) in Eq. 98 and inequality (a + b)4 ⩽ 8a4 + 8b4 
and Eq. 96 to get

 Application of Fubini’s theorem gives

Using the Sobolev embedding property, ||u||∞ ⩽ Ce1
||u||2 and ||∇u||L4 ⩽ Ce2

||u||2 , we 
obtain

The estimate Eq. 92 follows by combining estimates Eqs.  87 and 91. It now remains to 
show Eq. 93. From expression of ∇�(y;u) in Eq. 98, we have

(101)

|∇𝜃(y;u)|4 ⩽ 64J̄3
0

𝜔d
∫H1(�)

J(|�|)(|∇u(y + 𝜖�)|4 + |∇u(y)|4)d�

+
64C4

𝜔1
J̄3
0

𝜔d
∫H1(�)

J(|�|)(|u(y + 𝜖�)|4 + |u(y)|4)d�.

(102)

∫D

|∇𝜃(y;u)|4dx

⩽
64J̄3

0

𝜔d
∫H1(�)

J(|�|)
(
∫D

(|∇u(y + 𝜖�)|4 + |∇u(y)|4)dx
)
d�

+
64C4

𝜔1
J̄3
0

𝜔d
∫H1(�)

J(|�|)
(
∫D

(|u(y + 𝜖�)|4 + |u(y)|4)dx
)
d�

⩽
64J̄3

0

𝜔d
∫H1(�)

J(|�|)
(
2||∇u||4

L4(D;ℝd×d)

)
d�

+
64C4

𝜔1
J̄3
0

𝜔d
∫H1(�)

J(|�|)
(
||u||2

∞ ∫D

(|u(y + 𝜖�)|2 + |u(y)|2)dx
)
d�

⩽ 128J̄4
0
||∇u||4

L4(D;ℝd×d)
+

64C4
𝜔1
J̄3
0

𝜔d
∫H1(�)

J(|�|)(||u||2
∞
2||u||2)d�

⩽ 128J̄4
0
||∇u||4

L4(D;ℝd×d)
+ 128C4

𝜔1
J̄4
0
||u||2

∞
||u||2.

(103)∫D

|∇𝜃(y;u)|4dx ⩽ 128J̄4
0
(C4

e2
+ C2

e1
C4
𝜔1
)||u||4

2
⩽ 128J̄4

0
(C2

e2
+ Ce1

C2
𝜔1
)2||u||4

2
.
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Using the equation above, we can show

 The terms |ū�(y)|2 , |∇ū�(y)|2 , and |∇2ū�(y)|2 are bounded by 2(|u(y + ��)|2 + |u(y)|2) , 
2(|∇u(y + ��)|2 + |∇u(y)|2) , and 2(|∇2u(y + ��)|2 + |∇2u(y)|2) , respectively. Therefore, 
we have

and this completes the proof of lemma.

Estimating ||L�

D
(u) − L

�

D
(v)|| : We apply the notation described in Eq.  83, and write 

L
�

D
(u)(x) as follows:

Using the formula above and from the expression for � , we can easily show

where L1 = 4C
g

2
J̄2
0
.

(104)

∇2
𝜃(y;u) =

1

𝜔d
∫H1(�)

J(|�|)𝜔(y + 𝜖�)∇2(ū�(y) ⋅ e�)d�

+
1

𝜔d
∫H1(�)

J(|�|)((∇(ū�(y))Te�)⊗∇𝜔(y + 𝜖�)d�

+
1

𝜔d
∫H1(�)

J(|�|)∇𝜔(y + 𝜖�)⊗((∇(ū�(y))
Te�)d�

+
1

𝜔d
∫H1(�)

J(|�|)∇2
𝜔(y + 𝜖�)ū�(y) ⋅ e�d�.

(105)

∫D

|∇2
𝜃(y;u)|2dx ⩽

3J̄0

𝜔d
∫H1(�)

J(|�|)
(
∫D

|∇2ū�(y)|2dx
)
d�

+
12C2

𝜔1
J̄0

𝜔d
∫H1(�)

J(|�|)
(
∫D

|∇ū�(y)|2dx
)
d�

+
3C2

𝜔2
J̄0

𝜔d
∫H1(�)

J(|�|)
(
∫D

|ū�(y)|2dx
)
d�.

(106)
∫D

|∇2
𝜃(y;u)|2dx ⩽

(
3J̄2

0
+ 12C2

𝜔1
J̄2
0
+ 3C2

𝜔2
J̄2
0

)
4||u||2

2

⩽ 16J̄2
0
(1 + C

𝜔2
+ 2C

𝜔1
)2||u||2

2
,

(107)L
�

D
(u)(x) =

1

�
2
�D

∫H1(�)

��(x)J(|�|)[g�(�(x + ��;u)) + g�(�(x;u))]e�d�.

(108)||L�

D
(u) − L

�

D
(v)|| ⩽ L1

�
2
||u − v||2,
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Estimating ||∇L�

D
(u) − ∇L�

D
(v)|| : Taking the gradient of Eq. 107 gives

where we have denoted the first and second terms as G1(u)(x) and G2(u)(x) for conveni-
ence. On using the triangle inequality, we get

From the expression of G1(u) , we have

Let

and we get

 Note that

Therefore, from Eq. 110,

where we have added and subtracted g��(�(y;u))∇�(y;v) and used the fact that g��(r) ⩽ C
g

2
 

and |g��(r1) − g��(r2)| ⩽ C
g

3
|r1 − r2| . We use the estimate on p1 and proceed as follows:

where we denote x + �� as y . We apply inequality Eqs. 89 and 90 of Lemma 4 to obtain

(109)

∇L𝜖

D
(u)(x) =

1

𝜖
2
𝜔d

∫H1(�)

J(|�|)𝜔�(x)e�⊗[∇g�(𝜃(x + 𝜖�;u)) + ∇g�(𝜃(x;u))]d�

+
1

𝜖
2
𝜔d

∫H1(�)

J(|�|)e�⊗∇𝜔�(x)[g
�(𝜃(x + 𝜖�;u)) + g�(𝜃(x;u))]d�

=∶ G1(u)(x) + G2(u)(x),

||∇L�

D
(u) − ∇L�

D
(v)|| ⩽ ||G1(u) − G1(v)|| + ||G2(u) − G2(u)||.

|G1(u)(x) − G1(v)(x)| ⩽ 1

�
2
�d

∫H1(�)

J(|�|)(|∇g�(�(x + ��;u)) − ∇g�(�(x + ��;v))|
+ |∇g�(�(x;u)) − ∇g�(�(x;v))|)d�.

(110)p1(y) ∶= |∇g�(�(y;u)) − ∇g�(�(y;v))|

(111)||G1(u) − G1(v)||2 ⩽
(
1

𝜖
2

)2 2J̄0

𝜔d
∫H1(�)

J(|�|)
(
∫D

(p1(x + 𝜖�)2 + p1(x)
2)dx

)
d�.

∇g�(�(x + ��;u)) = g��(�(x + ��;u))∇�(x + ��;u).

p1(y) = |g��(�(y;u))∇�(y;u) − g��(�(y;v))∇�(y;v)|
⩽ C

g

2
|∇�(y;u) − ∇�(y;v)| + C

g

3
|�(y;u) − �(y;v)| |∇�(y;v)|

= C
g

2
|∇�(y;u − v)| + C

g

3
|�(y;u − v)| |∇�(y;v)|,

∫D

p1(y)
2dx ⩽ 2(C

g

2
)2 ∫D

|∇�(y;u − v)|2dx

+ 2(C
g

3
)2 ∫D

|�(y;u − v)|2 |∇�(y;v)|2dx,

∫D

p1(y)
2dx ⩽ 2(C

g

2
)28J̄2

0
(1 + C

𝜔1
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2

+ 2(C
g

3
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(1 + C
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2
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2
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where we have grouped all the constant factors together and denote their product by L2 . 
Substituting these estimates into Eq. 111 gives

where we have introduced the new constant L3.
The formula for G2(u) is similar to L�

D
(u) and, therefore, we have

 Collecting results, we have shown

where we have introduced new constant L4.
Estimating ||∇2L

�

D
(u) − ∇2L

�

D
(v)|| : Taking the gradient of Eq. 109, gives

It is easy to see that estimate on ||H2(u) − H2(v)|| and ||H3(u) − H3(v)|| is similar to the 
estimate for ||G1(u) − G1(v)|| . Thus, from Eq. 112, we have

Also the estimate for ||H4(u) − H4(v)|| is similar to the estimate for ||G2(u) − G2(v)|| and 
we conclude

We now work on ||H1(u) − H1(v)|| . From expression of H1(u)(x) in Eq. 114, we can easily 
get the following:

(112)

||G1(u) − G1(v)||2 ⩽
4L2J̄

2
0

𝜖
4

(1 + ||v||2)2||u − v||2
2

⇒ ||G1(u) − G1(v)|| ⩽
L3(1 + ||v||2)

𝜖
2

||u − v||2,

||G2(u) − G2(v)|| ⩽
C
�1
L1

�
2

||u − v||2.

(113)||∇L�

D
(u) − ∇L�

D
(v)|| ⩽ L4(1 + ||v||2)

�
2

||u − v||2,

(114)

∇2
L
𝜖

D
(u)(x) =

1

𝜖
2
𝜔d

∫H1(�)

𝜔�(x)J(|�|)e�⊗[∇2g�(𝜃(x + 𝜖�;u)) + ∇2g�(𝜃(x;u))]d�

+
1

𝜖
2
𝜔d

∫H1(�)
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+
1

𝜖
2
𝜔d
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�(𝜃(x + 𝜖�;u)) + g�(𝜃(x;u))]d�

=∶ H1(u)(x) + H2(u)(x) + H3(u)(x) + H4(u)(x).

(115)||H2(u) − H2(v)|| + ||H3(u) − H3(v)|| ⩽
2C

�1
L3(1 + ||v||2)

�
2

||u − v||2.
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||H4(u) − H4(v)|| ⩽

C
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�
2
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|H1(u)(x) − H1(v)(x)| ⩽ 1

�
2
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∫H1(�)
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Let p2(y) , where y = x + �� and ∇ is with respect to x , is given by

We then have

 Note that

We add and subtract terms to the equation above to get

Using inequalities |g��(r)| ⩽ C
g

2
 , |g���(r)| ⩽ C

g

3
 , |g��(r1) − g��(r2)| ⩽ C

g

3
|r1 − r2| , 

|g���(r1) − g���(r2)| ⩽ C
g

4
|r1 − r2| , and |a⊗a − c⊗c| ⩽ (|a| + |c|)|a − c| , and the fact that 

�(y;u) − �(y;v) = �(y;u − v) , we have

Taking the square of the above equation and using 

�
5∑
i=1

ai

�2

⩽ 5
5∑
i=1

a2
i
 gives

(118)p2(y) ∶= |∇2g�(�(y;u)) − ∇2g�(�(y;v))|.
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We now estimate each term using Lemma 4 as follows. Applying the Hölder inequality and 
the inequality Eq. 91 of Lemma 4 we get

Similarly,

Using Eq. 92 of Lemma 4, we get

For I4 , we use the inequality Eq. 93 to get

In I5 , we use Eqs. 87 and  93 to get

After collecting results, we can find a constant L5 such that we have

We substitute Eq. 120 into Eq. 119 to show

where we have introduced the new constant L6.
We combine the estimates on H1,H2,H3,H4 , introducing a new constant L7 , and get

On adding the estimates, Eqs. 108,  113,  122, it is evident that the proof of Theorem 1 is 
complete.
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6.2  Proof of Higher Temporal Regularity

In this section, we prove that the peridynamic evolutions have higher regularity in time for 
body forces that that are differentiable in time. To see this we take the time derivative of 
Eq. 11 to get a second-order differential equation in time for v = u̇ given by

where Q(v;u) is an operator that depends on the solution u of Eq. 11 and acts on v . It is 
given by

where

and

Clearly, for u fixed, the form Q(v;u) acts linearly on v which implies that the equation for 
v is a linear nonlocal equation. The linearity of Q(v;u) implies the Lipschitz continuity for 
v ∈ W as stated below.

Theorem  7 (Lipschitz continuity of Q) Let u ∈ W be any given field. Then, for all 
v,w ∈ W , we have

where the constant L8 does not depend on u, v,w . This gives for all v ∈ W the upper bound,

The proof follows the same steps used in the proof of Theorem 1.
If u is a peridynamic solution such that u ∈ C2(I0;W) , then we have for all t ∈ I0 , the 

inequality

(123)𝜌𝜕
2
tt
v(x, t) = Q(v(t);u(t))(x) + ̇b(x, t),

(124)Q(v;u)(x) = QT (v;u)(x) + QD(v;u)(x),∀x ∈ D,
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1

�
d
�d

∫H
�
(x)

�(x)�(y)
J�(|y − x|)

�
2

⋅

[
�
2
��
g(�(y, t;u))�(y, t;v) + �

2
��
g(�(x, t;u))�(x, t;v)

]
ey−x dy.
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3
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Note that the Lipschitz continuity of u̇(t) stated in Theorem  2 implies 
lim
t→0±

�
2
tt
u(x, t) = �

2
tt
u(x, 0) . We now demonstrate that v(x, t) = �tu(x, t) is the unique solution 

of the following initial boundary value problem.

Theorem 8 (Initial value problem for v(x, t)) Suppose the initial data and righthand side 
b(t) satisfy the hypothesis of Theorem 2 and we suppose further that ̇b(t) exists and is con-
tinuous in time for t ∈ I0 and sup

t∈I0

|| ̇b(t)||2 < ∞ . Then, v(x, t) is the unique solution to the 

initial value problem v(x, 0) = v0(x) , �tv(x, 0) = �
2
tt
u(x, 0),

v ∈ C2(I0;W) and

Theorem  3 now follows immediately from Theorem  8 noting that �tu(x, t) = v(x, t) 
together with Eqs. 129 and 131. The proof of Theorem 8 follows from the Lipschitz conti-
nuity Eq. 127 and the Banach fixed point theorem as in [6].

7  Conclusions

In this article, we have provided a priori error estimates for finite element approxima-
tions to nonlocal state-based peridynamic fracture models. We have shown that the con-
vergence rate applies even over time intervals for which the material is softening over 
parts of the computational domain. The results are established for two different classes of 
state-based peridynamic forces. The convergence rate of the approximation is of the form 
C(Δt + h2∕�2) where the constant C depends on � and the H2 norm of the solution and 
its time derivatives. For fixed Δt numerical simulations for Plexiglass show that the error 
decreases at the rate of h2 at 40 μ s into the simulation. The simulations were carried out in 
parallel using 20 threads on a workstation with single Intel Xeon processor and with 32 
GB of RAM. We anticipate similar convergence rates for longer times on bigger parallel 
machines.

We reiterate that the a priori error estimates account for the possible appearance of non-
linearity anywhere in the computational domain. On the other hand, numerical simulation 
and independent theoretical estimates show that the nonlinearity concentrates along “fat” 
cracks of finite length and width equal to � ; see [25, 26]. Moreover, the remainder of the 
computational domain is seen to behave linearly and to leading order can be modeled as 
a linear elastic material up to an error proportional to � ; see [Proposition 6, [22]]. Future 
work will use these observations to focus on the adaptive implementation and a-posteriori 
estimates.
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v(x, t) = Q(v(t);u(t))(x) + ̇b(x, t), t ∈ I0, x ∈ D,

(131)||𝜕2
tt
v(x, t)||2 ⩽ ||Q(v(t);u(t))(x)||2 + || ̇b(x, t)||2.
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