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Abstract We introduce a simple model for free damage propagation based on non-local po-
tentials. The model is developed using a state based peridynamic formulation. The resulting
evolution is shown to be well posed. At each instant of the evolution we identify the damage
set. On this set the local strain has exceeded critical values either for tensile or hydrostatic
strain and damage has occurred. For this model the damage set is nondecreasing with time
and associated with damage variables defined at each point in the body. We show that energy
balance holds for this evolution. For differentiable displacements away from the damage set
we show that the nonlocal model converges to the linear elastic model.
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Mathematics Subject Classification 74R05 · 74R10

1 Introduction

We address the problem of damage propagation in materials. The damage evolution is not
known a-priori and is found as part of the problem solution. Our approach is to use a non-
local formulation with a minimum number of parameters describing the model. We will
work within the small deformation setting and the model is developed within a state based
peridynamic formulation. Here strains are expressed in terms of displacement differences as
opposed to spatial derivatives. For the problem at hand the non-locality provides the flexi-
bility to simultaneously model non-differentiable displacements and damage evolution. The
net force acting on a point x is due to the strain between x and neighboring points y. The
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neighborhood of nonlocal interaction between x and its neighbors y is confined to ball of ra-
dius δ centered at x denoted by Bδ(x). The radius of the ball is called the called the horizon.
Numerical implementations based on nonlocal peridynamic models exhibit formation and
localization of features associated with phase transformation and fracture see for example
[1–3, 8–10, 14, 21, 23–25]. A recent review can be found in [4].

The recent model studied in [11–14] is defined by double well two point strain potentials.
Here one potential well is centered at the origin and associated with elastic response while
the other well is at infinity and associated with surface energy. The rational for studying
these models is that they are shown to be well posed and, in the limit of vanishing non-
locality, the dynamics recovers features associated with sharp fracture propagation see, [12]
and [13]. While memory is not incorporated in this model it is seen that the inertia of the
evolution keeps the forces in a softened state over time as evidenced in simulations [14]. This
modeling approach is promising for fast cracks but for cyclic loading and slowly propagating
fractures an explicit damage-fracture modeling with memory is needed. In this work we
develop this approach for general models that allow for three point nonlocal interactions
and irreversible damage. The use of three point potentials allows one to model a larger
variety of elastic properties. In the lexicon of peridynamics we adopt an ordinary state based
formulation [18, 22]. We introduce non-local forces that soften irreversibly as the shear
strain or dilatational strain increases beyond critical values. This model is shown to deliver a
mathematically well posed evolution. Here the existence and uniqueness of the evolution is
guaranteed by the Lipschitz continuity of the nonlocal force. The Lipschitz constant blows
up to infinity as inertial forces go to zero, see (3.23). This asymptotic loss of continuity is
consistent with a loss of uniqueness for the quasi-static limit. The existence of instability
and non-uniqueness is well known for quasi-static gradient damage models [17].

Previous work establishes existence and uniqueness for peridynamic bond based evolu-
tions with bond breaking for small [6] and large [5] deformations. In addition to being state
based our modeling approach is distinct from other investigations [5, 6, 19] and uses dif-
ferentiable damage variables. This feature allows us to establish an energy balance equation
relating kinetic energy, potential energy, and energy dissipation at each instant during the
evolution. At each instant we identify the set undergoing damage where the local energy
dissipation rate is positive. On this set the local strain has exceeded a critical value and dam-
age has occurred. Damage is irreversible and the damage set is monotonically increasing
with time. Explicit damage models are illustrated and force strain curves for both cyclic
loading and strain to failure are provided. We show theoretically that the nonlocal operator
converges to the linear local operator associated with the elastic wave equation away from
the damage set. In this limit the elastic tensor can have any combination of Poison ratio and
Young’s modulus. This result is consistent with small horizon convergence results for con-
vex energies, see [7, 15, 23] and convex-concave energies [11–13]. We provide numerical
simulations demonstrating the effects of damage evolution by this model. The loss of stiff-
ness due to damage is illustrated for a three and four point bending problem as well as the
cyclic decrease of stiffness and the associated hysteresis for an oscillatory boundary load.
These simulations agree with the trends presented in [26].

2 Formulation

We assume the displacements u are small (infinitesimal) relative to the size of the three
dimensional body D. The tensile strain is written as S = S(y, x, t;u) and given by

S(y, x, t;u) = u(t, y) − u(t, x)

|y − x| · ey−x, ey−x = y − x

|y − x| , (2.1)
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where ey−x is a unit direction vector and · is the dot product. It is evident that S(y, x, t;u) is
the tensile strain along the direction ey−x . We introduce the nonnegative weight ωδ(|y − x|)
such that ωδ = 0 for |y − x| > δ and the spherical or hydrostatic strain at x is given by

θ(x, t;u) = 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)|y − x|S(y, x, t;u)dy, (2.2)

where Vδ is the volume of the ball Bδ(x) of radius δ centered at x. The weight is chosen
such that ωδ(|y − x|) = ω(|y − x|/δ), and

�1 = 1

Vδ

∫
Bδ(x)

ωδ(|y − x|) dy < ∞. (2.3)

We follow [18] and [6] and introduce a nonnegative damage factor taking the value one
in the undamaged region and zero in the fully damaged region. The damage factor for the
force associated with tensile strains is written HT (u)(y, x, t), the corresponding factor for
hydrostatic strains is written HD(u)(x, t). Here we assume no damage and HT (u)(y, x, t) =
1 until a critical tensile strain Sc is reached. For tensile strains greater than Sc damage is
initiated and HT (u)(y, x, t) drops below 1. The fully damaged state is HT (u)(y, x, t) = 0.
For hydrostatic strains we assume no damage until a critical positive dilatational strain θ+

c

or a negative compressive strain (θ−
c ) is reached. Again HD(u)(x, t) = 1 until a critical

hydrostatic strain is reached and then drops below 1 with the fully damaged state being
HD(u)(x, t) = 0. We postpone description of the specific form of the history dependent
damage factors until after we have defined the nonlocal forces.

The force at a point x due to tensile strain is given by

LT (u)(x, t) = 2

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x| HT (u)(y, x, t)∂Sf

(√|y − x|S(y, x, t;u)
)
ey−x dy,

(2.4)

Here J δ(|y − x|) is a nonnegative bounded function such that J δ = 0 for |y − x| > δ and
M = sup{y ∈ Bδ(x);J δ(|y − x|)} and

�2 = 1

Vδ

∫
Bδ(x)

J δ(|y − x|)
|y − x|2 dy < ∞ and �3 = 1

Vδ

∫
Bδ(x)

J δ(|y − x|)
|y − x|3/2

dy < ∞. (2.5)

Both J δ and ωδ are prescribed and characterize the influence of nonlocal forces on x by
neighboring points y. Here ∂S is the partial derivative with respect to strain. The function
f = f (r) is twice differentiable for all arguments r on the real line and f ′, f ′′ are bounded.
Here we take f (r) = αr2/2 for r < r1 and f = r for r2 < r , with r1 < r2, see Fig. 1. The
factor

√|y − x| appearing in the argument of ∂Sf ensures that the nonlocal operator LT

converges to the divergence of a stress tensor in the small horizon limit when its known
a-priori that displacements are smooth, see Sect. 7.

The force at a point x due to the hydrostatic strain is given by

LD(u)(x, t) = 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

[
HD(u)(y, t)∂θg

(
θ(y, t;u)

)
(2.6)

+ HD(u)(x, t)∂θg
(
θ(x, t;u)

)]
ey−x dy, (2.7)
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Fig. 1 Generic plot of f (r)

(solid line) and g(r) (dashed line)

where the function g(r) = βr2/2 for r < r∗
1 , g = r for r∗

2 < r , with r∗
1 < r∗

2 and g is
twice differentiable and g′, g′′ are bounded, see Fig. 1. It is readily verified that the force
LT (u)(x, t) +LD(u)(x, t) satisfies balance of linear and angular momentum.

The damage factor for tensile strain HT (u)(y, x, t) is given in terms of the functions h(x)

and jS(x). Here h is nonnegative, has bounded derivatives (hence Lipschitz continuous),
takes the value one for negative x and for x ≥ 0 decreases and is zero for x > xc , see
Fig. 2. Here we are free to choose xc to be any small and positive number. The function
jS(x) is nonnegative, has bounded derivatives (hence Lipschitz continuous), takes the value
zero up to a positive critical strain SC and then takes on positive values. We will suppose
jS(x) ≤ γ |x| for some γ > 0, see Fig. 3. The damage factor is now defined to be

HT (u)(y, x, t) = h

(∫ t

0
jS

(
S(y, x, τ ;u)

)
dτ

)
. (2.8)

It is clear from this definition that damage occurs when the strain exceeds Sc for some period
of time and the bond force decreases irrevocably from its undamaged value. The damage
function defined here is symmetric, i.e., HT (u)(y, x, t) = HT (u)(x, y, t). For hydrostatic
strain we introduce the nonnegative function jθ with bounded derivatives (hence Lipschitz
continuous). We suppose jθ = 0 for an interval containing the origin given by (θ−

c , θ+
c ) and

takes positive values outside this interval, see Fig. 4. As before we will suppose jθ (x) ≤ γ |x|
for some γ > 0, the damage factor for hydrostatic strain is given by

HD(u)(x, t) = h

(∫ t

0
jθ

(
θ(x, τ ;u)

)
dτ

)
. (2.9)

For this model it is clear that damage can occur irreversibly for compressive or dilatational
strain when the possibly different critical values θ−

c or θ+
c are exceeded.

The damage set at time t is defined to be the collection of all points x for which
HT (u)(y, x, t) or HD(u)(x, t) is less than one. This set is monotonically increasing in
time. The process zone at time t are the collection of points x undergoing damage such
that ∂tH

T (u)(y, x, t) > 0 or ∂tH
D(u)(x, t) > 0. Explicit examples of HT (u)(y, x, t) and

HD(u)(x, t) are given in Sect. 5.
We define the body force b(x, t) and the displacement u(x, t) is the solution of the initial

value problem given by

ρ∂2
t u(x, t) = LT (u)(x, t) +LD(u)(x, t) + b(x, t) for x ∈ D and t ∈ (0, T ), (2.10)
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Fig. 2 Generic plot of h(x)

Fig. 3 Generic plot of jS(x)

with Sc

Fig. 4 Generic plot of jθ (x)

with θ+
c , and θ−

c

with initial data

u(x,0) = u0(x), ∂tu(x,0) = v0(x). (2.11)

It is easily verified that this is an ordinary state based peridynamic model. We show in the
next section that this initial value problem is well posed.

3 Existence of Solutions

The regularity and existence of the solution depends on the regularity of the initial data
and body force. In this work we choose a general class of body forces and initial condi-
tions. The initial displacement u0 and velocity v0 are chosen to be integrable and bounded
and belonging to L∞(D;R3). The space of such functions is denoted by L∞(D;R3) The
body force b(x, t) is chosen such that for every t ∈ [0, T0], b takes values in L∞(D,R3)
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and is continuous in time. The associated norm is defined to be ‖b‖C([0,T0];L∞(D,R3)) =
maxt∈[0,T0]‖b(x, t)‖L∞(D,R3). The associated space of continuous functions in time taking
values in L∞(D;R3) for which this norm is finite is denoted by C([0, T0];L∞(D,R3)).
The space of functions twice differentiable in time taking values in L∞(D,R3) such that
both derivatives belong to C([0, T0];L∞(D,R3)) is written as C2([0, T0];L∞(D,R3)). We
now assert the existence and uniqueness for the solution of the initial value problem.

Theorem 3.1 (Existence and uniqueness of the damage evolution) The initial value problem
given by (2.10) and (2.11) has a solution u(x, t) such that for every t ∈ [0, T0], u takes values
in L∞(D,R3) and is the unique solution belonging to the space C2([0, T0];L∞(D,R3)).

Our proof is motivated by recent work [6] where existence of solution for bond based
peridynamic models with damage is established. To prove the theorem we will show

(1) The operator LT (u)(x, t)+LD(u)(x, t) is a map from C([0, T0];L∞(D,R3)) into itself.
(2) The operator LT (u)(x, t)+LD(u)(x, t) is Lipschitz continuous with respect to the norm

of C([0, T0];L∞(D,R3)).

The theorem then follows from an application of the Banach fixed point theorem.
To establish properties (1) and (2) we state and prove the following lemmas for the dam-

age factors.

Lemma 3.2 Let HT (u)(y, x, t) and HD(u)(x, t) be defined as in (2.8) and (2.9). Then for
u ∈ C([0, T0];L∞(D,R3)) the mappings

(y, x) �→ HT (u)(y, x, t) : D × D →R, x �→ HD(u)(x, t) : D →R (3.1)

are measurable for every t ∈ [0, T0], and the mappings

t �→ HT (u)(y, x, t) : [0, T0] →R, t �→ HD(u)(x, t) : [0, T0] →R (3.2)

are continuous for almost all (y, x) and x respectively. Moreover for almost all (y, x) ∈
D × D and all t ∈ [0, T0] the map

u �→ HT (u)(y, x, t) : C([0, T0];L∞(
D,R3

)) →R (3.3)

is Lipschitz continuous, and for almost all x ∈ D and all t ∈ [0, T0] the map

u �→ HD(u)(x, t) : C([0, T0];L∞(
D,R3

)) →R (3.4)

is Lipschitz continuous.

Proof The measurability properties are immediate. In what follows constants are generic
and apply to the context in which they are used. We establish continuity in time for HD(u).
For t̂ and t in [0, T0] we have

∣∣HD(u)(x, t̂) − HD(u)(x, t)
∣∣

=
∣∣∣∣h

(∫ t̂

0
jθ

(
θ(x, τ ;u)

)
dτ

)
− h

(∫ t

0
jθ

(
θ(x, τ ;u)

)
dτ

)∣∣∣∣

≤ C1

∫ max {t̂ ,t}

min {t̂ ,t}
jθ

(
θ(x, τ ;u)

)
dτ
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≤ γ C1

∫ max {t̂ ,t}

min {t̂ ,t}

∣∣θ(x, τ ;u)
∣∣dτ

≤ γ �1C1C2|t̂ − t |2‖u‖C([0,T0];L∞(D,R3)). (3.5)

The first inequality follows from the Lipschitz continuity of h, the second follows from the
growth condition on jθ , and the third follows from (2.3).

We establish continuity in time for HT (u). For t̂ and t in [0, T0] we have
∣∣HT (u)(x, t̂) − HT (u)(x, t)

∣∣

=
∣∣∣∣h

(∫ t̂

0
jS

(
S(y, x, τ ;u)

)
dτ

)
− h

(∫ t

0
jS

(
S(y, x, τ ;u)

)
dτ

)∣∣∣∣

≤ C1

∫ max {t̂ ,t}

min {t̂ ,t}
jS

(
S(y, x, τ ;u)

)
dτ

≤ γ C1

∫ max {t̂ ,t}

min {t̂ ,t}

∣∣S(y, x, τ ;u)
∣∣dτ

≤ γ C1C2
|t̂ − t |
|y − x|2‖u‖C([0,T0];L∞(D,R3)). (3.6)

The first inequality follows from the Lipschitz continuity of h, the second follows from the
growth condition on jS , and the third follows from the definition of strain (2.1).

To demonstrate Lipschitz continuity for HD(u)(x, t) we write
∣∣HD(u)(x, t)) − HD(v)(x, t)

∣∣

=
∣∣∣∣h

(∫ t

0
jθ

(
θ(x, τ ;u)

)
dτ

)
− h

(∫ t

0
jθ

(
θ(x, τ ;v)

)
dτ

)∣∣∣∣

≤ C1

∣∣∣∣
∫ t

0
(jθ (θ(x, τ ;u) − jθ

(
θ(x, τ ;v)

)
dτ

∣∣∣∣

≤ C1C2

∫ t

0

∣∣θ(x, τ ;u) − θ(x, τ ;v)
∣∣dτ

≤ 2t�1C1C2‖u − v‖C([0,t];L∞(D,R3)). (3.7)

The first inequality follows from the Lipschitz continuity of h, the second follows from the
Lipschitz continuity of jθ , and the third follows from (2.3). The Lipschitz continuity for
HS(u)(y, x, t) follows from similar arguments using the Lipschitz continuity of h, and jS ,
and (2.1), and we get

∣∣HT (u)(y, x, t)) − HT (v)(y, x, t)
∣∣

≤ 2tC1C2C3

|y − x| ‖u − v‖C([0,t];L∞(D,R3)). (3.8)

�

Proof of Theorem 3.1 We establish (1) by first noting that

∣∣LT (u)(x, t) +LD(u)(x, t)
∣∣ ≤ C

δ2
, (3.9)
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where C is a constant. This estimate follows from the boundedness of f ′, g′, HT (u), and
HD(u) and the integrability of the ratios J δ(|y − x|)/|y − x|2, J δ(|y − x|)/|y − x|3/2, and
ωδ(|y − x|). Thus ‖LT (u)(x, t) + LD(u)(x, t)‖L∞(D,R3) is uniformly bounded for all t ∈
[0, T0]. �

To complete the demonstration of (1) we point out that the force functions ∂Sf and ∂θg

are Lipschitz continuous in their arguments. The key features are given in the following
lemma.

Lemma 3.3 Given two functions v and w in L∞(D,R3) then

∣∣∣∂Sf
(√|y − x|S(y, x;v)

) − ∂Sf
(√|y − x|S(y, x;w)

)∣∣∣ ≤ 2C√|y − x| ‖v − w‖L∞(D,R3),

(3.10)
and ∣∣∣∂θg

(
θ(x;v)

) − ∂θg
(
θ(x;w)

)∣∣∣ ≤ 2�1C‖v − w‖L∞(D,R3). (3.11)

Proof
∣∣∣∂Sf

(√|y − x|S(y, x;v)
) − ∂Sf

(√|y − x|S(y, x;w)
)∣∣∣

≤ C
√|y − x|∣∣S(y, x;v) − S(y, x;w)

∣∣ ≤ 2C√|y − x| ‖v − w‖L∞(D,R3), (3.12)

where the first inequality follows from the Lipschitz continuity of ∂Sf , and the second fol-
lows from the definition of S.

For ∂θg we have
∣∣∂θg

(
θ(x;v)

) − ∂θg
(
θ(x;w)

)∣∣ ≤ C
∣∣θ(x;v) − θ(x;w)

∣∣ ≤ 2�1C1‖v − w‖L∞(D,R3)),

(3.13)
where the first inequality follows from the Lipschitz continuity of ∂θg, and the second fol-
lows from the definitions of θ and S. �

We have

∣∣LT (u)(x, t̂) −LT (u)(x, t)
∣∣

≤ 2

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x|

∣∣∂Sf
(√

y − xS(y, x, t̂;u)
) − ∂Sf

(√
y − xS(y, x, t;u)

)∣∣dy

+ 2

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x|

∣∣HT (u)(y, x, t̂) − HT (u)(y, x, t)
∣∣dy. (3.14)

From the above, (3.8), and Lemma 3.3 we see that

∥∥LT (u)(x, t̂) −LT (u)(x, t)
∥∥

L∞(D,R3)

≤ �3C3

δ

∥∥u(x, t̂) − u(x, t)
∥∥

L∞(D,R3)
+ �2γ C1C2

δ
|t̂ − t |2‖u‖C([0,T0];L∞(D,R3)) (3.15)

and we see LT is well defied and maps C([0, T0];L∞(D,R3)) into itself.
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We show the continuity in time for LD(u)(x, t). Now we have

∣∣LD(u)(x, t̂) −LD(u)(x, t)
∣∣

≤ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣∂θg
(
θ(y, t̂;u)

) − ∂θg
(
θ(y, t;u)

)∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣HD(u)(y, t̂) − HD(u)(y, t)
∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣∂θg
(
θ(x, t̂;u)

) − ∂θg
(
θ(x, t;u)

)∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣HD(u)(x, t̂) − HD(u)(x, t)
∣∣dy (3.16)

and applying Lemma 3.3 and (3.7) to (3.16) we get the continuity

∣∣LD(u)(x, t̂) −LD(u)(x, t)
∣∣

≤ 4�2
1C1

δ2

∥∥u(t̂, x) − u(t, x)
∥∥

L∞(D,R3)
+ γ 4�2

1C1C2

δ2
|t̂ − t |‖u‖C([0,T0];L∞(D,R3)). (3.17)

We conclude that LD is well defied and maps C([0, T0];L∞(D,R3)) into itself and item (1)
is proved.

To show Lipschitz continuity consider any two functions u and w belonging to
C([0, T0];L∞(D,R3)), t ∈ [0, T0] to write

∣∣LT (u)(x, t) +LD(u)(x, t) − [
LT (w)(x, t) +LD(w)(x, t)

]∣∣

≤ 2

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x|

∣∣∂Sf
(√|y − x|S(y, x, t;u)

)

− ∂Sf
(√|y − x|S(y, x, t;w)

)∣∣dy

+ 2

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x|

∣∣HT (u)(y, x, t) − HT (w)(y, x, t)
∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣∂θg
(
θ(y, t;u)

) − ∂θg
(
θ(y, t;w)

)∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣HD(u)(y, t) − HD(w)(y, t)
∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣∂θg
(
θ(x, t;u)

) − ∂θg
(
θ(x, t;w)

)∣∣dy

+ 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

∣∣HD(u)(x, t) − HD(w)(x, t)
∣∣dy. (3.18)

Applying (3.7) and (3.8) to (3.18) delivers the estimate
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∥∥LT (u)(x, t) +LD(u)(x, t) − [
LT (w)(x, t) +LD(w)(x, t)

]∥∥
C([0,t];L∞(D,R3))

≤ C1 + tC2

δ2
‖u − w‖C([0,t];L∞(D,R3)), (3.19)

where C1 and C2 are constants not depending on time u or w. For T0 > t we can choose a
constant L > (C1 + T0C2)/δ

2 and

∥∥LT (u)(x, t) +LD(u)(x, t) − [
LT (w)(x, t) +LD(w)(x, t)

]∥∥
C([0,t];L∞(D,R3))

≤ L‖u − w‖C([0,t];L∞(D,R3)), for all t ∈ [0, T0]. (3.20)

This proves the Lipschitz continuity and item (2) of the theorem is proved. Note that u(τ) =
w(τ) for all τ ∈ [0, t] implies LT (u)(x, t) + LD(u)(x, t) = [LT (w)(x, t) + LD(w)(x, t)]
and LT (u)(x, t) +LD(u)(x, t) is a Volterra operator.

We write evolutions u(x, t) belonging to C([0, t];L∞(D,R3)) as u(t) and (V u)(t) is the
sum

(V u)(t) = ρ−1
(
LT (u)(t) +LD(u)(t)

)
. (3.21)

We seek the unique fixed point of u(t) = (Iu)(t) where I maps C([0, t];L∞(D,R3)) into
itself and is defined by

(Iu)(t) = u0 + tv0 +
∫ t

0
(t − τ)(V u)(τ ) + ρ−1b(τ) dτ. (3.22)

This problem is equivalent to finding the unique solution of the initial value problem given
by (2.10) and (2.11). We absorb the factor ρ−1 into the Lipschitz constant L and show that
I is a contraction map. Observe that the Lipschitz constant diverges as the density goes to
zero, i.e.,

L → ∞ as ρ → 0. (3.23)

We now show that I is a contraction map and by virtue of the Banach fixed point theorem
we can assert the existence of a fixed point in C([0, t];L∞(D,R3)). To see that I is a
contraction map on C([0, t];L∞(D,R3)) we introduce the equivalent norm

|||u|||C([0,t];L∞(D,R3)) = max
t∈[0,T0]

{
e−2LT0t‖u‖L∞(D,R3)

}
, (3.24)

and show I is a contraction map with respect to this norm. We apply (3.20) to find for
t ∈ [0, T0] that

∥∥(Iu)(t) − (Iw)(t)
∥∥

L∞(D,R3)
≤

∫ t

0
(t − τ)

∥∥(V u)(τ ) − (V w)(τ)
∥∥

L∞(D,R3)
dτ

≤ LT0

∫ t

0
‖u − w‖C([0,τ ];L∞(D,R3)) dτ

≤ LT0

∫ t

0
max
s∈[0,τ ]

{∥∥u(s) − w(s)
∥∥

L∞(D,R3)
e−2LT0s

}
e2LT0τ dτ

≤ e2LT0t − 1

2
|||u − w|||C([0,T0];L∞(D,R3)), (3.25)
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and we conclude

|||(Iu)(t) − (Iw)(t)|||C([0,T0];L∞(D,R3)) ≤ 1

2
|||u − w|||C([0,T0];L∞(D,R3)), (3.26)

so I is a contraction map. From the Banach fixed point theorem there is a unique fixed point
u(t) belonging to C([0, T0];L∞(D,R3)) and it is evident from (3.22) that u(t) also belongs
to C2([0, T0];L∞(D,R3)). This concludes the proof of Theorem 3.1.

4 Energy Balance

The evolution is shown to exhibit a balance of energy at all times. In this section we describe
the potential and the energy dissipation rate and show energy balance in rate form. The
potential energy at time t for the evolution is denoted by U(t) and is given by

U(t) = 2

Vδ

∫
D

∫
D∩Bδ(x)

J δ(|y − x|)
δ

HT (u)(y, x, t)f
(√|y − x|S(y, x, t;u)

)
dydx

+
∫

D

1

δ2
HD(u)(x, t)g

(
θ(x, t;u)

)
dx. (4.1)

The energy dissipation rate ∂tR(t) is

∂tR(t) = − 2

Vδ

∫
D

∫
D∩Bδ(x)

J δ(|y − x|)
δ

∂tH
T (u)(y, x, t)f

(√|y − x|S(y, x, t;u)
)
dydx

−
∫

D

1

δ2
∂tH

D(u)(x, t)g
(
θ(x, t;u)

)
dx. (4.2)

The derivatives ∂tH
T (u)(y, x, t) and ∂tH

D(u)(x, t) are easily seen to be non-positive and
the dissipation rate satisfies ∂tR(t) ≥ 0. The kinetic energy is

K(t) = ρ

∫
D

|∂tu(x, t)|2
2

dx. (4.3)

The energy balance in rate form is given in the following theorem.

Theorem 4.1 The rate form of energy balance for the damage-fracture evolution is given
by

∂tK(t) + ∂tU(t) + ∂tR(t) =
∫

D

b(x, t) · ∂tu(x, t) dx. (4.4)

Proof of Theorem 4.1 We multiply both sides of the evolution equation (2.10) by ∂tu(x, t)

and integrate over D to get

ρ

∫
D

∂2
t u(x, t) · ∂tu(x, t) dx =

∫
D

LT (u)(x, t) · ∂tu(x, t) dx (4.5)

+
∫

D

LD(u)(x, t) · ∂tu(x, t) dx +
∫

D

b(x, t) · ∂tu(x, t) dx.

(4.6)
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The term on the left side of the equation is immediately recognized as ∂tK(t). The first and
second terms on the right hand side of the equation are given in the following lemma. �

Lemma 4.2 One has the following integration by parts formulas given by

∫
D

LT (u)(x, t) · ∂tu(x, t) dx

= − 2

Vδ

∫
D

∫
D∩Bδ(x)

J δ(|y − x|)
δ

HT (u)(y, x, t)∂tf
(√|y − x|S(y, x, t;u)

)
dydx, (4.7)

and ∫
D

LD(u)(x, t) · ∂tu(x, t) dx = −
∫

D

1

δ2
HD(u)(x, t)∂tg

(
θ(x, t;u)

)
dx. (4.8)

Now note that

∂tU(t) + ∂tR(t)

= 2

Vδ

∫
D

∫
D∩Bδ(x)

J δ(|y − x|)
δ

HT (u)(y, x, t)∂tf
(√|y − x|S(y, x, t;u)

)
dydx

+
∫

D

1

δ2
HD(u)(x, t)∂tg

(
θ(x, t;u)

)
dx, (4.9)

and the energy balance theorem follows from (4.5) and (4.9).
We conclude by proving the integration by parts Lemma 4.2. We start by proving (4.8).

We expand ∂tg(θ(x, t))

∂tg
(
θ(x, t;u)

)

= ∂θg
(
θ(x, t;u)

) 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)|y − x|∂tu(y) − ∂tu(x)

|y − x| · ey−x dy (4.10)

and write

−
∫

D

1

δ2
HD(u)(x, t)∂tg

(
θ(x, t;u)

)
dx = A(t) + B(t), (4.11)

where

A(t) = −
∫

D

1

δ2
HD(u)(x, t)∂θg

(
θ(x, t;u)

) 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)∂tu(y) · ey−x dydx

(4.12)
and

B(t) =
∫

D

1

δ2
HD(u)(x, t)∂θg

(
θ(x, t;u)

) 1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)∂tu(x) · ey−x dydx.

(4.13)
Next introduce the characteristic function of D denoted by χD(x) taking the value one inside
D and zero outside and together with the properties of ωδ(|y − x|) we rewrite A(t) as
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A(t) = −
∫
R3×R3

χD(x)χD(y)ωδ(|y − x|) 1

δ2
HD(u)(x, t)∂θg

(
θ(x, t;u)

)

× 1

Vδ

∂tu(y) · ey−x dydx, (4.14)

we switch the order of integration and note −ey−x = ex−y to obtain

A(t) =
∫

D

1

Vδ

∫
D(x)∩Bδ(y)

ωδ(|y − x|)
δ2

HD(u)(x, t)∂θg
(
θ(x, t;u)

)
ex−y dx · ∂tu(y)dy.

(4.15)
We can move ∂tu(x) outside the inner integral, regroup factors, and write B(t) as

B(t) =
∫

D

1

Vδ

∫
D∩Bδ(x)

ωδ(|y − x|)
δ2

HD(u)(x, t)∂θg
(
θ(x, t;u)

)
ey−x dy · ∂tu(x)dx.

(4.16)
We rename the inner variable of integration y and the outer variable x in (4.15) and add
equations (4.15) and (4.16) to get

A(t) + B(t) =
∫

D

LD(u)(x, t) · ∂tu(x, t) dx (4.17)

and (4.8) is proved.
The steps used to prove (4.7) are similar to the proof of (4.8) so we provide only the key

points of its derivation below. We expand ∂tf (
√|y − x|S) to get

∂tf
(√|y − x|S(y, x, t;u)

)

= ∂Sf
(√|y − x|S(y, x, t;u)

)∂tu(y) − ∂tu(x)

|y − x| · ey−x, (4.18)

and write

− 2

Vδ

∫
D

∫
D∩Bδ(x)

J δ(|y − x|)
δ

HT (u)(y, x, t)∂tf
(√|y − x|S(y, x, t;u)

)
dydx

= A(t) + B(t), (4.19)

where

A(t) = −
∫

D

1

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x| HT (u)(y, x, t)∂Sf

(√|y − x|S(y, x, t;u)
)
∂tu(y)

· ey−x dydx (4.20)

and

B(t) =
∫

D

1

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x| HT (u)(y, x, t)∂Sf

(√|y − x|S(y, x, t;u)
)
∂tu(x)

· ey−x dydx. (4.21)

We note that S(y, x, t;u) = S(x, y, t;u) and HT (u)(y, x, t) = HT (u)(x, y, t) and pro-
ceeding as in the proof of (4.8) we change the order of integration in (4.20) noting that
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−ey−x = ex−y to get

A(t) =
∫

D

1

Vδ

∫
D∩Bδ(y)

J δ(|y − x|)
δ|y − x| HT (u)(x, y, t)∂Sf

(√|y − x|S(x, y, t;u)
)
ex−y dx

· ∂tu(y) dy. (4.22)

Taking ∂tu(x) outside the inner integral in (4.21) gives

B(t) =
∫

D

1

Vδ

∫
D∩Bδ(x)

J δ(|y − x|)
δ|y − x| HT (u)(y, x, t)∂Sf

(√|y − x|S(y, x, t;u)
)
ey−x dy

· ∂tu(x) dx. (4.23)

We conclude noting that now

A(t) + B(t) =
∫

D

LT (u)(x, t) · ∂tu(x, t) dx, (4.24)

and (4.7) is proved.

5 Explicit Damage Models, Cyclic Loading and Strain to Failure

In this section we provide concrete examples of the damage functions HT (u)(y, x, t) and
HD(u)(x, t). We provide an example of cyclic loading and the associated degradation in the
nonlocal force-strain law as well as the strain to failure curve for monotonically increasing
strains. In this work both damage functions HT and HD are given in terms of the function h.
Here we give an example of h(x) :R→ R

+ as follows

h(x) =

⎧⎪⎨
⎪⎩

h̄(x/xc), for x ∈ (0, xc),

1, for x ≤ 0,

0, for x ≥ xc,

(5.1)

with h̄ : [0,1] → R
+ is defined as

h̄(x) = exp

[
1 − 1

1 − (x)a

]
(5.2)

where a > 1 is fixed. Clearly, h̄(0) = 1, h̄(1) = 0, see Fig. 5. Here h(x) increases with xc .
For a given critical strain Sc > 0, we define the threshold function for tensile strain jS(x)

as follows

jS(x) :=
{

j̄ (x/Sc), ∀x ∈ [Sc,∞),

0, otherwise,
(5.3)

where j̄ : [1,∞) →R
+ is given by

j̄ (x) = (x − 1)a

1 + xb
(5.4)
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Fig. 5 Plot of h(x) with a = 2

Fig. 6 Plot of jS(x) with a = 5,
b = 5 and Sc = 2

Fig. 7 Plot of jθ (x) with a = 4,
b = 5, θ+

c = 2, and θ−
C

= 3

with a > 1 and b ≥ a − 1 fixed. Note that jS(1) = 0. Here the condition b ≥ a − 1 insures
the existence of a constant γ > 0 for which

jS(x) ≤ γ |x|, ∀x ∈R, (5.5)

see Fig. 6.
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For a given critical hydrostatic strains θ−
c < 0 < θ+

c we define the threshold function
jθ (x) as

jθ (x) :=

⎧⎪⎨
⎪⎩

j̄ (x/θ+
c ), ∀x ∈ [θ+

c ,∞),

j̄ (−x/θ−
c ), ∀x ∈ (−∞,−θ−

c ],
0, otherwise,

(5.6)

where j̄ (x) is defined by (5.4) and we plot jθ in Fig. 7. We summarize noting that an explicit
form for HT (u)(y, x, t) is obtained by using (5.1) and (5.3) in (2.8) and an explicit form for
HD(u)(x, t) is obtained by using (5.1) and (5.6) in (2.9).

We first provide an example of cyclic damage incurred by a periodically varying tensile
strain. Let x, y be two fixed material points with |y −x| < δ and let S(y, x, t;u) = S(t) cor-
respond to a temporally periodic strain, see Fig. 8a. Here S(t) periodically takes excursions
above the critical strain Sc. During the first period we have

S(t) =
{

t, ∀t ∈ [0, SC + ε],
2(SC + ε) − t ∀t ∈ (SC + ε,2(Sc + ε)]

and S(t) is extended to R
+ by periodicity, see Fig. 8a. For this damage model we let η be

the area under the curve jS(x) from x = Sc to x = Sc + ε. It is given by

η =
∫ Sc+ε

Sc

jS(x)dx =
∫ t∗

tc

jS

(
S(t)

)
dt,

where tc corresponds to S(tc) = Sc and t∗ corresponds to S(t∗) = Sc +ε. From symmetry the
area under the curve jS(x) under unloading from Sc + ε to Sc is also η. The corresponding
damage function HT (u)(y, x, t) is plotted in Fig. 8b.

In Fig. 9, we plot the strain-force relation where S is the abscissa and the tensile force
given by HT ((u)(y, x, t))∂Sf (

√|y − x|S(y, x, t;u)) is the ordinate. Here the damage fac-
tor HT (u)(y, x, t) drops in value with each cycle of strain loading. After each cycle, the
slope (elasticity) in the linear and recoverable part of the force-strain curve decreases due
to damage. The force needed to soften the material is the strength and it is clear from the
model that the strength decreases after each cycle due to damage.

Application of this rigorously established model to fatigue is a topic of future research
but beyond the scope of this article. We note that fatigue models based on peridynamic bond
softening are introduced in [16] and with fatigue crack nucleation in the context of the Paris
law in [20].

The next example is strain to failure for a monotonically increasing strain. Here we let
S(y, x, t;u) = S(t) = t and plot the corresponding force-strain curve in Fig. 10. We see that
the force-strain relation is initially linear until the strain exceeds Sc , the force then reaches its
maximum and subsequently softens to failure. At S∗ ≈ 0.55025, we have

∫ S∗
0 jS(t)dt = xc ,

and HT = 0. Here we take α = 1.

6 Numerical Results

In this section, we conduct numerical simulations to illustrate damage under cyclic load-
ing and monotonic loading. We carry out both examples for two dimensional problems. Let
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Fig. 8 (a) Strain profile.
(b) Damage function plot
corresponding to strain profile

Fig. 9 Cyclic strain vs. Force
plot. The initial stiffness is α.
Hysteresis is evident in this
model

Fig. 10 Strain vs. Force plot
where S(t) = t . HT (S(t)) begins
to drop at Sc = 0.1 and
S∗ ≈ 0.55025

x = (x1, x2) where x1 corresponds to vector component along the horizontal axis and x2

corresponds to the component along the vertical axis. Here we use the finite difference ap-
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proximation in space together with velocity-verlet scheme in time to generate the numerical
results.

We take plane strain quantities given by the Young’s modulus E = 27 GPa and Pois-
son’s ratio ν = 0.2. The corresponding Lamé modulus is λ = 7.5 GPa and shear modulus
is μ = 11.25 GPa. We apply (7.4) with J (r) = ω(r) = 1 − r , to find f ′′(0) = 540.0 and
g′′(0) = −270.0 and set r1 = r2 = 3.0 and r∗

1 = r∗
2 = 3.0. This is sufficient to complete the

description of the quadratic functions f and g.
We provide values of parameters for the damage functions for which the numerical re-

sults in this work and the one presented in [26] Figs. 12.6 and 12.12 show reasonable
agreement. For jS , we let a = b = 5 and Sc = 5 × 10−6 and for jθ , we let a = 4, b = 5
and θ+

c = θ−
c = 0.01. The influence function is of the form J δ(r) = ωδ(r) = 1 − r/δ for

0 ≤ r < δ and zero otherwise. In first numerical example we let a = 1.01 and xc = 0.6 for
the function h. In second numerical example, we let a = 2.01 and xc = 0.15 for the func-
tion h. We further remark that higher values of θ+

c , θ−
c ensures that damage is only due to

bond-based interaction.

6.1 Periodic Loading

Consider a domain D = [0,1]2 with size of horizon δ = 0.15. The spatial domain is uni-
formly discretized with mesh size h = δ/5, see Fig. 11. The time domain is [0,20] seconds
and the time step is �t = 4 × 10−7. The density is ρ = 1200 kg/m3. On the top edge, we
apply a constant, in x1, vertical force directed along the x2 axis. Consider the bond “2” in
Fig. 11. We start with zero force and increment the force by γ�t every time step until the
strain over bond 2 reaches the value Smax = 0.011 × 10−3 (note that bond-strain is dimen-
sionless quantity). Then we start decreasing the force by γ�t every time step until the strain
of bond “2” is zero. Again, we start incrementing force by γ�t until strain reaches Smax and
then decreasing force till strain is zero. We continue applying the time periodic force in this
way until 20.0 seconds has elapsed. We fix γ = 8861.54.

The choice of Smax and γ ensures that all bonds near top edge experience strain above
Sc for some time in each cycle of loading. Thus, in each cycle, the bond damage increases.
In Fig. 12, we plot the time vs. average bond-strain S(y, x, t;u) over bonds 1, 2, and 3 as
well time vs. bond-damage HT (u)(y, x, t) of bond “2”. Here, y, x are fixed and correspond
to bond “2”. In Fig. 13, we plot the bond-force HT ((u)(y, x, t))∂Sf (

√|y − x|S(y, x, t;u))

as a function of average strain over bonds 1, 2, and 3. The yellow line is a plot of the
undamaged force ∂Sf (

√|y − x|S(y, x, t;u)) versus strain S(y, x, t;u) curve of bond 2.

6.2 Bending Test

In this example we consider the three-point and four-point bending test considered in
Sect. 12.6 of [26]. We consider a slow dynamic evolution by applying a slow monotonic
loading. For slow monotone loading, the trends seen in the dynamics are close to the qua-
sistatic case seen in [26]. We consider a beam D = [0,1.6] × [0,0.25] with thickness 0.15
meters and size of horizon δ = 0.1 meters. The mesh size is h = δ/4 meters. The final time
is T = 1 second and the time step is �t = 2.0 × 10−6.

For the 3 point bending test, illustrated in Fig. 14, we apply displacement boundary
conditions at the mesh node Pload = (0.8,0.25) along the −x2 direction. For the 4-point
test, we apply displacement boundary conditions along −x2 direction at two points Pload,1 =
(0.6,0.25) and Pload,2 = (1.0,0.25). For the 3-point test the loading is described by

u2(Pload, t) = −γ t, γ = 0.001.
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Fig. 11 Discretization of
material domain D = [0,1]2.
During simulation we output the
bond-strain, bond-force, and
damage on bonds numbered as 1,
2, 3. We fix u1 and u2 on mesh
points colored as Red and fix
only u1 on mesh points colored
as green. The same time periodic
force is applied to all mesh points
on the top edge

Fig. 12 Time vs. strain
S(y, x, t;u) and HT (u)(y, x, t)

plot for bond “2”

Similarly for the 4-point test we have

u2(Pload,1, t) = u2(Pload,2, t) = −γ t, γ = 0.001.

In the following figures we plot the deflection of point at the center (0.8,0.125) of the beam.
The force is the total force experienced by mesh node at Pload in case of 3-point test and sum
of total force experienced by mesh node Pload,1 and Pload,2 in case of 4-point test. In Fig. 15,
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Fig. 13 Strain S(y, x, t;u) vs.
force HT ((u)(y, x, t)) ×
∂Sf (

√|y − x|S(y, x, t;u)) plot
averaged over bonds “1, 2,
and 3”. The yellow line
corresponds to
∂Sf (

√|y − x|S(y, x, t;u))

Fig. 14 Schematics of the bending tests. For the 3-point bending test where displacement along −x2 is
specified at (0.8,0.25). At two support points (0.075,0.0) and (1.725,0.0), u2 is fixed. For 4-point bending
test, displacement is specified at two points (0.6,0.25) and (1.0,0.25)

we plot the deflection vs. force curve. If we compare this plot with Fig. 12.6, [26], we find
that the results follow the same trend.

The degree of damage about a material point x is given by the damage density φ(t, x;u).
It takes the value φ(t, x;u) = 1 if the point no longer interacts with the surrounding neigh-
borhood, i.e., fully damaged. When there is partial damage one has 0 < φ(t, x;u) < 1, and
for no damage φ(t, x;u) = 0. Here we damage only for tensile strain as the critical hydro-
static values are taken higher that the critical tensile strain value. For this case the damage
density is defined as

φ(t, x;u) = 1 −
∫

D∩Bδ(x)
HT (u)(y, x, t)dy∫
D∩Bδ(x)

dy
. (6.1)

We consider the 4 point bending test given by Fig. 16. In Fig. 17 we plot the damage set given
by φ(t, x;u) at the time of structural failure. We see that the highest values of the damage
density are highly localized to the vicinity of the applied loads and there is no damage away
from the loads.
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Fig. 15 Deflection vs. force
curve. Here we plot the deflection
of point at the center (0.8,0.125)

of the beam. The force is the total
force experienced by mesh node
at Pload in case of 3-point test
and sum of total force
experienced by mesh node
Pload,1 and Pload,2 in case of
4-point test. The small
oscillations seen in the plot are
due to the fact that the simulation
is dynamic

Fig. 16 Schematics of the 4-point bending test where we show damage localization. The displacement along
−x2 is specified at the two points (0.4725,0.15) and (0.6725,0.15). At two the support points (0.075,0.0)

and (1.725,0.0), u2 is fixed

Fig. 17 Damage set. The damage density shows a localization of damage in the vicinity of where the load is
applied
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7 Linear Elastic Operators in the Small Horizon Limit

In this section we consider smooth evolutions u in space and show that away from damage
set the operators LT +LD acting on u converge to the operator of linear elasticity in the limit
of vanishing nonlocality. We denote the damage set by D̃ and consider any open undamaged
set D′ interior to D with its boundary a finite distance away from the boundary of D and the
damage set D̃. In what follows we suppose that the nonlocal horizon δ is smaller than the
distance separating the boundary of D′ from the boundaries of D and D̃.

Theorem 7.1 Convergence to linear elastic operators. Suppose that u(x, t) ∈ C2([0, T0],
C3(D,R3)) and no damage, i.e., HT (y, x, t) = 1 and HD(x, t) = 1, for every x ∈ D′ ⊂
D \ D̃, then there is a constant C > 0 independent of nonlocal horizon δ such that for every
(x, t) in D′ × [0, T0], one has

∣∣LT
(
u(t)

) +LD
(
u(t)

) − ∇ ·CE
(
u(t)

)∣∣ < Cδ, (7.1)

where the elastic strain is E(u) = (∇u + (∇u)T )/2 and the elastic tensor is isotropic and
given by

Cijkl = 2μ

(
δikδjl + δilδjk

2

)
+ λδij δkl, (7.2)

with shear modulus μ and Lamé coefficient λ given by

μ = f ′′(0)

10

∫ 1

0
r3J (r) dr and λ = μ + g′′(0)

(∫ 1

0
r3J (r) dr

)2

, (7.3)

and for 2 dimensional problems

μ = f ′′(0)

8

∫ 1

0
r2J (r) dr and λ = μ + g′′(0)

(∫ 1

0
r2J (r) dr

)2

. (7.4)

The numbers f ′′(0) = α and g′′(0) = β can be chosen independently and can be any pair of
real numbers such that C is positive definite.

Proof We start by showing

∣∣∣∣LT
(
u(t)

) − f ′′(0)

2ω3

∫
B1(0)

e|ξ |J (|ξ |)eiej ek dξ∂2
jkui(x)

∣∣∣∣ < Cδ, (7.5)

where ω3 = 4π/3 and e = ey−x are unit vectors on the sphere, here repeated indices in-
dicate summation. To see this recall the formula for LT (u) and write ∂Sf (

√|y − x|S) =
f ′(

√|y − x|S)
√|y − x|. Now Taylor expand f ′(

√|y − x|S) in
√|y − x|S and Taylor ex-

pand u(y) about x, denoting ey−x by e to find that all odd terms in e integrate to zero and

∣∣∣∣LT
(
u(t)

)
l
− 2

Vδ

∫
Bδ(x)

J δ(|y − x|)
δ|y − x|

f ′′(0)

4
|y − x|2∂2

jkui(x)eiej ekel, dy

∣∣∣∣ < Cδ, l = 1,2,3.

(7.6)
On changing variables ξ = (y − x)/δ we recover (7.5). Now we show
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∣∣∣∣LD
(
u(t)

)
k
− 1

ω3

∫
B1(0)

|ξ |ω(|ξ |)eiej dξ
g′′(0)

ω3

∫
B1(0)

|ξ |ω(|ξ |)ekel dξ∂2
lj ui(x)

∣∣∣∣ < Cδ,

k = 1,2,3. (7.7)

We note for x ∈ D′ that D ∩ Bδ(x) = Bδ(x) and the integrand in the second term of (2.6) is
odd and the integral vanishes. For the first term in (2.6) we Taylor expand ∂θg(θ) about θ = 0
and Taylor expand u(z) about y inside θ(y, t) noting that terms odd in e = ez−y integrate to
zero to get

∣∣∣∣∂θg
(
θ(y, t)

) − g′′(0)
1

Vδ

∫
Bδ(y)

ωδ(|z − y|)|z − y|∂jui(y)eiej dz

∣∣∣∣ < Cδ3. (7.8)

Now substitution for the approximation to ∂θg(θ(y, t)) in the definition of LD gives

∣∣∣∣LD(u) − 1

Vδ

∫
Bδ(x)

ωδ(|y − x|)
δ2

ey−x

1

Vδ

∫
Bδ(y)

ωδ(|z − y|)|z − y|g′′(0)∂jui(y)eiej dz dy

∣∣∣∣
< Cδ. (7.9)

We Taylor expand ∂jui(y) about x, note that odd terms involving tensor products of ey−x

vanish when integrated with respect to y in Bδ(x) and we obtain (7.7).
We now calculate as in ([13] equation (6.64)) to find that

f ′′(0)

2ω3

∫
B1(0)

|ξ |J (|ξ |)eiej ekel dξ∂2
jkui(x) =

(
2μ1

(
δikδjl + δilδjk

2

)
+ λ1δij δkl

)
∂2

jkui(x),

(7.10)
where

μ1 = λ1 = f ′′(0)

10

∫ 1

0
r3J (r) dr. (7.11)

Next observe that a straight forward calculation gives

1

ω3

∫
B1(0)

|ξ |ω(|ξ |)eiej dξ = δij

∫ 1

0
r3ω(r) dr, (7.12)

and we deduce that

1

ω3

∫
B1(0)

|ξ |ω(|ξ |)eiej dξ
g′′(0)

ω3

∫
B1(0)

|ξ |ω(|ξ |)ekel dξ∂2
lj ui(x)

= g′′(0)

(∫ 1

0
r3ω(r) dr

)2

δij δkl∂
2
lj ui(x). (7.13)

Theorem 7.1 follows on adding (7.10) and (7.13). The two dimensional calculation follows
identical arguments. �

8 Conclusions

We have introduced a simple nonlocal model for free damage propagation in solids. In this
model there is only one equation and it describes the dynamics of the displacement using
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Newtons law F = ma. The damage is a consequence of displacement history and diminishes
the force strain law as damage accumulates. The modeling allows for both cyclic damage
or brutal damage. The damage is irreversible and the damage set grows with time. The
dissipation energy due to damage together with the kinetic and potential energy satisfies
energy balance at every instant of the evolution. Future theoretical work will address the
question of localization of damage using this model. We believe that if the loading is such
that large monotonically increasing strains are generated then damage localization can be
anticipated, the numerical examples that we have tried so far support this, see Fig. 17.

In Sect. 6 we presented two numerical examples which illustrate different aspects of the
model. The simulations are similar in appearance to Figs. 12.6 and 12.12 of [26]. However
the model considered in [26] is distinct from the model presented here and is a time depen-
dent gradient damage model. In that approach one suppresses inertial effects and solves for
elastic strains in the form of gradients and time varying damage variables.

In this treatment we have considered dynamic problems with memory. For this case we
have shown existence and uniqueness of evolutions for the model. We find that the Lipschitz
constant associated with uniqueness goes to infinity as inertial forces go to zero. This is
consistent with the loss of uniqueness in the quasi-static limit. The analysis of this model
in the absence of inertial forces leads to the quasi-static case where the effects of inertia
are absent but a memory of load history is still present. Future work aims to explore this
model for this case and understand regimes of body force, specimen geometry and boundary
loads for which there is instability and non-uniqueness. The existence of instability and non-
uniqueness is well known for quasi-static gradient damage models [17] and appears in the
applications [27].
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