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Synopsis

The set of effective elasticity tensors for all two-dimensional mixtures of two isotropic incompressible
clastic materials taken in prescribed proportion is described. In two dimensions the effective tensors
are completely characterised by bounds on their eigenvalues.

1. Introduction

New bounds are established on the eigenvalues of the effective elasticity tensor
for an N-dimensional homogenised mixture of two incompressible elastic solids
taken in prescribed proportion. In two dimensions the eigenvalue bounds are
used to describe the set of effective elasticity tensors.

The effective elasticity tensor is defined in the context of homogenisation.
Mathematically, homogenisation corresponds to the theory of G-convergence [17,
18, 19, 23] or H-convergence [3, 12, 13, 20].

Let «, B be the Lame shear moduli for two isotropic incompressible elastic
solids such that 0 < o <8 <. A mixture of these two materials is characterised
by the characteristic function y,(x) of the a-material in RY. At any point x of RY
the elasticity tensor of the mixture is

A(x) = (2oxa(x) +28(1 — 2 (X)),

where [ is the fourth order identity on the space of symmetric N X N trace-free
matrices.

Consider the family of mixtures x5(x) contained in an open bounded set Q of
RY with elasticity tensor

A(x) = ayga(x) + 201 — 3 () (1.0)
such that
xe— 0(x) in L.(RQ2) weak star 1.1)

as & goes to zero. Here & characterises the length scale of the mixture and 6 is
interpreted as the local average volume fraction of the a-material in the
homogenised mixture.

TueOREM 1.0. A subsequence of tensors A®' of the sequence A® given by (1.0)
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and (1.1) H-converges to a tensor A° with ||A°||L o) =2 and A°Z2al almost
everywhere in Q, i.e. for any fin H(Q)" the unique solution u®' in Hy(Q)", P*'
in L¥(Q)/R of
ej(u®) = 3(Byui"' + 9 u),
ax,-(Aij,clekl(uE')) + 9, P’ =fz} n O
divu®' =0
satisfies
u®' — u® weakly in H{(Q)",
P’ — P° weakly in LY(Q)/R
as &' goes to zero, where u° € Hy(Q)", P°e LY(Q)/R is the unique solution of -~
3. (Afu(x)en(u®)) + 3, P° =fi}
divu®=0

The tensor A° is the effective elasticity tensor of the mixture and is a symmetric
linear map on the N(N +1)/2—1 dimensional space of N XN symmetric
trace-free matrices.

Remark 1.1. The theorems of S. Spagnolo [18] and L. Tartar [13, 20] applied
to this setting would yield the H-convergence result given above.

A special class of effective tensors which are limits of H-converging sequences
of tensors corresponding to periodic mixtures is considered. Let x% represent a
mixture such that y, is periodic in RY with period Q = (0, 1)%, i.e.

XalX) = X (E)

n Q.

" and
6= f Xe(x) dx
Q

and 0= 6 =1. The fundamental theorem of periodic homogenisation is stated in
the following definition and corollary of Theorem 1.0.

DermnrioN 1.2. The sequence of tensors A° given by

= (8 203

is called a PC sequence of tensors.

CoroLLARY 1.3. The whole PC sequence A® H-converges to a unique constant
tensor A°.

Remark 1.4. The sequence y, (J—;) converges to 6 in L.(2) weak star as £ tends
to zero.

Remark 1.5. The convergence result given above is well known [2, 14, 16].
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Moreover, the limit of a PC sequence may be written explicitly in terms of a
variational principle [6, 8] easily obtained from the results of [14]:

(4%, &) =it | 2a(y)(e,($)+ &, dy 12)
o

for any N X N trace-free symmetric matrix &, where a(y) is the Q periodic Lame
shear modulus

a(y) = axa(y) + B1 = xa(¥)),
and ¢ ranges over all divergence-free, Q-periodic N-dimensional vector fields.

DerFNITION 1.6. Py{a, B} is the set of all H-limits of PC sequences for a
specific choice of the parameters 6, «, §.

In this paper the set Py{w, B} is described for the two-dimensional case.
Although attention is restricted to the periodic setting, there is no loss of
generality and the results can be extended to the non-periodic case (see Remark
2.6 in Section 2).

The results of the analysis are stated in Section 2. In Section 3 the methods of
Kohn and Milton [7] are applied to the case of N-dimensional incompressible
elasticity (N =2) and bounds are derived on the eigenvalues of the effective
tensor equations (2.1), (2.2)) using the Hashin—Shtrikman variational principles
[4]. In Section 4 optimality is proved in two dimensions by constructing a rank = 3
laminar mixture for each point (4,, 4,) in the region bounded by (2.1) and (2.2)
such that its effective elasticity has eigenvalues A, A,. This optimality proof is
based on the optimality proof for the conductivity problem given by Murat and
Tartar (see Tartar [21]). It is noted that the formulae (Theorem 4.3 (4.2), (4.3))
for the effective elasticity of a laminar mixture of two anisotropic incompressible
materials are a modified version of [3, Theorem 4.1] which applies to the general
elastic case. For completeness, a proof of Theorem 4.3 based on the ideas
developed in [3, Theorem 4.1] is provided. The fact that optimality is proved
using laminar mixtures corresponds to the recent results of Avellaneda [1], which
state that for any two-phase elastic mixture with prescribed volume fractions both
stronger and weaker laminar mixtures can be found.

2. Statement of results

In this section eigenvalue bounds are presented which completely characterise
the set of effective tensors Py{w, B} in two dimensions and give a partial
characterisation for higher dimensions. The classical bounds on the eigenvalues of
the effective elasticity tensor are the arithmetic mean-harmonic mean bounds
derived in [15]. These bounds are independent of dimension and are given by

hg =A=my, 2.0)
where A is any eigenvalue of the effective tensor and
he=2(a”'0+B7H1—6))"Y, my=2(af + B(1 - 6)).
Remark 2.0. Let Tyyx denote the space of all symmetric trace-free N X N
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matrices. The bounds given in [15] imply that the set Py{«, B} lies within the set
of all symmetric linear transforms on T,y with eigenvalues satisfying (2.0).

The following bounds lead to a more precise characterisation of the set
Po{a, B} for N>2 and in the case of two dimensions (N =2) they completely
describe Py{a, B}.

THEOREM 2.1. The set Py{a, B} is contained in the set of all symmetric linear
transformations on Tyyy such that their N(N+1)/2 -1 eigenvalues lie in the
convex region RY given by

c_ 1 _ 1 N/2
;li—Zaf:(N_l)(ha_za, me—2a>’ (2.1)
S < (N _ 1 N/2
257V GE o gm ) 22)

where m = N(N + 1)/2 — 1 and N is the dimension of the space R".

Remark 2.2. The convexity of the region R} given by (2.1) and (2.2) follows
from the convexity of the functions W(A) = (A —2a)~" for A>2a and ¢(1) =
(2B —A)~! for 2 <28 (see [13, 21]).

THEOREM 2.3. In two dimensions the set Ppy{a, §} is precisely the set of all
symmetric linear transformations on T,., which have their (two) eigenvalues inside
the convex region R} given by (2.1) and (2.2) for N =2. (See Figure 1.)

Remark 2.4. For N =2 the region R is contained inside the region given by
the bounds in [15]. However, in three dimensions there exist choices of the
parameters «, 8, 6 for which R} is no longer contained inside the bounds given
in [15].

This observation motivates the following remark.

Remark 2.5. For N>2 the set P;{e, B} is a subset of all symmetric linear

Figure 1. The shaded region R bounded by curves (2.1) and (2.2) is the set of eigenvalues of
effective tensors in Py{«, B} for two dimensions. The square region is given by the bounds of [15].
The region lying between (1) and (2) is the set of eigenvalues of the effective tensor for all periodic
mixtures of & and 8 materials.
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mappings on Ty, with eigenvalues lying in the intersection of the region R%
given by (2.1), (2.2) and the region defined by the bounds (2.0).

Remark 2.6. Theorems 2.1 and 2.3 can be generalised to hold for all limits of
H-converging sequences as given by Theorem 1.0. This generalisation is
technical. The interested reader may refer to [5].

3. Derivation of the eigenvalue bounds for N = 2-dimensional homogenised
incompressible elasticity

To illustrate our method we derive the lower eigenvalue bound for N-
dimensional periodically homogenised incompressible elasticity (inequality (2.1)
with N =2). The following inequality on the effective elasticity is obtained from
the variational principle (1.2).

Tueorem 3.0. If A® is the limit of a PC sequence of tensors A°, then A° satisfies
,(1-8
(=200, &) =20 - ), 2 (B~ C D P+ Gur ), 30)

where p and £ are two matrices in Tyxy, (-, -) is the inner product on Ty, (i.e.
(&, n) =tr(En)), and F; is a symmetric linear mapping on Tyxy. For k € ZN we
denote the Fourier coefficients of the characteristic function xg(x) by 7s(k). Then
F; reads as

G =3 3 110P{(s ) - (ko)) 6.
and
=g 2 100 (w0 i) 70 - (i) 62

where |k| = (XX, k%) and for a, b in RVa - b =W~

The proof of Theorem 3.0 is along the lines of [8] and can also be found in
(e, 8]:

Proof. As in [6, 8] the Hashin—Shtrikman variational principle [4] is derived
from (1.2). Let y be a positive real number less than a. We add and subtract
2y(e;(¢) + &) on the right-hand side of (1.2) to obtain

(A% O =int | (2a0)=1IE+e@)F +2rle@)+E . (33

Let o be a square integrable Q-periodic N X N symmetric trace-free tensor field,
then

(a(y) —27) 1E+e(P)*Z2(e(p) + &, 0) — (2a(y) ~2y) o  (3.9)
almost everywhere in Q. Substituting (3.4) into (3.3) and integrating by parts
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gives

U8 2| (20, )~ @a~20)" loF +2y [EF} dy

+inf [ (200, e(4))+27 (@) dy.
o

Fixing o the best choice of ¢ solves

yA¢* + VP*=—dive
V-¢*=0
¢* is O-periodic.

fino,

(3.5)

Substituting ¢* given by (3.5) for ¢ and rearranging terms gives the Hashin-

Shtrikman variational principle

((A°-27)§, &)= fQ {20, &)~ Qa=2y)7 o] + (0, e(¢*)} dy.  (3.6)

We make the choice o= xzu and pass to the limit as y tends to « in (3.6) to

obtain

(1-6

((A°-27)8, 5)22(1- 6)(w, &) — (B— )™ 3

To complete the derivation of (3.0) we show that

fQ (xsu, e(¢*)) dy = (Feu, ).

D16+ [ oo, 97 .
Q

(3.7)

Since ¢*, 0 = xgu, and P* are Q-periodic, they have a Fourier series expansion

*(y)= 2, $*(k)e*™™,
kezZN

Xﬂ(}’)ﬂ = ”(,;;N X8 (k)ez"ik'y> ’
and
PH(y)= 3 Pr(k)erme.

keZ

The problem (3.5) determines ¢* up to an additive constant so we may take

$*(0)=0.
From equation (3.5) we deduce for each k # 0 that

p* _ i i 5
PRy = o |k|)""(")

and
A * _L o i p* i
Tk =52 <""(k)“|k| + P (k) lkl)'
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It follows that for £ #0
1 k\ k k k\ k k
090 = —L,f(uh) Ak )k Y
Hence, from (3.1), (3.8) and the Plancherel equality it is evident that

J, Guor @y = 3, (a0 1, 267D = B, ),

which together with (3.7) completes the proof of Theorem 3.0.

Theorem 3.0 is used to obtain an inequality between symmetric mappings on
Tyxn- By minimising the left-hand side of (3.0) over all £ for u fixed, we obtain
the minimiser

E=(1-6)(A"—2al) 'y,
and substitution into (3.0) yields

(a2, ) G - ),

This gives the following relation between symmetric mappings on T,

o na<B-a) 1
A" =2an7'= 2= 6) I (I—B)ZEB' (3.9)
Remark 3.1. We stress that the above arguments and formulae hold for any
dimension N =2.
The lower eigenvalue bound is derived by computing the trace of the
right-hand side in (3.9). Indeed, the traces of the symmetric mappings I and F
are computed using the orthonormal basis of Ty given by

6 i=1,...,N—1,

s r=i,...,N—1,
NZs>r
where
6i = (i_l + 1)_%{ Z i_lek ® €r —€ir1 ® ei+1} )
k=1 .
e"=(e, Qe +e,®e,)/\/§, (3.10)
and
e,eRM, e, = <°"—“r’ﬂ>, 0,... 0).

Since there are N(N +1)/2—1 basis elements in Tyxn, the trace of I is
N(N +1)/2 — 1. The trace of F; is given by the following lemma.
6(1—-0)(N—-1)

LemMA 3.2. The trace of F; is — e
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Proof. The following identity is used to compute the trace:
N-1 . . N—-1
a(B) = 3 (B3, 8)+ 3 (Fe,e”). (3.11)
=t r<r.;:§lN
Use of (3.2) and (3.10) in (3.11) yields
(P71l { ~< ) N( k )}
tr (& S +S 3.12
B)= 2 1) + 52 G2
where
N-1 k2+k2
sg)-- 5 G
|| 2“1 2[k[?
r<s=N
and
k k
() )
Ik |&]
where

k R

o(f)- 5

k| 21 |k]*
r<s=N

()= 2 g G (S 33) ) - 5 o (B (3 ) oy,

We prove that for all k in ZV

SN<|1]§|> - _N_z—l (3.13)
and
sN(U’:I) 0. (3.14)

Since k/|k| is a unit vector it is sufficient to establish (3.13) and (3.14) for all unit
vectors n in R™.
We prove (3.13) by induction. For any unit vector n in R? we have
1
SHn)=-=.
i(n) 2

We suppose for any unit vector n in R" that S¥(n) = — (N —1)/2 and consider
the sum SY*'(b) where b is a unit vector in R¥*1. Then SY+(b) is written

N—-1 12 2 N-1 2 2 N+1p2
TS +b 2 +1+b +b2 %.
s=2 i=1
1=r<s

(3.15)

We define the unit vector v in RY by
v?=b? i=1,...,N-1 (3.16)
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and
vy =b%+bXi1

Substitution of (3.16) in the right-hand side of (3.15) and apphcatlon of the
induction hypothesis gives

N+1 _ =+ 2
Sl (b) 2 2:

thus (3.13) is proved We prove (3.14) by showing that B¥(n) = — A¥(n) for any
unit vector n in R™. The proof is by induction. For N =2 the identity is trivial.-
Suppose for any unit vector z in R that BY(n) = —A™(n) and consider B"*!(b)
where b is a unit vector in R¥*!, We make use of the identity |b| =1 and write

BN*Y(b) as

wo0)= 5 T {2, 00) o) -5 (2 08) o0

(1 bN+1 ) Zb?‘l(l bN+1 N)

2
N(N 1) ( bN+1 bN N
(N 1)bN(1 b) (N+1)b +1(1_b3v+1)
. 3.1
N N (-17)
We write 2 (bN+le) as
1 N-1

2<N+ ~ )b b% (3.18)

and add and subtract (3.18) to the right-hand side of (3.17) to obtain

=5 ()] (5 ) )

= ll+1

(1= bFs1— )( b2 )_2(b 1+ bR = bRy —b3)
N(N=1) A N
N — 1)(b%1 + b3)(1 — b%
_( )( N+1 N)( N+1— ) 2b +1b12V- (3-19)
We define the unit vector v in R" by
v?=b? i=1,...,N-1 (3.20)

and
v = by + b

Substitution of (3.20) in the right-hand side of (3.19) and application of the
induction hypothesis yields

BY*Y(b) = —AN(v) — 2b% 1 b%- (3.21)
Substitution of b for v in (3.21) yields
BN+1(b) = —AN+1(b);
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thus (3.14) is proved. Finally, Plancherel’s equality gives

> 0P = [ ()~ (1-6)ydy
k+0 Q
=6(1-0),
therefore from (3.12), (3.13), and (3.14) we obtain

8(1- 0)(N—-1)

()= - =

Taking the trace of (3.9) yields

—a)™! N+1) ON-1)
_2an-y 8- ( ( —1)+ . G
A= 2eD) Ty =0 (N 2ai-o G2
A straightforward calculation shows that (3.22) is identical to (2.1). The upper
bound (2.2) is computed using similar methods.

4. Optimality of the eigenvalue bounds for two-dimensional homogenised
incompressible elasticity

The optimality proof of the bounds (2.1) and (2.2) for two dimensions proceeds
in two steps: It is first shown that the upper and lower eigenvalue bounds are
achieved by H-converging sequences of rank-2 laminar mixtures with volume
fractions 6 and (1—6). These extremal rank-2 mixtures are then used to
construct H-convergent sequences of rank-3 laminar mixtures that achieve all
points inside the region R%. Once this is done optimality is proved by the
following remarks.

Remark 4.0. Let U, be the space of all symmetric transforms on T5x»- If we can
exhibit one tensor in Py{«, B} with eigenvalues A,, A, in R? then all tensors in U,
with eigenvalues 4, and A, are elements of P;{«, 8}. To demonstrate this remark
we note that it is easily shown for the set U, that if tensors D and C in U? have
the same eigenvalues then there exists an orthogonal matrix ¢ such that

Cijlcl =D mnopq mi qnj Qok qpl' (4' 0)
Remark 4.1. Given a sequence of periodic mixtures with microstructure Zalx)
and effective elasticity C it is possible to construct a sequence of mixtures with
microstructure x2 and effective elasticity C2 such that
Cz?jkl = annopqmi qnj 9ok qpl
by letting
xa(y)=2:(qy), where gq”=1.

This remark follows by changing coordinates § =gy in (1.2). We demonstrate
Remark 4.0. Suppose that for 4;, 4, in R}, a sequence of periodic mixtures with
volume fractions 8, (1 — 6) is found such that the effective tensor has eigenvalues
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A1, Ay Tt is evident from (4.0) and Remark 4.1 that every tensor in U, with
eigenvalues A;, A, can be constructed by rotating and reflecting the microstructure
through an orthogonal change of coordinates y = gy.

Remark 4.2. All points in R} are achieved by sequences of rank =3 laminar
mixtures. Although these mixtures are not periodic their effective tensors can be
approximated arbitrarily well by those associated with periodic mixtures having
volume fractions 8, 1 — 6.

We start by giving a general formula for the effective elasticity of an
H-convergent sequence of laminar mixtures of two anisotropic incompressible
elastic materials. Our formula is a modified version of [3, Theorem 4.1] whlch
applies to the compressible case.

Consider two incompressible but not necessarily isotropic materials with
elasticities A" and A% It is assumed that A’, A% are symmetric mappings on Tyxy
and 20 =A'S28,i=1,2.

THEOREM 4.3. Let A' and A® be as above; consider a layered composite in
which A' is present with volume fraction p and A® with volume fraction 1 —p. Let
e € RY be the unit vector perpendicular to the layers and let y be a periodic step
function on R with period 1 such that

p=[ a0

Then the sequence of tensors

Af(x)=A x( ) +A2<1 x(" e)) (4.1)
H-converges to A° given by
Au=A""w = A%u for u in Ker (A% — AY), 4.2)
- ay = A P g el (4)
for u in Ker (A% — A")*, where the symmetric linear mapping q(e) is defined by
q(e){a} = {A'(e - a)}e — ({A'(e - a)}e, e)e (4.4)

for all a in RY perpendicular to e.

Remark 4.4. For a unit vector e, g(e) is a well-defined symmetric map on the
space V¥ of all vectors in R™ orthogonal to e. This follows from the fact that A is
a symmetric map on Ty, A'>2a and e - a is in Tyxy for @ in V7. Indeed,

(q(e) Ha}, a)=({AYe-a)}e,a) = a |a]* for ain V7, (4.5)

thus g(e) ™' is invertible on V7.
If we suppose that one material is isotropic, i.e. A'=2AI, we obtain the
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following corollary to Theorem 4.3:
COROLLARY 4.5. Given that A* =2A'I in Theorem 4.3, then A® is given by
A% = A% =2A1u for u in Ker (A% —2A']), (4.6)
2_aqlp—1
=& 1 il) #¥ A‘(lp—p

(A°-2A'n7t ) {(ue)-e—(ue, e)e-e} (4.7)

for win Ker (A2 —2A'1)*.
Proof. We compute g~ *(e) for A'=2A'I. From (4.4) we obtain
q(e)™ay = Na.
Therefore
q(e){a} =a/M (4.8)
and the corollary follows from (4.3) and (4.8).

Remark 4.6. Corollary 4.5 can be used iteratively as in [3] to obtain the
effective tensors for multiply-layered materials (see equations (4.25), (4.27)).

Remark 4.7. Equation (4.7) can be obtained directly from [3, equation (4.6)]
by letting the bulk modulus K* tend to + in that formula.

We outline the proof of Theorem 4.3. The proof is based on the proof of
[3, Theorem 4.1].

Proof of Theorem 4.3. For any choice of layer direction e in SV~! there exists a
cubic lattice in which the layer structure is periodic, therefore one may work
within the context of periodic homogenisation. From [14] the H-limit of the
sequence (4.1) is given by

%= [ a()(e(H+ &), *9)
Q

where a(y)=A'%(y -e) + A*(1—x(y - €)),

and ¢°? solves the “cell” problem

(HE .\ =
ay,(a(y)[ei,(?iv) ;Ei]ngay.-P": 0} on R, (4.10)

¢*is Q-periodic, & is in Tyxn-

The solution of (4.10) is linear and the piecewise constant strain takes values in
Tnxn such that

e(p5) +E=x(y - e)Ear+ (1 — x(y - €))Eas-
The pressure p? is piecewise constant and is given by
pE=x(y - €)Par+ (1= x(y - €))Pas.
Thus from (4.9) we have
AOE =pA'Es1 + (1 —p)A%E .. (4.11)
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Integration of e(¢*) + £ over Q gives

E=pEa1+(1—p)Eas ‘ (4.12)
Lastly, we have
(A’Eqp—A'Ea)e=Te, T=Py—Py (4.13)
and
Esq=Es,+e-a for ain RY, (4.14)
such that
(e, a)=0. (4.15)

Equation (4.13) follows from the continuity of the traction at the layer interface;
(4.14) is the consistency condition for the existence of a deformation with
specified piecewise constant strain; and (4.15) follows from the condition that &,;
and &,, be trace-free.

From (4.13) and (4.14) we obtain

(A*— AYE e ={A'(e - a)}e +Te. (4.16)
Now define u by
p=(A"= A4 (4.17)
and multiply (4.16) by e to obtain
I'={ue, ) — ({A'(e - a)}e, e).
Therefore from (4.16) we obtain
ue — (ue, e)e = {A'(e - a)}e — ({A'(e - a)}e, e)e =g (e){a},
hence ‘ ‘
a=q(e){ne — (ue, e)e}, (4.18)

where pe — (ue, €) e is in V¥. We see from (4.14), (4.17) and (4.18) that &, and
a are uniquely determined functions of &4, where &4, is an arbitrary element
of Tyxn-

From (4.11) and (4.12) we obtain

(1-p)(A* = AN)E4o = (A%~ A")(pEar + (1 - p)Eaa). (4.19)
Use of equations (4.14), (4.17) and (4.18) in (4.19) gives
(A°— AD[Ea + pe-qle){ue — (e, e)e}] = (1 - plu. (4.20)

We obtain (4.2) and (4.3) by examining the two cases: &, lies in Ker (42— A?)
or £,, lies in Ker (4% — A")*. If &4, belongs to Ker (4% — A?) then x =0 and from
(4.17) and (4.20) we have

AOEAZ = A1§A2 = A2§A2

which proves (4.2). If £,, belongs to Ker (4% — AY)*, we let (4> — A')™" denote
the inverse of A% — A’ restricted to Ker (A*— A')*. Then u given by (4.17) is in
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Ker (A% — A")* and (4.20) is written
(A°—AYSu=p, (4.21)
where
s = P g e = e, ) @2

In view of equations (4.21) and (4.22), equation (4.3) is proved if we can show
that (§°)7" exists for p in Ker (4> — A")*. Indeed, we show that Ker ($°) =0 for
¢ in Ker (A2 — AY)*. From (4.4), (4.5) and as 4, >0 we write
(51, (A2 = Aje - q(e){pe — (ue, e)e}])
= ({ue — (ue, e)e}, g(e){ue — (ue, €)e}) = 0. (4.23)
If 1 is in Ker (5°) then from (4.23)
ue — (ue, e)e =0
as g(e) is positive definite from (4.5). Then
q(e){ue — (ue, e)e} =0
and (4.22) yields
(A2—AY) u =0, (4.24)

but as u € Ker (4>~ A")* we conclude from (4.24) that p = 0.

In the following, we show how to attain all points in the set R using rank =3
laminar mixtures. We choose ;= a and A>=2] in formula (4.7) and use (4.7)
iteratively to derive the following formula for the rank-2 iterated laminar mixture
with effective tensor A° given by

(020 =0 Ons g (Pilwe) - a—a-a(ua, )

+(6—p)[(ub) - b—b-b(ub, b)I}, (4.25)

where a = (a, a,), b = (b,, b,) are unit vectors orthogonal to layer directions, p,
is the volume fraction of a-~material in the first iterate, and 6 is the total volume
fraction of a-material in the mixture. We use (4.25) to construct a rank-2 iterated
laminate with eigenvalues on the lower boundary of R% (equation (2.1) for
N =2). Upon choosing layer directions a = (1, 0) and b = (1/V2, 1/V2) in (4.25)
the matrix of A° relative to the basis in Ty,

61:(1/3/5 —1(/)\/?2'>’ 52:(1/(\)/2 1/(}6)

is written
20(B-a)(1-6)
a+(B—a)(0-py)

0

0

2a(8 ~ a)(1— 6)
e B e

20 +
(4.26)
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We see from (4.26) that as p; ranges from 0 to 6 the eigenvalues of the rank-2
laminates (Fig. 1) sweep out the lower bound ((2.1) for N =2).

Remark 4.8. By choosing A' = and A*=2al in (4.7) and iterating, we obtain
the formula for the rank-2 iterated laminate

Gpr- a0 u=C=2, —% (= p)[(a) - a—a - a(ua, a)]
+ (o1 — O)[(ub) - b —b - b(ub, BY]}, (4.27)

where 1 — p, is the volume fraction of the B-material in the first iterate and 1 —
is the total volume fraction of B-material in the mixture. Upon choosing layer
directions a = (1, 0), b = (1/V2, 1/V2) we obtain rank-2 laminates sweeping out
the upper bound ((2.2), for N =2) of R} as 1 — p, ranges from 0 to 1 — 6.

Lastly, to obtain effective elasticities with eigenvalues on the interior of R we
construct effective tensors by layering a rank-2 laminate AY, having eigenvalues on
the upper boundary of R with a rank-2 laminate A} having eigenvalues on the
lower boundary. The effective elasticities A% and A are chosen such that

AY=1,0'® 6! +16°® &2,
A2 =2,8"Q 8'+ 162 Q® 62

Consider a layered mixture with layers of A} and AY in proportions 6, 1—6
perpendicular to the (1,0) direction. We observe that 6 lies in Ker (A% — A%)
and therefore, from Theorem 4.3,

A% = AY6% = A26% = A62. (4.28)
The matrix 6' lies in Ker (A — A?)* and we compute
d'e — (8%, e)e for e=(1,0)
to obtain
8'e — (b'e, e)e = 0.
Therefore, as
g(e){6'e— (&', e)e} =0,

Az

(hg. mg)

(xL.x‘. (AN
(mg .hg)

A

Figure 2
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we see from (4.3) that
A%'=(1,.6+ (1 - 0)A,)éN (4.29)
Equations (4.28) and (4.29) yield
A%= (1.0 +(1—6)Ay)0' ® 6 + 18> ® 82

Therefore, as 6 ranges from 0 to 1, the eigenvalues of A® sweep out all points
between (A, A) and (Ay, A). (See Figure 2.)

5. Concluding remarks

The eigenvalue bounds on the effective elasticity in two dimensions resemble
the eigenvalue bounds obtained for the two-dimensional conductivity problem
established in [21] and independently in [9]. For both cases extremal mixtures
achieving the upper and lower bounds are rank-2 laminates. However, the
choices of layer directions are different for each case. In the case of conductivity
the two layer directions are perpendicular to each other, while for incompressible
elasticity the layer directions differ by 45 degrees.
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