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The effects of the interface separating two strongly nonlinear electric conductors is investigated. The
interface may either be highly conducting or exhibit an electric contact resistance. Our analysis and
results are based upon new variational principles for nonlinear composites with surface energies. For
monodisperse suspensions of spheres separated from the matrix by a highly conducting interface, a
critical direct-currenidc) applied field strength is found for which the electric potential inside the
sample is the same as for a sample containing no spheres. For this field strength the overall electric
current passing through the sample is the same as for a sample containing pure matrix conductor.
When there is a contact resistance between the matrix and sphere phase, a critical dc applied current
density is found for which the current density inside the sample is the same as for a sample
containing no spheres. These results are shown to be independent of the location of the spheres
within the sample. Moreover, this effect is independent of the concentration of spheres in the sample
even beyond the onset of interface percolation. 1899 American Institute of Physics.
[S0021-897809)06315-X]

I. INTRODUCTION convex function of the magnitude of the electric field. This
requirement naturally includes local constitutive relations as-
Nonlinear direct-currentdc) electric conductivity is a sociated with nonlinear behavior of the form
property intrinsic to many ceramic materialdlore gener- i ¢
ally, nonlinear inhomogeneous materials are pervasive, ap- i=»IE[E,
pearing in applications ranging from transient voltage protecwherej is the local current density arilis the local electric
tion to the selective absorption of solar enefghis article  field. Here the nonlinear susceptibilitytakes different val-
investigates the effect of the interface on the overall dc elecues inside each phase.
tric properties of nonlinear composite conductors. A com-  For the case of a highly conducting interface, the electric
posite made from a monodisperse suspension of spheres egonduction on the interfacial surface is linear and is de-
bedded in a matrix is considered. It is supposed that thecribed by the scalar, with dimensions of conductivity
interface separating the spheres and matrix is highly conxlength. Surface conduction along the two-phase interface
ducting. A critical applied voltage is found for which the has been shown to strongly influence the overall properties
electric potential inside the sample is the same as for af random mixtures of ionic insulators, see Refs. 3-5. It
sample of identical shape containing no spheres whatsoevertaturally facilitates the transport of ions across a fluid satu-
At the critical voltage, the overall electric current passingrated porous medium and has a strong effect on the overall
through the sample is the same as in a homogeneous condysropertie€. Surface conduction is also shown to exert a sig-
tor. On the other hand, in the presence of an electric contagtificant influence on the overall dc electric conductivity of
resistance at the interface, we show that there is a criticahortar, see Refs. 7 and 8.
applied dc current density for which the current density in-  The transmission of current across the interface is char-
side the sample is the same as for a sample containing rexcterized by a jump in the current normal to the interface.
spheres. The overall electric field in the sample correspondshe jump in the normal current produces an interfacial
to that associated with a homogeneous conductor made frooharge density. The associated electric potential is continu-
matrix material. These effects are shown to be independermtus across the interface and is coupled to the charge density
of the location of the spheres within the sample. Moreoverthrough a Poisson equation supported on the interfaee
these effects are independent of the concentration of spher&s). (1)]. The interface transmission condition can be thought
in the sample even beyond the onset of interface percolatiorf as the limiting case of electric transport across bulk phases
It is demonstrated from first principles that these phe-separated by a thin highly conducting, linear, interphase
nomena occur for a wide range of nonlinear constitutive belayer®
havior. Indeed, it is shown here that cloaking phenomena can On the other hand, contact resistance often appears due
occur when the potential energy density of each phase is @ the presence of a thin highly resistive layer or “inter-
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phase” between two conducting phases. The effects of the W(E):infEeK|Q|_1
thin layer can be modeled by a discontinuous potential that
suffers a jump across the interface. The associated current
density flowing into the interface is continuous across it and

is proportional to the jump in electric potential. Here, the .
constant of proportionality is denoted i#/and has dimen- WhereQ denotes the sample domain ahdrepresents the

sions given by conductivity per unit length. Both of these union of all two-phase interfaces. The admissible set of trial
interface transmission conditions are distinct from the stanfi€ldsK is given by
dard “perfectly bonded” interface conditions where both the { E:E=-Vo,

X

fW[E(x),x]derf WS(Etan)ds>, 3
Q r

electric potential and normal current density are continuous K= 4
across the interface. We remark that contact resistance is not
limited to electrostatic problems and can appear in the math¥aking the first variation in Eq:3) shows that the minimizer
ematically analogous context of heat conductivity. Here conis a solution of the equilibrium equations given by Efj).

tact resistance can arise due to surface roughhesfrom  The overall current passing through the composite sample as

an acoustic mismatch between phases at liquid helium tenmeasured by an outside observer is given by

¢=—E-X, on the sample boundary.

peratures, see Ref. 11. 1
j=r=| j-nxds. (5)
QI Jag
Il. EQUILIBRIUM EQUATIONS AND VARIATIONAL The overall constitutive relation for the composite sample is
PRINCIPLES FOR OVERALL PROPERTIES given by
We start by formulating the equations of equilibrium and ~ j =DW(E). (6)

associated variational principles for the case of a highly con-  \ynen there is a contact resistance between phases, the
ducting interface be;ween phases. The.potential functions ofsgociated  surface potential function is defined by
the matrix and.partlcle phases are written ws,(E) and W([ $])2(B/2)([ $])2. Here,[4] is the jump in the poten-
W,(E), respectively. On the two-phase interface the potensjg| across the interface. We denote the unit normal pointing

. . . - A 2 A A ) R N
tial function is defined byWy(Eia)=(a/2)|Eranl”. Here,Ean gyt of the composite domain byand inject an electric cur-

is the projection of the electric field onto the interfacial sur- . L . —
rent into the composite, i.e., given a constant vegtanhe

face. We subject the composite to linear boundary condi ) N T _
electric current density satisfies - n=—j-n on the bound-

tIOI’?S,. i.e., given a constant vectrthe electric po.ten'uali) ary of the composite sample. On the two-phase interfitce
satisfiesp=—E-x on the boundary of the composite sample. . y1— ¢ wheren is the normal vector on the interface di-

The electric potential is continuous throughout the compositested into the matrix phase. The equilibrium equations are
and the electric field is given bg=—V ¢. We denote the

gradient of the potentialV,,, with respect to its argument by —div[DW,(E)]=0, in the matrix,
DW,,, and the constitutive relation in the matrix phase is : : .

ome . o o —div[DW,(E)]=0, h particle, 7
writtenj=DW,,(E). Similarly the constitutive relation in the i o(E)] In each particie ™
particle phase is given by=DW,(E). On the two-phase and
interface

Ban=—(1-n®MVd=-Vss, Here[ ¢]= ¢m— ¢, , Where the subscripts denote the side of
whereV is the gradient operator on the interfacial surfacethe interface that the potential is evaluated on.
andn is the normal vector on the interface directed into the ~ The overall electric field across the composite sample as
matrix phase. The constitutive relation on the interface igneasured by an outside observer is given by
given byjs= aE,,. The equilibrium equations are

j-n=—pB[¢], on the two phase interface.

—div[DW,,,(E)]=0, in the matrix, el &Qtfm ds. ®)
—div[DW,(E)]=0, in each particle, (1)  The macroscopi¢or overal) energy? is defined by
and E(E)z inf |Q|71
ek

—alAsp=j,-N—]yu-n, on the two phase interface.

Here A; denotes the surface Laplacian on the two phase X J W[E(x),x]dx+J Ws([(P])dS>v (9)
interface and the subscripts indicate the side of the interface Q r

that the normal current is evaluated on. The potential energyhere the admissible set of trial fielés, is given by
function in the composite is written

¢: ¢, is differentiable in the particles and in the matrix,
Ke= E= __1
|Q| dQ

The macroscopicor overal) energy is defined by (10

Wy (E), x in the matrix,

WIE,x]= W,(E), X in the particles. @

en ds.
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Taking the first variation in Eq9) shows that the minimizer This result is independent of the shape of the dom@in
is a solution of the equilibrium equations given by Efj. A occupied by the composite and the configuration of the
straight forward computation shows that the average currerdgpheres inside the composite domain.
density is related to the overall electric field through the re-  Conversely, this result shows that for prescribed values
lation j =DC(E). Denoting the convex dual of the macro- of the common sphere radius and electric field intendy
scopic energy byC* one has the equivalent overall consti- satisfyingH (|E|) — H,’)(|E|)>O, that the interfacial conduc-
tutive relation for the composite sample given by tivity a can be chosen so as to render the particles undetect-
able.

To fix ideas we present the cloaking phenomenon for the
three following cases:

E=DC*(j). (11

lll. CLOAKING PHENOMENA Case 1: Nonlinear particles in a linear matrix.
In this section we show that the effect of the interface on Tm, s
the macroscopic properties is dependent on the particle si?¥m(E) = 7|E|

and field intensity. We provide several results illustrating the

influence of these two factors. and (14
Our conclusions will apply to all nonlinear constitutive o

laws given by potential energy densities of the form, W,(E) = (?P|E|2+ %|E|t)’

Win(E)=Hn(|E]),
" i€l whereo,,>0,>07v,>0, andt>2. For a given value of the

and ratio 2 and a composite with bulk energy density given by
W, (E)=Hp(|E]), Eq. (14), if |E| satisfies
whereH, andH , are strictly convex functions. For this case (Om=0p) _ =,
we have — =|E|
P
E
DWi(E)=Hi([E]) . and 19
a 2
and —= p——
@ (om—op)—vplE

|t—2

then, the electric field inside the compositeEisverywhere
andj=DW,(E). It is evident that for small fields the par-
ticle conductivity lies below that of the matrix. The effect
interfacial conduction is seen to compensate for the reduced
particle conductivity at low field intensities.

GG Case 2: Linear particles in a nonlinear matrix.

E
DW,(E) =Hy([ED) g7,

and the macroscopic energi@4E) andC(E) are convex?
Strict convexity insures that the derivataud§ andH, are
invertible. We denote the inverse functions by:

and d Y
wm<E>=(7m|E|2+Tm|EI‘)

(Hp) ~*(iD.
We begin by demonstrating the effect of interfacial sur-2"
face conduction on the macroscopic properties.

d (16)

g
W, (E)=|="|E 2),
A. Cloaking phenomenon for a monodisperse p(E) ( 2 €l
suspension of spheres with highly conducting

interface whereo,>0, 0,>0, y,>0, andt>2. For a given value of

. _ _ ~ the ratio§ and a composite with bulk energy density given
Given a monodisperse suspension of spheres of radius by Eq. (16); if |E| satisfies

with interface conductivitye, if the electric field intensity

|E| across the composite satisfield,,(|E|) —H(|E[)>0, IEIt_ZBmax[ (op— O'm)’o] ,
and Ym
a 2|E| and (17)
—= — —, (12)
(HW([ED—HL(ED) a_ 2
then the electric fieldE is preciselyE, everywhere inside the a  (om—op)+ylE|'?

composite sample and the overall current passing through t

sample is given by rmen, the electric field inside the compositeEisverywhere

- - and j=DW,,(E). For sufficiently large electric fields, the
j=DWp(E). (13 particle conductivity lies below that of the matrix. In this
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context, interfacial conduction is seen to compensate for the
reduced particle conductivity at high field intensities. Wp(B)=|—=
Case 3: Nonlinear particles in a nonlinear matrix.

t+1
e

wherey,>y,>0,t>1 and we set’ =t/(t—1). For a given

W,.(E) = ( E[t+2 value of the produck X 8 and a composite with bulk energy
m t+1 density given by Eq(23); if
and (18) i |1It'
axp= 1k (24)
()= (t+1|E|t+1) (vm) = ()

then, the electric current inside the compositej isvery-
wherey,>y,>0 andt>1. For a given value of the ratip ~ where and
and a composite with bulk energy density given by B®); .
g E=DWi(j)=(ym) ™.
a_ 2 (19 Case 2: Nonlinear particles in a linear matrix
@ (Ym— 'yp)|E|t_l, g
o _ Wi(E)=| -7 [EJ?
then, the electric field inside the compositeEisverywhere
andj=DW,(E). and (25
In the presence of interfacial contact resistance the
cloaking effect is expressed in terms of a critical applied W,(E)=
current intensity.

Ipie2, Yo 4
o 2 22 s,

For a given value of the produetx 8 and a composite

B. Cloaking phenomenon for a monodisperse with bulk energy density given by E@25); if m satisfies

suspension of spheres in the presence of interfacial o Y- (H)~X(ih>0
contact resistance m P '

: . . . Wwhere
Given a monodisperse suspension of spheres of radius

with interface conductivitys, if the applied current intensity L il (12 (o )3) 1’2) 3
i1 satisfi H) *(i)= + +|5—
lj| satisfies, (Hp)~=ih Eg Eg 3y
Hw (iD= (Hp) ~Y(ih>0, (20) i (i 3\ 12\ 113
+ +
and 27 (m 5 /) ) -
i and
ax = — —, (21) _
)~ (iD= (Hp i) il
_ axpB= — —, (27
then the current density is preciselyj, everywhere inside g*1|j|—(Hl'3)*1(|j|)
the composite sample and the overall electric field across the
sample is given by then, the current density inside the compositedserywhere
and
_— * —_—
E=DWn(}), (22 — *

. E=DWq(j)=0,Y.

whereW,, is the convex dual to the potential energy density|t is evident that for large fields the particle resistivity lies
of the matrix phase. This result is independent of the shapgelow that of the matrix. The effect of interfacial contact
of the domainQ occupied by the composite and the configu-resistance is seen to compromise the reduced particle resis-
ration of the spheres inside the composite domain. tivity at high current intensities.

Conversely, this result shows that for prescriged values |t is emphasized that in all cases the cloaking effect ap-
of the common sphere radius and any field intengitysat-  plies to anisotropic suspensions of spheres and that the effect
isfying Eq. (20), that the interfacial conductivity3 can be is independent of sphere configuration, sample shape, and

chosen so as to render the particles undetectable. the concentration of spheres in the sample even beyond the
To fix ideas we present the cloaking phenomenon for thénterface percolation threshold. We note that our approach is
two following cases: variational in nature and allows one to treat the problem
Case 1: Nonlinear particles in a nonlinear matrix. directly without approximating the field interactions between
particles.
W,(E)= (t+1 |E|t+? In the context of two-phase linear conductors we have,

Hm(|E]) = 0/2|E[? andH ,(|E]) = /2| E|? and Eq.(12) be-
and (23 comes
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2a I
a= A= ———. (28) W*(j)= inf [Q|~* f W*[3(x),x]dx
(Om— O'p) jek’ Q
Foron>0,>0, A gives a criti_cal ra_dius t@t is independent 1
of field intensity for whichE=E andj= o,E. These results +on JF|V3(A;1{(jp_jm)'n})|2ds . (33

are independent of field intensity and particle configuration.
This result was established in LiptohFor isotropic com-  This variational principle is new and is an extension of the
posites, in the linear context, using different methodsvariational principle developed in Liptéhto the nonlinear
Torquato and Rintod? found for a=Aj that the effective case. The dual of the macroscopic energy is found to be
conductivity is precisely that of the matrix phase. convex. Forj=DW(E) it is evident thatW* (j)=W(E).

For two phase linear conductors in the presence of afrhese properties together with the variational principle are
interface contact resistance we havé,(|E|)=0./2/E|*>  established in the sequel.

andH ,(|E) = o,/2|E|? and Eq.(21) becomes We introduce the variational principle for the dual of the
macroscopic energy for the contact resistance case. We de-
axfB=AXp= % (290  note the surface of thith particle byI'; and introduce the
Om —0p space of trial current&/ given by
Foro,>0,>0, A gives ac@cal ridiusit@t is independent o [55.n= —Tn, on the boundary ofQ,
of field intensity for whichj=j andE=o-.%j. This result is Ke= divi=0. in Q. (34)

shown to be independent of field intensity and particle con-

figuration. This result was presented in Lipton andThe dual of the potential energy on the interface is simply
Vernescut® For isotropic composites, in the linear context, W% (v) = 1/28v* for any scalar. The Legendre dual of the
using different methods Torquato and RintGubund fora macroscopic energy is given by the following variational
= A, that the effective conductivity is precisely that of the principle.

matrix phase. The results obtained here translate immedi- 1

ately into the mathematically analogous problems of nonlinC* (j) = inf |Q|—1| f W*[5(x),x]dx+ _j (j-n)zds].

ear thermal conductivity and antiplane sh¥ar. jek! Q 2B Jr

(39

This variational principle is new and is an extension of the
IV. DUAL VARIATIONAL PRINCIPLES AND ANALYSIS variational principle developed by Hasfirto the nonlinear

. . case. The dual of the macroscopic energy is found to be
The cloaking effect for both contact resistance and the P gy 18

highly conducting interface case follows from the variational O"VEX- ForE_= DC*()) it is _evident th_at(_:* (j):\.N(I.E)'
formulations of the macroscopic energies given by Egs. These_ properties together with the variational principle are
and (9), and from new “dual” variational formulations de- established in the sequel.

scribed below. We begin by introducing the variational prin- ;he cloaking gffect is.est%SIished _gsint? simplle -b?undﬁ,
ciple describing the convex dual of the macroscopic energ n the macroscopic energies. We provide the analysis for the

in Eq. (3). We denote the surface of thth particle byT; and ighly conducting interface case and we give a brief sketch
introduce the space of trial currerts given by ! of the analysis for the contact resistance case as both analy-

ses follow similar lines. The bounds on the macroscopic en-

1 x ds=T ergy for the highly conducting interface case follow from the
J'@ ﬁQJ'nX s=h substitution of simple trial fields into the new variational
K’ = (30) principles given by Eq93) and(33). Substitution of the trial
L (3p=Im)-n ds=0, potential o= —E-x into the variational principle of Eq(3)
i H h
divj=0, in Q\I'. gives the upper bound
The solution,y, of the Poisson equation on the interfacial U+(E)=0me(E)+ O, W,,(E)Jr E|E|2). (36)
surface given by a
—Agp=(3p—Jm) N, (31  Hered, andé,, denote the volume fraction of the matrix and
o particle phase, respectively.
is written as,A;l{(jp—jm)ﬂ}. We denote the Legendre A lower bound on the macroscopic energy is obtained by

dual of the matrix and particle potential energy functions asinding an upper bound fo* (j). For any choice of,
W, ande . The dual of the potential energy on the inter- cgnvex duality implies that

face is simplyW? (D) = 1/2«|D|? for any vectorD. We set T

i ; W(E)=j-E—W*(j), 3
W:(3), x in the matrix, (E)=] (J) (37)

W*[3,x]= W} (3), x in the particles.

(32 so for any upper bounw*+(ﬁ on the dual energyVv* (B

. . ) we have a lower bound on the macroscopic ener iven b
The Legendre dual of the macroscopic energy is written as P 9 y

W* and W(E)=j-E-U**(j). (38)
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scopic potential energy for a random, particle reinforced
composite. The composite is comprised of two conductors
with cubic nonlinear behavior, namelW,(E) = y,,|E|?E
andDW,,(E) = y,|E|?E. The bounds on the macroscopic po-
tential energy density are normalized with respect to the ma-
trix potential energy density given by,|E|*/4. The bounds
are plotted for a random dispersion of particles of radius
=20um occupying a volume fraction of 0.2. The dimen-
sionless ratioy,/yy is set to 0.1, and the combination
alayy, is chosen to be 450000/m)?. The critical field
strength for which the electric potential in the composite is
the same as an unreinforced sample is 1000 v/m.

For the contact resistance case we perform a similar
analysis. However our analysis now delivers bounds for the

FIG. 1. Tight upper and lower bounds on the macroscopic potential energgjual macroscopic ener@*_ An upper bound orC* fol-

for a random, nonlinear, particle reinforced composite with highly conduct-

ing interface.

Substitution of the trial current

I in the matrix,
1=\ — . . (39
j+m, in the particles,
gives the upper bound
U**(5) = 0mWi(]) + ;W5 (j + 1)
! f ! VAt 2d 40
g Fz| SAg (g-n)}|“ds. (40)

For a sphere of radiusa one finds thatAgl(rrn)
=—a?/2x-n and calculation gives

— — — a
U* (1) = 0mWe (D) + 0p| W3 (J+ )+ 5[l ). (4D)

We setj=DWy(E) and 7=DW,(E)—DW,(E) in Eq.

(41); and a straightforward calculation delivers the lower

boundU‘(E) on the macroscopic energy given by
u 7(5 = eme(E) + Hpr(E) + 0p[ DWm(E) E]
- a — —
— 0,[DW,(E)-E]— 6”@ |IDW,(E)— DW(E)|?.

(42)

Inspection of Eqs(36) and (42) shows that the upper and

lower bounds touch when

_ a _ -

0:_4|E|2+4;(Hm(|E|)_Hp(|E|))|E|
a\? _ _

—(;) IHL(IED—HA(EDI%. (43

It is evident that Eq.(43) holds WhenH,’n(|E|)—HF’)(|E|)

>0 and? satisfies Eq(12). Strict convexity of the energy

densities of each phase insure that —E-x is the unique
minimizer of the variational principle of Eq3) when 2 sat-

lows from substitution of the trial fieIﬂTinto the variational
principle of Eq.(35). It is given by

1

U (1)= OmWin(5) + 0| Wo1) + 5 2 [T (44)

A Iowe_rbound onC* is obtained by_finding an upper bgund
for C(E). For any upper bount ¥ (E) on the energ\C(E)
we have the lower bound given by

~, = = —— —_
C*(j)=U"(j)=j-E-UT(E). (45)
Substitution of the trial field
* N
DW,(j)]-x, in the matrix,
_{ PWnl)] (46)
[DWg(j)]-%, in the particles,

into the variational principle fof:(E) delivers the lower
bound

J— *

D_(B: am\,;vm(j )+ (9pr(§+ ep[D\jvm BJ]

* . . aB * TN * e 2
- 0p[DWp(J ) g ] - apT | DWp(J ) - DWm(J )| .
(47)
The cloaking effect for the contact resistance case follows

* — * —
immediately from the condition thal ~(j)=U"(j) and the
identities:

D\7vm<5=<H;1>—l<|ﬂ>;=,

. T (48
DWp(j)=(H;,)‘1(|i|)j——|-

Figure 2 shows upper and lower bounds on the dual
macroscopic potential energy for a random, particle rein-
forced composite. The composite is comprised of two con-
ductors with cubic nonlinear behavior, nameBW,,(E)
= ¥mlE|?E andDW,(E) = y,|E|?E. The bounds on the mac-
roscopic potential energy density are normalized with respect
to the dual matrix potential energy density given by

isfies EQ.(12). Last, it is easily calculated that the overall 3%;1/3“ |#3/4. The bounds are plotted for a random disper-

current density is given bl])Wm(E).

sion of particles of radiug=20um occupying a volume

Figure 1 shows upper and lower bounds on the macrofraction of 0.2. The dimensionless ratg /vy, is set to 8.0,
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wherej_is the average of given by

1 ~
@Loj-nx ds.

Among allj andv satisfying Eq.(50) we consider only trial
fields v of the special formv=Vg and set

1
Ql

(52)

)

W)= inf
(Jiv= ng)

{f W*[j(x),x]dx
Q

+ \N:wsg)dsj. (53
r

It is evident that for this choicejf—J ) -n=Ag. It follows

FIG. 2. Tight upper and lower bounds on the dual macroscopic potentiafrom Eq. (51) that
energy for a random, nonlinear, particle reinforced composite in the pres-

ence of interface contact resistance.

and the combinatioa8/ vy > is chosen to be 8/m??°. The
critical field strength for which the current density in the

W(E)=3-E—W(j). (54)
The convexity ofW follows from stanﬂard arguments. The
inequality given by Eq(54) implies W(E)=W* (E). On the
other hand one easily checks tHat(E)=W?* (E) for the

composite is the same as an unreinforced sample is 2?-A/mchoicejA: DW,,(— V), in the matrix, j= DW,(—V¢), in

V. VARIATIONAL PRINCIPLES FOR DUAL
MACROSCOPIC ENERGIES

Last, the variational principles for the convex duals to

the particles and= — V¢, whereg is the electric potential
in the composite. We conclude from the convexit\Wéfthat
W* (5)=W(j) and the variational principle follows.

the macroscopic energies are established. We provide th@cKNOWLEDGMENTS
analysis for the highly conducting interface case—a similar

analysis delivers variational principles for the dual macro-
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Application of convex duality to the bulk and surface ener-
gies gives

W(E)= inf
EeK

1
{@fQ[j(X)'E(X)]_W*[j(x),X]dx

1
+@fr[vtar(X)-Etan(X)]—\AC[Vtan(X)]ds :
(49)
In order that the infimum be greater thanwe, integration by
parts shows that the fielgsandv must satisfy,

divj=0, in Q/T,

| Go=im-nds=o, (50

and

(Jp—Im)-n=divg Vgt (v-n)J, on I'.

Here diy is the surface divergence operator and
= —divgn is the mean curvature on the interface. Applica-
tion of these identies gives

(1 )
W( )BJ-E—{@LW*[J(X),X]dX
1
T frwz[vtaaxnds] , (51)
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