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The effect of the interface on the dc transport properties
of nonlinear composite materials
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The effects of the interface separating two strongly nonlinear electric conductors is investigated. The
interface may either be highly conducting or exhibit an electric contact resistance. Our analysis and
results are based upon new variational principles for nonlinear composites with surface energies. For
monodisperse suspensions of spheres separated from the matrix by a highly conducting interface, a
critical direct-current~dc! applied field strength is found for which the electric potential inside the
sample is the same as for a sample containing no spheres. For this field strength the overall electric
current passing through the sample is the same as for a sample containing pure matrix conductor.
When there is a contact resistance between the matrix and sphere phase, a critical dc applied current
density is found for which the current density inside the sample is the same as for a sample
containing no spheres. These results are shown to be independent of the location of the spheres
within the sample. Moreover, this effect is independent of the concentration of spheres in the sample
even beyond the onset of interface percolation. ©1999 American Institute of Physics.
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I. INTRODUCTION

Nonlinear direct-current~dc! electric conductivity is a
property intrinsic to many ceramic materials.1 More gener-
ally, nonlinear inhomogeneous materials are pervasive,
pearing in applications ranging from transient voltage prot
tion to the selective absorption of solar energy.2 This article
investigates the effect of the interface on the overall dc e
tric properties of nonlinear composite conductors. A co
posite made from a monodisperse suspension of spheres
bedded in a matrix is considered. It is supposed that
interface separating the spheres and matrix is highly c
ducting. A critical applied voltage is found for which th
electric potential inside the sample is the same as fo
sample of identical shape containing no spheres whatsoe
At the critical voltage, the overall electric current passi
through the sample is the same as in a homogeneous con
tor. On the other hand, in the presence of an electric con
resistance at the interface, we show that there is a crit
applied dc current density for which the current density
side the sample is the same as for a sample containing
spheres. The overall electric field in the sample correspo
to that associated with a homogeneous conductor made
matrix material. These effects are shown to be independ
of the location of the spheres within the sample. Moreov
these effects are independent of the concentration of sph
in the sample even beyond the onset of interface percola

It is demonstrated from first principles that these ph
nomena occur for a wide range of nonlinear constitutive
havior. Indeed, it is shown here that cloaking phenomena
occur when the potential energy density of each phase
1480021-8979/99/86(3)/1480/8/$15.00
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convex function of the magnitude of the electric field. Th
requirement naturally includes local constitutive relations
sociated with nonlinear behavior of the form

j5guEu tE,

wherej is the local current density andE is the local electric
field. Here the nonlinear susceptibilityg takes different val-
ues inside each phase.

For the case of a highly conducting interface, the elec
conduction on the interfacial surface is linear and is d
scribed by the scalara, with dimensions of conductivity
3length. Surface conduction along the two-phase interf
has been shown to strongly influence the overall proper
of random mixtures of ionic insulators, see Refs. 3–5.
naturally facilitates the transport of ions across a fluid sa
rated porous medium and has a strong effect on the ove
properties.6 Surface conduction is also shown to exert a s
nificant influence on the overall dc electric conductivity
mortar, see Refs. 7 and 8.

The transmission of current across the interface is ch
acterized by a jump in the current normal to the interfa
The jump in the normal current produces an interfac
charge density. The associated electric potential is cont
ous across the interface and is coupled to the charge de
through a Poisson equation supported on the interface@see
Eq. ~1!#. The interface transmission condition can be thou
of as the limiting case of electric transport across bulk pha
separated by a thin highly conducting, linear, interpha
layer.9

On the other hand, contact resistance often appears
to the presence of a thin highly resistive layer or ‘‘inte
0 © 1999 American Institute of Physics
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phase’’ between two conducting phases. The effects of
thin layer can be modeled by a discontinuous potential
suffers a jump across the interface. The associated cu
density flowing into the interface is continuous across it a
is proportional to the jump in electric potential. Here, t
constant of proportionality is denoted byb and has dimen-
sions given by conductivity per unit length. Both of the
interface transmission conditions are distinct from the st
dard ‘‘perfectly bonded’’ interface conditions where both t
electric potential and normal current density are continu
across the interface. We remark that contact resistance is
limited to electrostatic problems and can appear in the m
ematically analogous context of heat conductivity. Here c
tact resistance can arise due to surface roughness10 or from
an acoustic mismatch between phases at liquid helium t
peratures, see Ref. 11.

II. EQUILIBRIUM EQUATIONS AND VARIATIONAL
PRINCIPLES FOR OVERALL PROPERTIES

We start by formulating the equations of equilibrium a
associated variational principles for the case of a highly c
ducting interface between phases. The potential function
the matrix and particle phases are written as,Wm(E) and
Wp(E), respectively. On the two-phase interface the pot
tial function is defined byWs(Etan),(a/2)uEtanu2. Here,Etan

is the projection of the electric field onto the interfacial su
face. We subject the composite to linear boundary con
tions, i.e., given a constant vectorĒ the electric potentialf
satisfiesf52Ē–x on the boundary of the composite samp
The electric potential is continuous throughout the compo
and the electric field is given byE52¹f. We denote the
gradient of the potentialWm with respect to its argument b
DWm , and the constitutive relation in the matrix phase
written j5DWm(E). Similarly the constitutive relation in the
particle phase is given byj5DWp(E). On the two-phase
interface

Etan52~ I 2n^ n!¹f52¹sf,

where¹s is the gradient operator on the interfacial surfa
andn is the normal vector on the interface directed into t
matrix phase. The constitutive relation on the interface
given by j s5aEtan. The equilibrium equations are

2div@DWm~E!#50, in the matrix,

2div@DWp~E!#50, in each particle, ~1!

and

2aDsf5 j p•n2 jm•n, on the two phase interface.

Here Ds denotes the surface Laplacian on the two ph
interface and the subscripts indicate the side of the inter
that the normal current is evaluated on. The potential ene
function in the composite is written

W@E,x#5 HWm~E!, x in the matrix,
Wp~E!, x in the particles. ~2!

The macroscopic~or overall! energy is defined by
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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W̃~Ē!5 infEPKuQu21

3S E
Q

W@E~x!,x#dx1E
G
Ws~Etan!dsD , ~3!

where Q denotes the sample domain andG represents the
union of all two-phase interfaces. The admissible set of t
fields K is given by

K5H E:E52¹w,

w52Ē–x, on the sample boundary.
~4!

Taking the first variation in Eq.~3! shows that the minimizer
is a solution of the equilibrium equations given by Eq.~1!.
The overall current passing through the composite sampl
measured by an outside observer is given by

j̄ 5
1

uQu E]Q
j–nx ds. ~5!

The overall constitutive relation for the composite sample
given by

j̄ 5DW̃~Ē!. ~6!

When there is a contact resistance between phases
associated surface potential function is defined
Ws(@f#),(b/2)(@f#)2. Here,@f# is the jump in the poten-
tial across the interface. We denote the unit normal point
out of the composite domain byn and inject an electric cur-
rent into the composite, i.e., given a constant vectorj̄ the
electric current densityj satisfiesj•n52 j̄ •n on the bound-
ary of the composite sample. On the two-phase interfac@ j
•n#50, wheren is the normal vector on the interface d
rected into the matrix phase. The equilibrium equations a

2div@DWm~E!#50, in the matrix,

2div@DWp~E!#50, in each particle, ~7!

and

j–n52b@f#, on the two phase interface.

Here@f#5fm2fp , where the subscripts denote the side
the interface that the potential is evaluated on.

The overall electric field across the composite sample
measured by an outside observer is given by

Ē5
21

uQu E]Q
fn ds. ~8!

The macroscopic~or overall! energy12 is defined by

C̃~Ē!5 inf
wPKc

uQu21

3S E
Q

W@E~x!,x#dx1E
G
Ws~@w#!dsD , ~9!

where the admissible set of trial fieldsKc is given by

Kc5H w:w, is differentiable in the particles and in the matrix

Ē5
21

uQu E]Q
wn ds.

~10!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Taking the first variation in Eq.~9! shows that the minimize
is a solution of the equilibrium equations given by Eq.~7!. A
straight forward computation shows that the average cur
density is related to the overall electric field through the
lation j̄ 5DC̃(Ē). Denoting the convex dual of the macro
scopic energy byC̃* one has the equivalent overall cons
tutive relation for the composite sample given by

Ē5DC̃* ~ j̄ !. ~11!

III. CLOAKING PHENOMENA

In this section we show that the effect of the interface
the macroscopic properties is dependent on the particle
and field intensity. We provide several results illustrating
influence of these two factors.

Our conclusions will apply to all nonlinear constitutiv
laws given by potential energy densities of the form,

Wm~E!5Hm~ uEu!,

and

Wp~E!5Hp~ uEu!,

whereHm andHp are strictly convex functions. For this cas
we have

DWm~E!5Hm8 ~ uEu!
E

uEu
,

and

DWp~E!5Hp8~ uEu!
E

uEu
,

and the macroscopic energiesW̃(Ē) andC̃(Ē) are convex.13

Strict convexity insures that the derivatavesHm8 andHp8 are
invertible. We denote the inverse functions by:

~Hm8 !21~ u j u!,

and

~Hp8!21~ u j u!.

We begin by demonstrating the effect of interfacial s
face conduction on the macroscopic properties.

A. Cloaking phenomenon for a monodisperse
suspension of spheres with highly conducting
interface

Given a monodisperse suspension of spheres of radiua,
with interface conductivitya, if the electric field intensity
uĒu across the composite satisfies,Hm8 (uĒu)2Hp8(uĒu).0,
and

a

a
5

2uĒu

~Hm8 ~ uĒu!2Hp8~ uĒu!!
, ~12!

then the electric fieldE is preciselyĒ, everywhere inside the
composite sample and the overall current passing through
sample is given by

j̄ 5DWm~Ē!. ~13!
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This result is independent of the shape of the domainQ
occupied by the composite and the configuration of
spheres inside the composite domain.

Conversely, this result shows that for prescribed valu
of the common sphere radius and electric field intensityuĒu
satisfyingHm8 (uĒu)2Hp8(uĒu).0, that the interfacial conduc
tivity a can be chosen so as to render the particles unde
able.

To fix ideas we present the cloaking phenomenon for
three following cases:

Case 1: Nonlinear particles in a linear matrix.

Wm~E!5S sm

2
uEu2D

and ~14!

Wp~E!5S sp

2
uEu21

gp

t
uEu tD ,

wheresm.sp.0gp.0, andt.2. For a given value of the
ratio a

a and a composite with bulk energy density given
Eq. ~14!, if uĒu satisfies

~sm2sp!

gp
>uĒu t22

and ~15!

a

a
5

2

~sm2sp!2gpuĒu t22
,

then, the electric field inside the composite isĒ everywhere
and j̄ 5DWm(Ē). It is evident that for small fields the par
ticle conductivity lies below that of the matrix. The effe
interfacial conduction is seen to compensate for the redu
particle conductivity at low field intensities.

Case 2: Linear particles in a nonlinear matrix.

Wm~E!5S sm

2
uEu21

gm

t
uEu tD

and ~16!

Wp~E!5S sp

2
uEu2D ,

wheresm.0, sp.0, gm.0, andt.2. For a given value of
the ratio a

a and a composite with bulk energy density give
by Eq. ~16!; if uĒu satisfies

uĒu t22>maxH ~sp2sm!

gm
,0J ,

and ~17!

a

a
5

2

~sm2sp!1gmuĒu t22
,

then, the electric field inside the composite isĒ everywhere
and j̄ 5DWm(Ē). For sufficiently large electric fields, th
particle conductivity lies below that of the matrix. In th
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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context, interfacial conduction is seen to compensate for
reduced particle conductivity at high field intensities.

Case 3: Nonlinear particles in a nonlinear matrix.

Wm~E!5S gm

t11
uEu t11D

and ~18!

Wp~E!5S gp

t11
uEu t11D ,

wheregm.gp.0 andt.1. For a given value of the ratioaa
and a composite with bulk energy density given by Eq.~18!;
if

a

a
5

2

~gm2gp!uĒu t21
, ~19!

then, the electric field inside the composite isĒ everywhere
and j̄ 5DWm(Ē).

In the presence of interfacial contact resistance
cloaking effect is expressed in terms of a critical appl
current intensity.

B. Cloaking phenomenon for a monodisperse
suspension of spheres in the presence of interfacial
contact resistance

Given a monodisperse suspension of spheres of radiua,
with interface conductivityb, if the applied current intensity
u j̄ u satisfies,

~Hm8 !21~ u j̄ u!2~Hp8!21~ u j̄ u!.0, ~20!

and

a3b5
u j̄ u

~~Hm8 !21~ u j̄ u!2~Hp8!21~ u j̄ u!!
, ~21!

then the current densityj is preciselyj̄ , everywhere inside
the composite sample and the overall electric field across
sample is given by

Ē5DW
*

m~ j̄ !, ~22!

whereW
*

m is the convex dual to the potential energy dens
of the matrix phase. This result is independent of the sh
of the domainQ occupied by the composite and the config
ration of the spheres inside the composite domain.

Conversely, this result shows that for prescribed val
of the common sphere radius and any field intensityu j̄ z. sat-
isfying Eq. ~20!, that the interfacial conductivityb can be
chosen so as to render the particles undetectable.

To fix ideas we present the cloaking phenomenon for
two following cases:

Case 1: Nonlinear particles in a nonlinear matrix.

Wm~E!5S gm

t11
uEu t11D

and ~23!
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Wp~E!5S gp

t11
uEu t11D ,

wheregp.gm.0, t.1 and we sett85t/(t21). For a given
value of the producta3b and a composite with bulk energ
density given by Eq.~23!; if

a3b5
u j̄ u1/t8

~gm!21/t2~gp!21/t , ~24!

then, the electric current inside the composite isj̄ every-
where and

Ē5DW
*

m~ j̄ !5~gm!21/tu j̄ u1/t8 j̄ .

Case 2: Nonlinear particles in a linear matrix.

Wm~E!5S sm

2
uEu2D

and ~25!

Wp~E!5S sp

2
uEu21

gp

4
uEu4D .

For a given value of the producta3b and a composite
with bulk energy density given by Eq.~25!; if u j̄ u satisfies

sm
21u j̄ u2~Hp8!21~ u j̄ u!.0,

where

~Hp8!21~ u j̄ u!5S u j̄ u
2gp

2 1S u j̄ u2

4gp
2 1S sp

3gp
D 3D 1/2D 1/3

1S u j̄ u
2gp

22S u j̄ u2

4gp
2 1S sp

3gp
D 3D 1/2D 1/3

, ~26!

and

a3b5
u j̄ u

sm
21u j̄ u2~Hp8!21~ u j̄ u!

, ~27!

then, the current density inside the composite isj̄ everywhere
and

Ē5DW
*

m~ j̄ !5sm
21 j̄ .

It is evident that for large fields the particle resistivity lie
below that of the matrix. The effect of interfacial conta
resistance is seen to compromise the reduced particle r
tivity at high current intensities.

It is emphasized that in all cases the cloaking effect
plies to anisotropic suspensions of spheres and that the e
is independent of sphere configuration, sample shape,
the concentration of spheres in the sample even beyond
interface percolation threshold. We note that our approac
variational in nature and allows one to treat the probl
directly without approximating the field interactions betwe
particles.

In the context of two-phase linear conductors we ha
Hm(uĒu)5sm/2uĒu2 andHp(uĒu)5sp/2uĒu2 and Eq.~12! be-
comes
P license or copyright, see http://jap.aip.org/jap/copyright.jsp



nt

on

d

a

nt

on
nd
xt,

e
ed
lin

th
a

-
in
rg

ia

e
a
r-

a

he

be

are

e
de-

ply

al

he

be

are

ds
the
tch
aly-

en-
he
al

d

by

by

1484 J. Appl. Phys., Vol. 86, No. 3, 1 August 1999 R. Lipton and D. R. S. Talbot
a5As5
2a

~sm2sp!
. ~28!

For sm.sp.0,As gives a critical radius that is independe
of field intensity for whichE5Ē and j̄ 5smĒ. These results
are independent of field intensity and particle configurati
This result was established in Lipton.14 For isotropic com-
posites, in the linear context, using different metho
Torquato and Rintoul15 found for a5As that the effective
conductivity is precisely that of the matrix phase.

For two phase linear conductors in the presence of
interface contact resistance we have,Hm(uĒu)5sm/2uĒu2

andHp(uĒ)5sp/2uĒu2 and Eq.~21! becomes

a3b5Ac3b5
1

~sm
212sp

21!
. ~29!

For sp.sm.0,Ac gives a critical radius that is independe
of field intensity for whichj5 j̄ andĒ5sm

21 j̄ . This result is
shown to be independent of field intensity and particle c
figuration. This result was presented in Lipton a
Vernescu.16 For isotropic composites, in the linear conte
using different methods Torquato and Rintoul15 found for a
5Ac that the effective conductivity is precisely that of th
matrix phase. The results obtained here translate imm
ately into the mathematically analogous problems of non
ear thermal conductivity and antiplane shear.17

IV. DUAL VARIATIONAL PRINCIPLES AND ANALYSIS

The cloaking effect for both contact resistance and
highly conducting interface case follows from the variation
formulations of the macroscopic energies given by Eqs.~3!
and ~9!, and from new ‘‘dual’’ variational formulations de
scribed below. We begin by introducing the variational pr
ciple describing the convex dual of the macroscopic ene
in Eq. ~3!. We denote the surface of thei th particle byG i and
introduce the space of trial currentsK8 given by

K855
¤̂:

1

uQu E]Q
¤̂–nx ds5 j̄ ,

E
G i

~ ¤̂p2 ¤̂m!–n ds50,

div ¤̂50, in Q\G.

~30!

The solution,c, of the Poisson equation on the interfac
surface given by

2Dsc5~ ¤̂p2 ¤̂m!–n, ~31!

is written as,Ds
21$( ĵ p2 ĵm)•n%. We denote the Legendr

dual of the matrix and particle potential energy functions
Wm* andWp* . The dual of the potential energy on the inte
face is simplyWs* (D)51/2auDu2 for any vectorD. We set

W* @ ¤̂,x#5H Wm* ~ ¤̂!, x in the matrix,

Wp* ~ ¤̂!, x in the particles.
~32!

The Legendre dual of the macroscopic energy is written
W̃* and
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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W̃* ~ j̄ !5 inf
¤̂PK8

uQu21H E
Q

W* @ ¤̂~x!,x#dx

1
1

2a E
G
u¹s~Ds

21$~ ¤̂p2 ¤̂m!–n%!u2dsJ . ~33!

This variational principle is new and is an extension of t
variational principle developed in Lipton18 to the nonlinear
case. The dual of the macroscopic energy is found to
convex. For j̄ 5DW̃(Ē) it is evident thatW̃* ( j̄ )5W̃(Ē).
These properties together with the variational principle
established in the sequel.

We introduce the variational principle for the dual of th
macroscopic energy for the contact resistance case. We
note the surface of thei th particle byG i and introduce the
space of trial currentsKc8 given by

Kc85H ¤̂: ¤̂–n52 j̄ –n, on the boundary ofQ,
div ¤̂50, in Q.

~34!

The dual of the potential energy on the interface is sim
Ws* (y)51/2by2 for any scalary. The Legendre dual of the
macroscopic energy is given by the following variation
principle.

C̃* ~ j̄ !5 inf
¤̂PKc8

uQu21H E
Q

W* @ ¤̂~x!,x#dx1
1

2b E
G
~ ¤̂–n!2dsJ .

~35!

This variational principle is new and is an extension of t
variational principle developed by Hashin19 to the nonlinear
case. The dual of the macroscopic energy is found to
convex. ForĒ5DC̃* ( j̄ ) it is evident thatC̃* ( j̄ )5W̃(Ē).
These properties together with the variational principle
established in the sequel.

The cloaking effect is established using simple boun
on the macroscopic energies. We provide the analysis for
highly conducting interface case and we give a brief ske
of the analysis for the contact resistance case as both an
ses follow similar lines. The bounds on the macroscopic
ergy for the highly conducting interface case follow from t
substitution of simple trial fields into the new variation
principles given by Eqs.~3! and~33!. Substitution of the trial
potentialw52Ē–x into the variational principle of Eq.~3!
gives the upper bound

U1~Ē!5umWm~Ē!1upS Wp~Ē!1
a

a
uĒu2D . ~36!

Hereup andum denote the volume fraction of the matrix an
particle phase, respectively.

A lower bound on the macroscopic energy is obtained
finding an upper bound forW̃* ( j̄ ). For any choice ofj̄ ,
convex duality implies that

W̃~Ē!> j̄ –Ē2W̃* ~ j̄ !, ~37!

so for any upper boundU* 1( j̄ ) on the dual energyW̃* ( j̄ )
we have a lower bound on the macroscopic energy given

W̃~Ē!> j̄ –Ē2U* 1~ j̄ !. ~38!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Substitution of the trial current

¤̂5H j̄ , in the matrix,

j̄ 1h, in the particles,
~39!

gives the upper bound

U* 1~ j̄ !5umWm* ~ j̄ !1upWp* ~ j̄ 1h!

1
1

uQu EG

1

2a
u¹s$Ds

21~h–n!%u2ds. ~40!

For a sphere of radiusa one finds that Ds
21(h–n)

52a2/2h–n and calculation gives

U* 1~ j̄ !5umWm* ~ j̄ !1upS Wp* ~ j̄ 1h!1
a

4a
uhu2D . ~41!

We set j̄ 5DWm(Ē) and h5DWp(Ē)2DWm(Ē) in Eq.
~41!; and a straightforward calculation delivers the low
boundU2(Ē) on the macroscopic energy given by

U2~Ē!5umWm~Ē!1upWp~Ē!1up@DWm~Ē!–Ē#

2up@DWp~Ē!–Ē#2up

a

4a
uDWp~Ē!2DWm~Ē!u2.

~42!

Inspection of Eqs.~36! and ~42! shows that the upper an
lower bounds touch when

0524uĒu214
a

a
~Hm8 ~ uĒu!2Hp8~ uĒu!!uĒu

2S a

a D 2

uHm8 ~ uĒu!2Hp8~ uĒu!u2. ~43!

It is evident that Eq.~43! holds whenHm8 (uĒu)2Hp8(uĒu)
.0 and a

a satisfies Eq.~12!. Strict convexity of the energy
densities of each phase insure thatw52Ē•x is the unique
minimizer of the variational principle of Eq.~3! when a

a sat-
isfies Eq.~12!. Last, it is easily calculated that the overa
current density is given byDWm(Ē).

Figure 1 shows upper and lower bounds on the mac

FIG. 1. Tight upper and lower bounds on the macroscopic potential en
for a random, nonlinear, particle reinforced composite with highly condu
ing interface.
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scopic potential energy for a random, particle reinforc
composite. The composite is comprised of two conduct
with cubic nonlinear behavior, namelyDWm(E)5gmuEu2E
andDWp(E)5gpuEu2E. The bounds on the macroscopic p
tential energy density are normalized with respect to the m
trix potential energy density given bygmuEu4/4. The bounds
are plotted for a random dispersion of particles of radiusa
520mm occupying a volume fraction of 0.2. The dime
sionless ratiogp /gm is set to 0.1, and the combinatio
a/agm is chosen to be 450 000~v/m!2. The critical field
strength for which the electric potential in the composite
the same as an unreinforced sample is 1000 v/m.

For the contact resistance case we perform a sim
analysis. However our analysis now delivers bounds for
dual macroscopic energyC̃* . An upper bound onC̃* fol-
lows from substitution of the trial fieldj̄ into the variational
principle of Eq.~35!. It is given by

U
*

1~ j̄ !5umW
*

m~ j̄ !1upS W
*

p~ j̄ !1
1

2ba
u j̄ u2D . ~44!

A lower bound onC̃* is obtained by finding an upper boun
for C̃(Ē). For any upper boundU1(Ē) on the energyC̃(Ē)
we have the lower bound given by

C̃* ~ j̄ !>U
* 2~ j̄ !5 j̄ –Ē2U1~Ē!. ~45!

Substitution of the trial field

f5H @DW
*

m~ j̄ !#–x, in the matrix,

@DW
*

p~ j̄ !#–x, in the particles,
~46!

into the variational principle forC̃(Ē) delivers the lower
bound

U
* 2~ j̄ !5umW

*
m~ j̄ !1upW

*
p~ j̄ !1up@DW

*
m~ j̄ !–j̄ #

2up@DW
*

p~ j̄ !–j̄ #2up

ab
2 uDW

*
p~ j̄ !2DW

*
m~ j̄ !u2.

~47!

The cloaking effect for the contact resistance case follo

immediately from the condition thatU* 2( j̄ )5U* 1( j̄ ) and the
identities:

DW
*

m~ j̄ !5~Hm8 !21~ u j̄ u!
j̄

u j̄ u
,

~48!

DW
*

p~ j̄ !5~Hp8!21~ u j̄ u!
j̄

u j̄ u
.

Figure 2 shows upper and lower bounds on the d
macroscopic potential energy for a random, particle re
forced composite. The composite is comprised of two c
ductors with cubic nonlinear behavior, namelyDWm(E)
5gmuEu2E andDWp(E)5gpuEu2E. The bounds on the mac
roscopic potential energy density are normalized with resp
to the dual matrix potential energy density given
3gm

21/3u j u4/3/4. The bounds are plotted for a random disp
sion of particles of radiusa520mm occupying a volume
fraction of 0.2. The dimensionless ratiogp /gm is set to 8.0,
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and the combinationab/gp
1/3 is chosen to be 9~A/m2!2/3. The

critical field strength for which the current density in th
composite is the same as an unreinforced sample is 27 A2.

V. VARIATIONAL PRINCIPLES FOR DUAL
MACROSCOPIC ENERGIES

Last, the variational principles for the convex duals
the macroscopic energies are established. We provide
analysis for the highly conducting interface case—a sim
analysis delivers variational principles for the dual mac
scopic energy in the presence of interface contact resista
Application of convex duality to the bulk and surface en
gies gives

W̃~Ẽ!> inf
EPK

H 1

uQu EQ
@ ¤̂~x!–E~x!#2W* @ ¤̂~x!,x#dx

1
1

uQu EG
@vtan~x!–Etan~x!#2Ws* @vtan~x!#dsJ .

~49!

In order that the infimum be greater than2`, integration by
parts shows that the fieldsĵ andv must satisfy,

div ¤̂50, in Q/G,

E
G i

~ ¤̂p2 ¤̂m!–nds50, ~50!

and

~ ¤̂p2 ¤̂m!–n5divs vtan1~v–n!J, on G.

Here divs is the surface divergence operator andJ
52divsn is the mean curvature on the interface. Applic
tion of these identies gives

W̃~Ē!> ¤̄̂–Ē2H 1

uQu EQ
W* @ ¤̂~x!,x#dx

2
1

uQu EG
Ws* @vtan~x!#dsJ , ~51!

FIG. 2. Tight upper and lower bounds on the dual macroscopic pote
energy for a random, nonlinear, particle reinforced composite in the p
ence of interface contact resistance.
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where ¤̄̂ is the average of¤̂ given by

¤̄̂5
1

uQu E]Q
¤̂–nx ds. ~52!

Among all ¤̂ andv satisfying Eq.~50! we consider only trial
fields v of the special formv5¹sg and set

Ŵ~ ¤̄̂!5 inf
~ ¤̂,v5¹sg!

1

uQu H EQ
W* @ ¤̂~x!,x#dx

1E
G
Ws* ~¹sg!dsJ . ~53!

It is evident that for this choice (¤̂p2 ĵm)•n5Dsg. It follows
from Eq. ~51! that

W̃~Ē!> ¤̄̂–Ē2Ŵ~ ¤̄̂!. ~54!

The convexity ofŴ follows from standard arguments. Th
inequality given by Eq.~54! impliesW̃(Ē)>Ŵ* (Ē). On the
other hand one easily checks thatW̃(Ē)5Ŵ* (Ē) for the
choice ĵ5DWm(2¹f), in the matrix,¤̂5DWp(2¹f), in
the particles andv52¹sf, wheref is the electric potential
in the composite. We conclude from the convexity ofŴ that
W̃* ( ¤̄̂)5Ŵ( ¤̄̂) and the variational principle follows.
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