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Optimal bounds on electric-field fluctuations for random composites
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The electric field inside a two-phase composite is studied when the composite sample is subjected
to a constant applied electric field. Upper and lower bounds on the covariance tensor of the electric
field are found in terms of the effective dielectric properties of the composite. The lower bounds are
shown to be optimal for two well-known families of microgeometries. Lower bounds on the
covariance tensor are found when only the phase area fractions and the two-point correlation
function are available. For statistically isotropic composites optimal lower bounds are derived when
only the phase area fractions are known. ©2000 American Institute of Physics.
@S0021-8979~00!02920-0#
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I. INTRODUCTION

It is important to understand the behavior of the loc
electric field in composite materials as regions contain
high fields are most often the first to suffer damage dur
service. The higher moments of the electric field prov
information on the variation of the local electric field that
not revealed by the effective properties of the compos
Unfortunately, higher moments of the local electric field ca
not be obtained directly through simple boundary measu
ments. However, effective properties can be easily meas
by subjecting a composite sample to a uniform electric fi
and measuring the current passing through the boundar
the sample. In this work, we develop bounds on the cov
ance tensor of the electric field in terms of the effective
electric constant. We exhibit microstructures for which the
bounds are optimal. These bounds are used to rec
bounds on the covariance tensor when only the phase
fractions and the two-point correlation function are availab
For isotropic composites, we obtain a lower bound that is
most restrictive one in terms the area fraction occupied
each phase. The method introduced here relies on the ex
computation of the convex hull of a curve.

To fix ideas, we consider the two-dimensional proble
for which the composite is made from long parallel cylinde
with dielectric constantse1 and e2 . We suppose that the
cylinders are parallel to thee3 axis and that the composite
periodic in the plane transverse to the cylinders with per
cell V. Aside from periodicity, we make no assumption
the configuration of the two dielectrics inside the period. T
dielectric constant for the composite is writtene(x) taking
valuese1 in phase one ande2 in phase two. The composite i
subjected to a constant electric fieldĒ with Ē350 and non-
zero components in the transverse plane. The local ele
field E is decomposed into a periodic fluctuation¹w and the
constant fieldĒ and is writtenE5¹w1Ē or ¹w5E2Ē.
The electric displacementD is related to the electric field by
D5e(x)E and

a!Electronic mail: lipton@wpi.edu
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div D50. ~1!

We denote the local field induced by a uniform applied fie
ei along theith coordinate direction byEi , where uei u51,
i 51,2, and the covariance tensors is defined by

s i j 5
1

V E
V

~Ei2ei !•~Ej2ej !dx, ~2!

where V is the area of the period cellV. We write Ē
5e1Ē11e2Ē2 and the mean-square fluctuation in the loc
field due to the applied fieldĒ is given by

1

V E
V

~E2Ē!•~E2Ē!dx5s i j Ēi Ē j , ~3!

where repeated indices indicate summation. The effective
electric tensor is given by

e i j
e 5

1

V E
V

e~x!Ei
•ejdx. ~4!

The area fraction of each phase is denoted byu1 and u2 ,
where u11u251. Without loss of generality, we suppos
that e2.e1 and define the contrastl to be the aspect ratio
e2 /e1 . We seth51/(l21). In earlier work1 optimal bounds
on the mean-square fluctuation were obtained in terms of
area fractions of the phases. For every vectorĒ the bounds
are given by

0<s i j Ēi Ē j<U~u2 ,Ē!, ~5!

whereU(u2 ,Ē) depends upon the contrastl and is given by

U~u2 ,Ē!5„u2f ~12u2!…uĒu2, for h>1, ~6!

and forh<1,

U~u2 ,Ē!5H „u2f ~h!…uĒu2, if u2<12h,

„u2f ~12u2!…uĒu2 if u2>12h.
~7!

Here, the functionf (z) is defined by

f ~z!5
z

~h1z!2 . ~8!
7 © 2000 American Institute of Physics
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Extremal sequences of configurations that attain the bou
are shown to be given by the well-known finite-rank lamin
microstructures.1 The lower bound is attained by laminate
of the first rank with layers oriented parallel to the appli
field. On the other hand, the upper bound is saturated
laminates of first or second rank depending on the magnit
of the contrast. We mention that these bounds are establi
for three-dimensional problems as well in Ref. 1.

In this work, we extend the analysis to obtain bounds
the covariance tensor when in addition to knowing the a
fractions of the phases we know two-point correlation inf
mation on the microgeometry and we can measure the e
tive dielectric constant. We introduce a method for obtain
bounds that is based upon the computation of the convex
of a suitable curve. For completeness, we apply this met
to recover the bounds~5!, ~6!, and~7!. The indicator function
of phase two is denoted byx2 , taking the value one in phas
two and zero outside. Following Willis2 we introduce the
tensorT that measures the local anisotropy of the compo
defined by

Til 5 (
kÞ0

kikl

uku2

1

V E
V

e2p ik•tcbb~ t!dt. ~9!

Here,k is a wave vector in Fourier space andcbb(t) is the
two-point correlation,

cbb~ t!5
1

V E
V

x2~x1t!x2~x!dx.

This function gives the probability that the ends of a rod
length and orientation described by the vectort lies in phase
two. The average of the two dielectric constants is written
^e&5u1e11u2e2 . We choose our coordinate system so th
e1 ande2 are unit eigenvectors for the covariance tensor a
the lower bound is given by

s>
„^e&2~eee1

•e1!…2

~e22e1!2~Te1
•e1!

e1
^ e1

1
„^e&2~eee2

•e2!…2

~e22e1!2~Te2
•e2!

e2
^ e2, ~10!

where the inequality holds in the sense of quadratic for
andei

^ ei is the matrix given byek
i el

i . In Sec. IV, we exhibit
two well-known classes of microstructures for which th
lower bound holds with equality. In order to write the upp
bound we setlk

e5eeek
•ek, for k51,2, andtk5Tek

•ek, for
k51,2 and the upper bound is given by

s<a1e1
^ e11a2e2

^ e2, ~11!

where

ak5~lk
e2e1!S 1

e1
2

1

e2
D1

u2
2e1e2

~u22tk!~e22e1!2

3S lk
e2e1

u2e1
2

e22e1

e2
D 2

, k51,2. ~12!

Lower bounds on the covariance tensor can be obtaine
terms of the two-point correlation function and area fractio
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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of the phases. To do this, we employ the anisotropic up
bounds on the effective dielectric constant3 given by

ee<ē, ~13!

where

ē5e2I 2u1~e22e1!S I 2
e22e1

e2u1
TD 21

. ~14!

Here,I is the 232 identity matrix. As before, the inequalit
given in Eq.~13! holds in the sense of quadratic forms a
substitution into Eq.~10! gives the lower bound

s>
„^e&2~ ēe1

•e1!…2

~e22e1!2~Te1
•e1!

e1
^ e1

1
„^e&2~ ēe2

•e2!…2

~e22e1!2~Te2
•e2!

e2
^ e2. ~15!

When the composite is statistically isotropicē reduces to the
Hashin and Shtrikman~HS! upper bound on effective prop
erties given byē5I eHS, where

eHS5e22~12u2!S 1

e22e1
2

u2

2e2
D 21

, ~16!

T5I @u2(12u2)/2#, and the lower bound on the covarianc
tensor becomes

s>I
2~^e&2eHS!2

~e22e1!2u2~12u2!
. ~17!

This bound is shown to be the most restrictive one that
be obtained in terms of area fractions and the dielectric c
stants of the two materials. This is shown in Sec. IV.

Related earlier work includes bounds for the mea
square fluctuation of the electric field given in the work
Beran.4 More recently, bounds on the mean-square fluct
tion inside each phase have been developed in Ref. 5.
point out that our results apply to the mathematically ana
gous cases of field fluctuations in steady-state heat trans
dc electric conductivity, and diffusion problems. The me
ods developed here apply to higher-dimensional proble
Moreover, these methods can be used to generate boun
terms of higher-order correlation functions that partially d
scribe the composite geometry. These topics are purs
elsewhere.

II. INTEGRAL REPRESENTATION FORMULA FOR
THE COVARIANCE TENSOR

The bounds follow from an integral representation fo
mula for the covariance tensor. Such a formula was int
duced for the effective dielectric constant in the work
Bergman.6 Here, we write the formula for the effective d
electric constant in the form subsequently developed
Golden and Papanicolaou7 given by

~ee2e1I !/e15E
0

1

f e~z!dm i j ~z!, ~18!

where f e(z)51/(h1z) and the matrix valued measurem i j

on @0,1# is the spectral measure of the self-adjoint opera
G5Px2 where P5¹(D)21¹. Here,m i j Ēi Ē j>0 for every
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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vector Ē. In this section, we follow the scattering theo
approach of Refs. 6, 7, and 8 to obtain the representa
formula for the covariance given by

s5E
0

1

f ~z!dm i j ~z!

5~ee2e1I !/e12hE
0

1 1

~h1z!2 dm i j ~z!. ~19!

This formula has been reported earlier in Ref. 1.
To expedite the presentation, we rewrite the local diel

tric constante~x! as a positive perturbation from the unifor
state e1 , i.e., e(x)5e11(e22e1)x2 and E5¹w1Ē. Ex-
pandinge~x! in Eq. ~1! gives

2e1Dw5div„~e22e1!x2~¹w1Ē!…. ~20!

Dividing both sides bye1 , applying (D)21 to both sides, and
manipulation gives

¹w1Ē1P@~l21!x2~¹w1Ē!#5Ē, ~21!

or

@ I1~l21!G#E5Ē, ~22!

from which we obtain the desired expression

E5@ I1~l21!G#21Ē. ~23!

Next, we writeee in the equivalent from

eeĒ•Ē5
1

V E
V

e~x!E•Edx. ~24!

Expandinge~x! as e(x)5e11x2(e22e1) and substitution
into Eq. ~24! gives

eeĒ•Ē5
1

V E
V

e1uEu2dx1
~e22e1!

V E
V

x2uEu2dx. ~25!

Rearranging terms gives the formula

1

V E
V

uEu2dx5
eeĒ•Ē

e1
2

~l21!

V E
V

x2uEu2dx, ~26!

and

1

V E
V

uEu2dx5
1

V E
V

u¹w1Ēu2dx

5
1

V E
V

uE2Ēu2dx1uĒu2. ~27!

Combining Eqs.~26! and ~27! gives

s i j Ēi Ē j5
~ee2e1I !Ē•Ē

e1
2

~l21!

V E
V

x2uEu2dx. ~28!

To get the representation we appeal to spectral theory.
any two periodic square integrable vector fields we write
in Ref. 8,

^h,c&5
1

V E
V

x2~h•c!dx.
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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Here ^h,c& is an inner product for the Hilbert space of pe
odic square integrable vector fields. Substitution of Eq.~23!
into Eq. ~28! gives

s i j Ēi Ē j5
~ee2e1I !Ē•Ē

e1
2~l21!

3^@ I1~l21!G#21Ē, @ I1~l21!G#21Ē&.

~29!

It is easily seen thatG is a positive symmetric operator wit
norm less than or equal to 1. Spectral theory delivers
spectral familyR(z) associated withG for which ^R(z)ei ,ej&
is a function of bounded variation on@0,1#. The spectral
measurem i j is given bym i j (0,z#[m i j (z)5^R(z)ei ,ej& and

^@ I1~l21!G#21Ē, @ I1~l21!G#21Ē&

5E
0

1 1

~11z~l21!!2 dm i j ~z!Ēi Ēj . ~30!

Collecting these results gives the integral representa
formula ~19!.

III. BOUNDS ON THE COVARIANCE TENSOR

Choosing the coordinate system such thate1,e2 are unit
eigenvectors for the covariance tensor, the covariance te
is given by

s5(
i 51

2 S ~ee2e1I !

e1
ei
•ei2hE

0

1 1

~h1z!2 dn i~z! D ei
^ ei ,

~31!

wheren i , i 51,2 are the positive measures given byn i(z)
5m(z)ei

•ei. From perturbation theory we obtain, as in Re
7 the constraints on the moments ofn i given by

u25E
0

1

1dn i~z!, i 51,2,

~32!

^Gx2ei ,ei&5E
0

1

zdn i~z!, i 51,2.

The last constraint that we consider is the one given by
representation formula for the effective dielectric consta
i.e.,

~ee2e1I !

e1
ei
•ei5E

0

1 1

h1z
dn i~z!, i 51,2. ~33!

It is well known that Fourier expansion gives^Gx2ei ,ei&
5Tei

•ei , where T is given by formula ~9!. It is easily
checked thatT is positive semidefinite with eigenvalues
the interval @0,u2(12u2# and trace$T%5u2(12u2). Intro-
ducing the probability measures defined byu2pi5n i , the
lower bound on the covariance tensor is written as

s>(
i 51

2 S ~ee2e1I !

e1
ei
•ei

2u2h sup
~piPAi !

E
0

1 1

~h1z!2 dpi~z!D ei
^ ei , ~34!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where the admissible set of probability measures are th
with moments given by

Ai55 m1
i [

Tei
•ei

u2
5E

0

1

zdpi~z!, i 51,2,

m2
i [

~ee2e1I !

u2e1
ei
•ei5E

0

1 1

h1z
dpi~z!, i 51,2.

~35!

It is clear that an upper bound is obtained in a similar way
taking the infimum over all probability measures inAi . To
compute bounds, we consider the curveC given by „z,1/(h
1z),1/(h1z)2

… with curve parameter 0<z<1. The convex
hull of this curve is given by the set of points (c1 ,c2 ,c3)
generated by the moments

c15E
0

1

zdp~z!,

c25E
0

1 1

h1z
dp~z!, ~36!

c35E
0

1 1

~h1z!2 dp~z!,

as one traverses the set of all probability measuresp defined
on @0,1#. We write cI 5(c1 ,c2 ,c3) and denote this set o
points byco$C% and the lower bound becomes

s>u2(
i 51

2 S ~ee2e1I !

e1
ei
•ei2u2h sup

cPco$C%
c15m1

i ,c25m2
i

$c3%D ei
^ ei .

~37!

Thus, to compute the lower bound~and the upper bound! we
obtain an explicit representation of the convex hullco$C%
and maximize~minimize! c3 over it with c15m1

i and c2

5m2
i , i 51,2. Computation of the convex hull follows from

standard methods9 and is given by all pointscI satisfying the
inequalities

c2

h11
1

S c22
1

h11D 2

12
c11h

h11

<c3<
c2

h
2

S 1

h
2c2D 2

c11h

h
21

,

and

0<c1<1. ~38!

Application of the elementary boundŝe21&21<eeei
•ei

<^e& gives

1

h11
<

1

h112u2
<c2<

1

h
. ~39!

The supremum in Eq.~37! is obtained by settingc15m1
i and

c25m2
i , i 51,2 in the right-most inequality of Eq.~38! and

the lower bound given by Eq.~10! is obtained. Similar argu-
ments using the left-most inequality in Eq.~38! deliver the
upper bound~11!. For completeness, the computation
co$C% is given in the Appendix.
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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Next, we apply the method developed in this article
recover the lower bounds~5!, ~6!, and~7!. We observe from
Eq. ~19! that the representation formula for the mean-squ
fluctuation can be written as

s i j Ēi Ē j5~e i j
e 2e1I i j !/e1Ēi Ēj

2S hE
0

1 1

~h1z!2 dn~z! D uĒu2. ~40!

Here, n is the measure given byn(z)5me•e where e
5Ē/uĒu. We substitute for (e i j

e 2e1I i j )/e1Ēi Ēj using the
identity

~e i j
e 2e1I i j !/e1Ēi Ēj5S E

0

1 1

h1z
dn~z! D uĒu2, ~41!

to obtain

s i j Ēi Ē j5S E
0

1 z

~h1z!2 dn~z! D uĒu2. ~42!

The constraints onn follow from Eq. ~32! and are given by

u25E
0

1

1dn~z!,

~43!

t̄5E
0

1

zdn~z!,

where 0< t̄<u2(12u2). We introduce the probability mea
sure p(z) defined byu2p(z)5n(z) and the bounds on the
mean-square fluctuation are given by

inf
~pPA!

u2S E
0

1 z

~h1z!2 dp~z! D uĒu2

<s i j Ēi Ē j< sup
~pPA!

u2S E
0

1 z

~h1z!2 dp~z! D uĒu2, ~44!

where the admissible classA of probability measures are
those with first momentz̄5*0

1zdp(z) that satisfy 0< z̄<(1
2u2). To compute these bounds we are lead as befor
consider the convex hull a curve. Here, the curve is given
„z,z/(h1z)2

… for 0<z<1. Its convex hull is given by all
points (b1 ,b2) described by

b15E
0

1

zdp~z!,

~45!

b25E
0

1 z

~h1z!2 dp~z!,

asp traverses over all probability measures. This is seen
be the convex hull of the graph of the functionf (z)5z/(h
1z)2 over the z axis on 0<z<1. The function f (z) is
strictly positive on 0,z,` with f (0)50 and limz→` f (z)
50. Moreover,f (z) has a global maximum over@0,̀ ! at z
5h, with f 8(z)>0 for z<h and f 8(z)<0 for z>h. Sincef
is strictly positive except forz50, we choosepPA of the
form p(z)5d(z) and we obtain the desired lower boun
given by 0. Forh>(12u2), one readily checks thatb2

<b1 /(h1b1)2 for all points (b1 ,b2) in the convex hull for
which b1<(12u2). Thus, *0

1f (z)dp(z)< f ( z̄)< f (12u2).
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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For this case, one choosesp(z)5d„z2(12u2)…, and the
upper bounds given by Eq.~6! and the second equation i
Eq. ~7! are obtained. Whenh<(12u2) it is evident that
b2< f (h) for all b1 in @0,12u2#. Thus, the optimal measur
p5d(z2h) is chosen and the upper bound given by the fi
equation in Eqs.~7! is obtained.

IV. LAYERED MICROSTRUCTURES AND OPTIMAL
LOWER BOUNDS

In this section, we establish optimality for the low
bounds presented in the Introduction. To do this, we prov
explicit formulas for the limit of the covariance tensors for
class of of layered materials. These layered materials exh
fine structure on two scales and are commonly known
‘‘finite-rank laminar microstructures,’’ see Fig. 1. We intro
duce the length scale ‘‘l,’’ characterizing the scale of the
microstructure and examine the limiting behavior asl tends
to zero. The layered material is described in a hierarch
way. We start by layeringe2 with e1 in the proportions
l 2(12r2) and l 2r2 , respectively. The layer normals a
taken parallel to the direction specified by the unit vectorn2.
We then take the finely layered material and layer it w
materiale1 at the coarser length scalel. Here, the layer width
of the finely layered material isl (12r1) and the layers of
material e1 are of width lr1 . The layer direction of the
coarse layers is given by the unit vectorn1. For future ref-
erence, we call this structure a rank 2 laminate with core
material 2. For fixedl we denote the electric field byEl and
the associated covariance tensor bysI l . The first goal is to
provide an explicit formula forsI 5 lim l→0sI l . From homog-
enization theory,10 the electric fieldEl admits the decompo
sition

El5PlĒ1zl ,

where the matrixPl is called the corrector matrix andzl

→0 strongly in mean square.
To expedite the presentation, we introduce character

functions to describe the layer geometry. We letx1(t) be the
periodic function on@0,1# such thatx151 for 0<t<r1 and
x150 elsewhere. Similarly, we letx2(t) be the periodic
function on @0,1# such thatx251 for 0<t<r2 and x250
elsewhere. Then, the layers at the scalel are described by
x1,l5x1(n1

•x/ l 1) and the layers at scalel 2 are described by
x2,l5x2(n2

•x/ l 2). We focus now only on laminates wit
layering directionsn1 and n2 orthogonal to each other. W
apply theorem 2.1 of Briane11 and a straightforward calcula
tion shows that the correctors are of the form

FIG. 1. Laminate of second rank.
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Pl5x1,lP11~12x1,l !@x2,lP21~12x2,l !P3#, ~46!

where the constant matricesP1, P2, andP3 are given by

P15I1~12r1!S ~12r2!~l21!

~12r1~12r2!1r1~12r2!l Dn1
^ n1,

~47!

P25I2r1S ~12r2!~l21!

~12r1~12r2!1r1~12r2!l Dn1
^ n1

1~12r2!S l21

~12r2!1r2l Dn2
^ n2, ~48!

and

P35I2r1S ~12r2!~l21!

~12r1~12r2!1r1~12r2!l Dn1
^ n1

2r2S l21

~12r2!1r2l Dn2
^ n2, ~49!

where I is the 232 identity andn1
^ n1 and n2

^ n2 are the
rank one matricesni

1nj
1 andni

2nj
2, respectively.

For l fixed, the covariance matrix is written

sI i j
l 5

1

V E
V

~El ,i2ei !•~El , j2ej !dx, ~50!

whereEl ,i is the local electric field induced by the consta
applied fieldei . And El ,i5Plei1zl ,i wherezl ,i goes to zero
in mean square. Next, we observe that because of the s
ration of scales, the sequence (1/V)*Vx1,lx2,ldx converges
to the productr1r2 and that the total area fraction of thee2

phase is given byu25(12r1)(12r2). Collecting results
and taking limits gives

lim
e→0

sI i j
l 5sI i j , ~51!

where the matrixsI i j is given by

sI i j 5E
0

1

f ~z!mI i j ~dz!, ~52!

where

mI ~dz!5@u2d„z2r1~12r2!…n1
^ n1

1u2d~z2r2!n2
^ n2#dz, ~53!

and f (z) is given by Eq.~8!. We also consider the phase
interchanged second rank laminate. Here, material 1 is
ered with material 2 at the smallest scale and this structur
layered at the next largest scale with material 2. For t
construction, the relative width of thee1 layers is 12r2 and
the relative with of the layer containing the layers ofe1

material is 12r1 . Here, the total area fraction of material
in the composite isu25r11(12r1)r2 . For future refer-
ence, we call this structure a rank 2 laminate with a core
material 1. The associated covariance tensor at fixedl is
written s̄ i j

l . A calculation identical to the previous on
shows that liml→0s̄ i j

l 5s̄ i j , where

s̄ i j 5E
0

1

f̃ ~z!m̄ i j ~dz!, ~54!
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where

m̄~dz!5@~12u2!d„z2r1~12r2!…n1
^ n1

1~12u2!d~z2r2!n2
^ n2#dz, ~55!

and

f̃ ~z!5
z

S z1
1

~1/l!21D 2 . ~56!

Next, we show thatsI i j and s̄ i j attain the lower bound~10!.
This requires thatsI i j and s̄ i j be restated in terms of^e&, T,
and ee. In what follows, we do this to find that the lowe
bound~10! matches the formulas forsI i j and s̄ i j . To start,
we write the formulas for the well-known effective tensors
rank 2 laminates. The effective property for a rank 2 lam
nate with a core of material 212 is given by

eI 5e1I 1e1E
0

1 1

h1z
dmI 5e1I 1e1u2S hI1

1

u2
TI D 21

,

~57!

with

E
0

1

zdmI 5TI 5u2r1~12r2!n1
^ n11u2r2n2

^ n2. ~58!

Similarly, the effective property of a rank 2 laminate with
core of material 1 is given by

ē5e1I 1e1E
0

1 1

h1z
dm̄

5e2I 2u1e2S 1

~12l21!
I 2

1

u1
T̄D 21

~59!

and

E
0

1

zdm̄5T̄5~12u2!r1~12r2!n1
^ n1

1~12u2!r2n2
^ n2. ~60!

A straightforward substitution of these formulas into the fo
mulas forsI and s̄ gives the required identities

sI 5
„^e&2~eI n1

•n1!…2

~e22e1!2~TI n1
•n1!

n1
^ n1

1
„^e&2~eI n2

•n2!…2

~e22e1!2~TI n2
•n2!

n2
^ n2 ~61!

and

s̄5
„^e&2~ ēn1

•n1!…2

~e22e1!2~ T̄n1
•n1!

n1
^ n1

1
„^e&2~ ēn2

•n2!…2

~e22e1!2~ T̄n2
•n2!

n2
^ n2. ~62!

We conclude by showing that the lower bound given by E
~17! is the most restrictive for statistically isotropic compo
ites when only the phase area fractions are known. We c
sider a rank 2 laminate with material 1 as the core. Selec
r1 andr2 such thatr1(12r2)5u2/2 andr25u2/2, we ob-
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
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.

n-
g

tain a composite with an isotropic effective dielectric co
stant given byē5eHSI , T̄5@u2(12u2)/2#I , and the cova-
riance tensor is

s̄5I
2~^e&2eHS!2

~e22e1!2u2~12u2!
. ~63!

It now follows that the bound~17! is the best possible given
the phase area fractions and the dielectric constants of
phase.

ACKNOWLEDGMENTS

This research effort is sponsored by the NSF throu
Grant No. DMS-9700638 and by the Air Force Office
Scientific Research, Air Force Materiel Command, USA
under Grant No. F49620-99-1-0009. The U.S. Governmen
authorized to reproduce and distribute reprints for gove
mental purposes notwithstanding any copyright notat
thereon. The views and conclusions contained herein
those of the author and should not be interpreted as ne
sarily representing the official policies or endorsements,
ther expressed or implied of the Air Force Office of Scie
tific Research or the U.S. Government.

APPENDIX

We outline the set of calculations for the derivation
the convex hullco$C% of the curve C given by @z,1/(h
1z),1/(h1z)2# with curve parameter 0<z<1. In order to
bring out the underlying geometry of the problem, we re
arametrize the curve settingz5t212h and the curve is
given by (t21,t,t2)2(h,0,0) with a<t<b, wherea51/(h
11) andb51/h. The convex hull given by Eq.~36! is writ-
ten

c15E
a

b

t21dp̃~ t !2h,

c25E
a

b

tdp̃~ t !, ~A1!

c35E
0

1

t2dp̃~ t !,

where p̃ traverses all probability measures defined on
interval @a,b#. Writing b15*a

bt21dp̃(t), b25*a
bt1dp̃(t),

and b35*a
bt2dp̃(t), we havec15b12h, c25b2 , and c3

5b3 . The formula for the convex hullco$C% follows from
an explicit formula for the convex hull of the curv
(t21,t,t2), a<t<b. We follow standard procedure and fir
compute the conic hull of the curve (1,t21,t,t2) for a<t
<b given by the set of points (b0 ,b1 ,b2 ,b3) generated by
the moments

b05E
a

b

1dm~ t !, b15E
a

b

t21dm~ t !,

~A2!~A2!

b25E
a

b

tdm~ t !, b35E
a

b

t2dm~ t !,

wherem traverses the set of all positive measures defined
@a,b#. The convex hull is recovered by taking the interse
P license or copyright, see http://jap.aip.org/jap/copyright.jsp
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tion of the conic hull with the hyperplane~1,0,0,0!. Follow-
ing Ref. 9 the dual cone to the curve (1,t21,t,t2), a<t<b
is given by the set of all non-negative polynomialsq(t)
5a01a21t211a1t1a2t2 on @a,b#. Noting that
(1,t21,t,t2)5t21(t,1,t2,t3), we observe thatq(t)5t21r (t)
where r (t)5a0t1a211a1t21a2t3, thus the set of vectors
of coefficients (a0 ,a21 ,a1 ,a2) corresponding to all non
negative polynomialsq(t) is precisely the one correspondin
to all non-negative polynomialsr (t). Thus, from the result
of Markov and Luka´cs, given in Ref. 9, all non-negativ
polynomials of the formq(t) on @a,b# are given by

q~ t !5x0
2~12at21!12x0x1~ t2a!1x1

2~ t22at!

1y0
2~bt2121!12y0y1~b2t !1y1

2~bt2t2!,

~A3!

where (x0 ,x1) and (y0 ,y1) are any two pairs of real num
bers. The theory for the moment problem~see Ref. 9, Chap
3! together with Eq.~A3! shows that the conic hull of the
curve (1,t21,t,t2), a<t<b is given by all (b0 ,b1 ,b2 ,b3)
for which the quadratic forms

x0
2~b02ab1!12x0x1~b22ab0!1x1

2~b32ab2!>0,
~A4!

y0
2~bb12b0!12y0y1~bb02b2!1y1

2~bb22b3!>0,

are non-negative. This is equivalent to the constraints on
matrices of the quadratic forms given by

detS b32ab2 b22ab0

b22ab0 b02ab1
D>0, ~A5!
Downloaded 16 Mar 2005 to 128.103.60.225. Redistribution subject to AI
e

detS bb22b3 bb02b2

bb02b2 bb12b0
D>0, ~A6!

and the inequalities

b0>ab1 , b3>ab2 ,
~A7!

bb1>b0 , bb2>b3 .

We recover the formulas for the convex hull given in Sec.
@Eq. ~38!#, upon settingb051 and settingc11h5b1 , c2

5b2 , andc35b3 in Eqs.~A5!, ~A6!, and~A7!.
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