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Optimal bounds on electric-field fluctuations for random composites
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The electric field inside a two-phase composite is studied when the composite sample is subjected
to a constant applied electric field. Upper and lower bounds on the covariance tensor of the electric
field are found in terms of the effective dielectric properties of the composite. The lower bounds are
shown to be optimal for two well-known families of microgeometries. Lower bounds on the
covariance tensor are found when only the phase area fractions and the two-point correlation
function are available. For statistically isotropic composites optimal lower bounds are derived when
only the phase area fractions are known. 2800 American Institute of Physics.
[S0021-897€00)02920-7

I. INTRODUCTION divD=0. 1)

It is important to understand the behavior of the localVVe denote the local field induced by a uniform applied field

electric field in composite materials as regions containing® 2/0ng theith coordinate direction by', where|e[=1,

high fields are most often the first to suffer damage durind =12, @nd the covariance tenseris defined by

service. The higher moments of the electric field provide 1 o o

information on the variation of the local electric field thatis o=y, fQ(E'—e') -(E'—¢€)dx, 2

not revealed by the effective properties of the composite. .

Unfortunately, higher moments of the local electric field can-where V is the area of the period celll. We write E

not be obtained directly through simple boundary measure=gel'E, +€’E, and the mean-square fluctuation in the local

ments. However, effective properties can be easily measuregkld due to the applied fiel& is given by

by subjecting a composite sample to a uniform electric field

and measuring the current passing through the boundary _of lf (E—E)-(E—E)dx= UiEiE, 3)

the sample. In this work, we develop bounds on the covari- V Ja e

ance tensor of the electric field in terms of the effective di- - - . . .

electric constant. We exhibit microstructures for which theseWhere. repeateq |n<j|ces Indicate summation. The effective di-

. electric tensor is given by

bounds are optimal. These bounds are used to recover

bounds on the covariance tensor when only the phase area | 1 O

fractions and the two-point correlation function are available.  €ij ~y; fﬂ €(E'-edx. )

For isotropic composites, we obtain a lower bound that is the

most restrictive one in terms the area fraction occupied byrhe area fraction of each phase is denotedépyand 6,

each phase. The method introduced here relies on the expligithere 6;+ 6,=1. Without loss of generality, we suppose

computation of the convex hull of a curve. that e,> €, and define the contrast to be the aspect ratio
To fix ideas, we consider the two-dimensional problemez/€1. We seth=1/(\—1). In earlier work optimal bounds

for which the composite is made from long parallel cylinderson the mean-square fluctuation were obtained in terms of the

with dielectric constants; and e,. We suppose that the area fractions of the phases. For every ve@&dhe bounds

cylinders are parallel to the® axis and that the composite is are given by

periodic in the plane transverse to the cylinders with period P =

cell Q. Aside from periodicity, we make no assumption on OSUijE@gU(HZ’E)’ ®

the configuration of the two dielectrics inside the period. ThewhereU(6,,E) depends upon the contrastind is given by

dielectric constant for the composite is writtefx) taking — —

valuese, in phase one ané, in phase two. The composite is U(6,E)=(0,f(1~06,))[E[%, for h=1, (6)

subjected to a constant electric fidtdwith E;=0 and non- and forh<1,

zero components in the transverse plane. The local electric

field E is decomposed into a periodic fluctuati®ip and the U(o E): (6-f ()IE?, o if 6,<1-h, )
constant fieldE and is writtenE=V¢+E or Vo=E—E. 2 (02F (1= 6,))[E|>  if 6,=1—h.
The electric displacememm is related to the electric field by . . !
D= e(X)E and Here, the functiorf(z) is defined by

f(z)= z 8
3E|ectronic mail: lipton@wpi.edu (2)= (h+2)% ®)
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Extremal sequences of configurations that attain the boundsf the phases. To do this, we employ the anisotropic upper
are shown to be given by the well-known finite-rank laminarbounds on the effective dielectric constagiven by
microstructures. The lower bound is attained by laminates e— (13)

of the first rank with layers oriented parallel to the applied €=e
field. On the other hand, the upper bound is saturated bwhere

laminates of first or second rank depending on the magnitude € -1

of the contrast. We mention that these bounds are established e=e,l — 6;(e,— 61)( i T) ) (14

for three-dimensional problems as well in Ref. 1. €20,

In this work, we extend the analysis to obtain bounds orHere, | is the 2<2 identity matrix. As before, the inequality
the covariance tensor when in addition to knowing the aregjiven in Eq.(13) holds in the sense of quadratic forms and
fractions of the phases we know two-point correlation infor-substitution into Eq(10) gives the lower bound
mation on the microgeometry and we can measure the effec (< e)— (eet- eh))2

tive dielectric constant. We introduce a method for obtaining elgel
bounds that is based upon the computation of the convex hull (fz €)(Te™-eh)
of a suitable curve. For completeness, we apply this method (<6> (e€-?))?

to recover the bound$), (6), and(7). The indicator function 2T P
of phase two is denoted by, , taking the value one in phase (62 €)™ )
two and zero outside. Following Wilfiswe introduce the When the composite is statistically isotrogiceduces to the
tensorT that measures the local anisotropy of the compositdHashin and ShtrikmafHS) upper bound on effective prop-
defined by erties given bye=I¢e,g5, Where

kik; 1 . B 1 6\t
E 5 [k]Z V f e?M lepy(t)dt. 9 ens= €2~ (1= 0) 5| (16)

€,— €1 26

R, (15

T=I1[60,(1—-6,)/2], and the lower bound on the covariance
tensor becomes

2
1 =1 2(<€>2 €ns) . 17
Cbb(t):vfﬂXz(X+t)X2(X)dX- (€2—€1)°02(1—65)

This bound is shown to be the most restrictive one that can
This function gives the probability that the ends of a rod ofbe obtained in terms of area fractions and the dielectric con-
length and orientation described by the vedtties in phase stants of the two materials. This is shown in Sec. IV.
two. The average of the two dielectric constants is written as  Related earlier work includes bounds for the mean-
(€)= 6,€,+ 6,€,. We choose our coordinate system so thatsquare fluctuation of the electric field given in the work of
et andé? are unit eigenvectors for the covariance tensor anderan? More recently, bounds on the mean-square fluctua-

Here,k is a wave vector in Fourier space aogl(t) is the
two-point correlation,

the lower bound is given by tion inside each phase have been developed in Ref. 5. We
( eel. ol))2 point out that our results apply to the mathematically analo-
o= (€)—(e ) eleel gous cases of field fluctuations in steady-state heat transport,
(e,—€)%(Te'-e) dc electric conductivity, and diffusion problems. The meth-
(&)~ (e°€- ) ods developed here apply to higher-dimensional problems.
e, (10) Moreover, these methods can be used to generate bounds in

+ 2
(€2=€)*(Te &) terms of higher-order correlation functions that partially de-

where the inequality holds in the sense of quadratic formsSCribe the composite geometry. These topics are pursued
ande®¢€ is the matrix given byglg . In Sec. IV, we exhibit elsewhere.

two well-known classes of microstructures for which this

lower bound holds with equality. In order to write the upperll. INTEGRAL REPRESENTATION FORMULA FOR

bound we set =% &, for k=1,2, andt,=Te"- €, for ~ THE COVARIANCE TENSOR

k=1,2 and the upper bound is given by The bounds follow from an integral representation for-

o<alel®el+a’ef®e?, (11  mula for the covariance tensor. Such a formula was intro-
duced for the effective dielectric constant in the work of
where Bergmarf Here, we write the formula for the effective di-
2 electric constant in the form subsequently developed by
1 1 026162 . 6 .
K=(NE—€)| — —| + Golden and Papanicolaodgiven by
a'=(\g—€ = ——
2] (0=t )(€e2—€1) L
2 (Ee—fll)/‘fl:f f%(2)dwij(2), (18)
0

Ni—€, e,—€
(k L2 B k=12, (12)

0r€, €

where f®(z)=1/(h+2) and the matrix valued measuys;
Lower bounds on the covariance tensor can be obtained ian [0,1] is the spectral measure of the self-adjoint operator
terms of the two-point correlation function and area fractions’= Py, where P=V(A) 1V, Here, u;;E;E;=0 for every
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vector E. In this section, we follow the scattering theory Here(#,#) is an inner product for the Hilbert space of peri-
approach of Refs. 6, 7, and 8 to obtain the representationdic square integrable vector fields. Substitution of &3)

formula for the covariance given by

1
o= fo f(2)duij(2)

11
(e~ el)ley—h J.(h+zyduﬂ<a (19

This formula has been reported earlier in Ref. 1.

into Eq. (28) gives

o EE;= &_Zﬁ—()\ 1)
X([I+(A=DTTE, [I+(A—1)T] 'E).

(29
It is easily seen thdf is a positive symmetric operator with

To expedite the presentation, we rewrite the local dielechorm less than or equal to 1. Spectral theory delivers the
tric constante(x) as a positive perturbation from the uniform spectral familyR(z) associated with" for which (R(z)€,€’)

statee;, i.e., e(X)=e€;+(ex—
pandinge(x) in Eq. (1) gives

en)x2(Veo+E)). (20)

Dividing both sides by, applying (A) ~* to both sides, and
manipulation gives

El)XZ and E:VQD+ E. Ex-

— e Ap=div((e,—

Vo+E+P[(\=1)x2(Ve+E)]=E, (21)
or

[1+(A—1)T]E=E, (22)
from which we obtain the desired expression

E=[I+(\—1)T']"E. (23)
Next, we writee® in the equivalent from

CEE-— f €(x)E- Edx. (24)

Vo

Expanding e(x) as e(x)=e;+ xo(€ex—
into Eq. (24) gives

€;,) and substitution

—— 1 €>—€
eeE-Ezva 61|E|2dx+¥jQXZ|E|2dx. (25)

Rearranging terms gives the formula

1f "y _€EE (x—1)J "y 2
v Q| | X= € - vV QXZl | X, ( )
and
1 1 —
- 2qy= — 2
VL|E| dx VJQ|V¢+E| dx
1 — —
=—f |E—E|%dx+|E|2. (27)
Vo
Combining Eqgs(26) and(27) gives
—— (e~&E-E (A-1)
o EEj= 611 jﬂX2|E|2dX- (28)

To get the representation we appeal to spectral theory. For
any two periodic square integrable vector fields we write as

in Ref. 8,

1
<77,llf>=vfﬂ)(z(77-z/f)dx.

is a function of bounded variation of0,1]. The spectral
measurew;; is given by u;; (0,z]= uij(2) =(R(2)€,¢’) and

[1+(\-DTTE, [I+(\-1I] E)

1 1 _
:ﬁJTIﬂXrBFGMN@Eﬁr (30)

Collecting these results gives the integral representation
formula (19).

IlI. BOUNDS ON THE COVARIANCE TENSOR

Choosing the coordinate system such tila&? are unit
eigenvectors for the covariance tensor, the covariance tensor
is given by

_2 ( e_ell)e - hf i@ |dee,

(31)

wherev;, i=1,2 are the positive measures given fyz)
=u(z)€e- €. From perturbation theory we obtain, as in Ref.
7 the constraints on the momentsgfgiven by

€1

1
02:f 1d'Vi(Z), i:1,2,
0

L (32)
<FX2é,é>=f zdvi(z), i=1,2.
0

The last constraint that we consider is the one given by the
representation formula for the effective dielectric constant,
ie.,

(€° _61|)

o (33

.= f hT 2 ——dri(z), i=1.2.
It is well known that Fourier expansion gived x,€,€)
=Tée.€, where T is given by formula(9). It is easily
checked thafT is positive semidefinite with eigenvalues in
the interval[0,6,(1— 6,] and trac€T}=6,(1— 6,). Intro-
ducing the probability measures defined Byp'=v;, the
lower bound on the covariance tensor is written as

2 e
0'22 (Mé e

€1

—6h sup j—zdp(z) éxnd, (34

(p'eAh
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where the admissible set of probability measures are those Next, we apply the method developed in this article to

with moments given by
; Tée (1
mlE—:J Zd[j(Z),
b2

0

i_(ee—ell)é de 11 do
M= "4 © —fom p'(2),

i=1,2,

Al=

i=12.
(35

recover the lower bound$), (6), and(7). We observe from
Eqg. (19) that the representation formula for the mean-square
fluctuation can be written as

O-ijEiEj:(Eiej_Ellij)/ElEiEj

1 1 —

Itis clear that an upper bound is obtained in a similar way byHere, v is the measure given by(z)=pue-e where e

taking the infimum over all probability measures.it\. To

compute bounds, we consider the cut/given by (z,1/(h

+2),1/(h+2)?) with curve parameter € z<1. The convex
hull of this curve is given by the set of pointg,(,c,,C3)

generated by the moments

1
Cci1= jo zdp(z),

11

Cr= —
2 oh+Z

dp(2), (36)

11
C3= fo(h+—2)2dp(z)'

as one traverses the set of all probability measprésfined
on [0,1]. We write c=(cq,C5,Cc3) and denote this set of
points byco{C} and the lower bound becomes

z (e*—eql) . .
0=6,>, | ———¢€-d—6,h sup
i=1 €1 ceco{C}
cy=mj,co=m,

{cg) | €€,

(37

Thus, to compute the lower bouriand the upper boundve
obtain an explicit representation of the convex hudi{C}
and maximize(minimize) c; over it with c,=m) and c,

=m),, i=1,2. Computation of the convex hull follows from
standard methodsand is given by all points satisfying the
inequalities
1\2 1 2
c, (02— h+1 c, (H_CZ>
+ SCgs—— ———,
h+1 ci+h h cq+h 1
~ h+1 h
and
O0=c;=<1 (39

Application of the elementary boundée 1) '<ee. €
<(e) gives

1 1 1
< <Cy<+.
h+1 h+i—6, h

(39

The supremum in Eq37) is obtained by setting; =mj and
c,=m,, i=1,2in the right-most inequality of E¢38) and
the lower bound given by Eq10) is obtained. Similar argu-
ments using the left-most inequality in E(R8) deliver the

=E/|E|. We substitute for &;—eil;j)/e;E{E; using the
identity

- 11 —
(fiej_fllij)/flEiEj:(fomd”(z))“ﬂz, (41)
to obtain
- 1 7 J—
UiiEiEi:<fode(z)>|E|2- (42)

The constraints om follow from Eq. (32) and are given by

0,= folldy(z),

- (43
t= f zdv(2),

0
where O<t= 6,(1— 6,). We introduce the probability mea-

surep(z) defined by#,p(z)=v(z) and the bounds on the
mean-square fluctuation are given by

) 1 Z —
( |mj4)02( fomdp(Z))|E|2
pe

saijEEjs sup 6,
(peA)

(44)

1 Z -
fomzdp(z)>|E|2,
where the admissible clasd of probability measures are
those with first momenz= [3zdp(z) that satisfy G<z=(1
—65). To compute these bounds we are lead as before to
consider the convex hull a curve. Here, the curve is given by
(z,2/(h+2)?) for 0<z=<1. Its convex hull is given by all
points (b,,b,) described by

1
b= Jo zdp(z),

L (45)
b= fo(h+—z)2dp(z)’

asp traverses over all probability measures. This is seen to
be the convex hull of the graph of the functid(z)=z/(h
+2)? over thez axis on O<z=1. The functionf(z) is
strictly positive on 6<z<e with f(0)=0 and lim_,..f(2)
=0. Moreover,f(z) has a global maximum ovéb,»~) at z
=h, with f'(z)=0 for z<h andf’(z)<0 for z=h. Sincef
is strictly positive except for=0, we choose e A of the
form p(z)=4(z) and we obtain the desired lower bound
given by 0. Forh=(1-6,), one readily checks thab,

upper bound(11). For completeness, the computation of <b;/(h+b;)? for all points (b;,b,) in the convex hull for

cofC} is given in the Appendix.

which b;<(1-6,). Thus, [5f(2)dp(2)<f(2)<f(1-6,).
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P'= x P+ (1= x [ x*'P?+ (1- x*")P?], (46)
where the constant matric®, P?, andP® are given by
(1-p2)(N—1) )
Pl=1+(1— ( n‘ont,
(1=p1) (1=p1(1=p2) +p1(1—pz)A
(47)
(1-p2)(A—1)
P2:|_pl((1_91(1_P2)+P1(1_Pz))\ neon’
FIG. 1. Laminate of second rank.
A-1 2612
+(1—p2) m n“®n-, (48)
For this case, one choos@§z)=58(z—(1—6,)), and the
upper bounds given by E@6) and the second equation in and
Eqg. (7) are obtained. Whem<(1—4,) it is evident that (1—p,)(A—1)
b,=<f(h) for all b; in [0,1— 6,]. Thus, the optimal measure P3=|—p1((1_ 1= o+ pu(1= ))\)n1® nt
p= &6(z—h) is chosen and the upper bound given by the first P1 P2) ™ P1 P2
equation in Eqs(7) is obtained. A—1
—p2| - |n*@n?, (49)
(1= p2) +pah

IV. LAYERED MICROSTRUCTURES AND OPTIMAL

; ; ; 1ol 252
LOWER BOUNDS wherel is the 2<2 identity andn-®@n* andn“®@n- are the

rank one matrices/n} andn?n’, respectively.
In this section, we establish optimality for the lower For | fixed, the covariance matrix is written
bounds presented in the Introduction. To do this, we provide
explicit formulas for the limit of the covariance tensors for a

class of of layered materials. These layered materials exhibit
fine structure on two scales and are commonly known a3 hereE!
“finite-rank laminar microstructures,” see Fig. 1. We intro-

;" characterizing the scale of the

1 S o
g!j=va(E'v'—é>-<E"J—é)dx, (50)
is the local electric field induced by the constant
applied fielde. And E"'=P'é +Z'" whereZ"' goes to zero

du_ce t?e Itength anlel, ine the limitina behaviorl dend in mean square. Next, we observe that because of the sepa-
microstructure and examine the limiting behaviorldends .01 of scales. the sequence \(If o x* y2'dx converges

to zero. The layered ma_lterial i§ described in a hier_archica{o the producip,p, and that the total area fraction of tlag
way. We start by layerings, with €; in the proportions phase is given byd,=(1—p,)(1—p,). Collecting results

12(1—p,) and |%p,, respectively. The layer normals are C S
Lo . . and taking limits gives
taken parallel to the direction specified by the unit vector g g

We then take the finely layered material and layer it with lim g!j =ajj, (51
materiale; at the coarser length scdleHere, the layer width =0

of the finely layered material i1—p;) and the layers of \ypere the matrixg;; is given by

material e; are of widthlp,. The layer direction of the .

coarse layers is given by the unit vector. For future ref- _ J

erence, we call this structure a rank 2 laminate with core of 2~ Jo 1(2)u(d2), 52
material 2. For fixed we denote the electric field B¢ and

the associated covariance tensor ddy The first goal is to where

provide an explicit formula for=1lim,_o'. From homog- w(dz2)=[6,8(z—p1(1—p,))nt@nt

enization theory? the electric fieldE' admits the decompo-

sition +60,5(z—py) n’® nz]dz, (53

E'=PE+Z,

where the matrixP' is called the corrector matrix ang
—0 strongly in mean square.

and f(z) is given by Eq.(8). We also consider the phase-

interchanged second rank laminate. Here, material 1 is lay-
ered with material 2 at the smallest scale and this structure is
layered at the next largest scale with material 2. For this

To expedite the presentation, we introduce characteristigonstruction, the relative width of the layers is - p, and

functions to describe the layer geometry. Weyétt) be the
periodic function or{0,1] such thaty!=1 for 0O<t<p, and
x'=0 elsewhere. Similarly, we lex?(t) be the periodic
function on[0,1] such thaty?=1 for 0<t<p, and y>=0
elsewhere. Then, the layers at the sdabre described by

the relative with of the layer containing the layers ef
material is - p;. Here, the total area fraction of material 2
in the composite isd,=p,;+(1—p4)p,. For future refer-
ence, we call this structure a rank 2 laminate with a core of
material 1. The associated covariance tensor at fixésl

xH'=x1(n-x/11) and the layers at scalé are described by
x?'=x?(n?-x/1?). We focus now only on laminates with
layering directionsn' and n? orthogonal to each other. We
apply theorem 2.1 of Briafftand a straightforward calcula-
tion shows that the correctors are of the form

written E{l A calculation identical to the previous one
shows that lim 407, = o7j , where
— o
gij = fo f(2) nij(d2), (54)
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where tain a composite with an isotropic effective dielectric con-
d2)=[(1=6.)8(z— p.(1— nlent stant given bye=endl, T=[6,(1—6,)/2]l, and the cova-
u(dz)=[(1~62) 3z~ pi(1—p3)) fiance tensor is
+(1-6,)8(z— p,)n’®n?]dz, 55
( 2) ( p2) ] ( ) ;: I 2(<6>_ €HS)2 (63)
and (62— €1)°0,(1—6,)
~f(z)= z (56) It now follows that the boundl7) is the best possible given
1 2 the phase area fractions and the dielectric constants of each
2N -1 phase.

Ne_xt, we ;how thatr; angaj attain the Ipwer bound10). ACKNOWLEDGMENTS

This requires thatr;; andoj; be restated in terms d), T, _ _

and €°. In what follows, we do this to find that the lower  This research effort is sponsored by the NSF through
bound(l()) matches the formulas fo!l] and aij - To start, Grant No. DMS-9700638 and by the Air Force Office of

we write the formulas for the well-known effective tensors of Scientific Research, Air Force Materiel Command, USAF,
rank 2 laminates. The effective property for a rank 2 |ami-under Grant No. F49620-99-1-0009. The U.S. Government is

nate with a core of material'2is given by authorized to reproduce and distribute reprints for govern-
- 1 |-t mental purposes notwithstanding any copyright notation
e= 61I+61j du=e,l +€,6, hl+—]') , thereon. The views and conclusions gontamed herein are
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with ther expressed or implied of the Air Force Office of Scien-
tific Research or the U.S. Government.

1
zdu=T=0,p,(1—p,)nt@nt+ ,p,n%0 N 58
Jo u=T=60,p1(1—p>) 202 (58 APPENDIX

Similarly, the effective property of a rank 2 laminate with a We outline the set of calculations for the derivation of

core of material 1 is given by the convex hullco{C} of the curveC given by [z1/(h
11 +2),1/(h+2)?] with curve parameter €z<1. In order to
e=elte | ——du bring out the underlying geometry of the problem, we rep-
oh+tz arametrize the curve setting=t *—h and the curve is
1 1.\-1 given by ¢ 1,t,t)—(h,0,0) witha<t<b, wherea=1/(h
=€)l — 0162(—1| -7 (59 +1) andb=1/h. The convex hull given by Eq36) is writ-
and

b
1 _ ClzJ’ t~1dp(t)—h,
f 20a=T=(1- 6)py(1—pp)ntent :
0

b
+(1— 0,) pon2@n?, (60) C2= J'atdp(t% (A1)

A straightforward substitution of these formulas into the for-
03: J’

1 i~
t2dp(t),
0

mulas forg and o gives the required identities

(€)= (en'-nh))?

o= >——1—-htent wherep traverses all probability measures defined on the
(€2—€)*(Tn"-n%) interval [a,b]. Writing by =[5t~ 1dp(t), b,=[2tLdp(t),
(&) —(en?-m2))? and by=[2t?dp(t), we havec;=b;—h, c,=b,, andc,
t Tz N ®n (61)  =bs. The formula for the convex hutto{C} follows from
(2= €1)(Tn"-n%) o
an explicit formula for the convex hull of the curve
and (t~1t,t%), a<t<b. We follow standard procedure and first
(&)~ (ent-n})? compute the conic hull of the curve 11t,t%) for a<t
o= S — T ntent <b given by the set of pointsbg,b4,b,,b3) generated by
(€2—€1)%(Tn"-n%) the moments

(e)—(en2m)? ,
(62_61)2(1_”2'”2) .

We conclude by showing that the lower bound given by Eq. b b

(17) is the most restrictive for statistically isotropic compos- bz=J tdm(t), bng t2dm(t),
ites when only the phase area fractions are known. We con- é é

sider a rank 2 laminate with material 1 as the core. Selectingvherem traverses the set of all positive measures defined on
p1 andp, such thatp,(1—p,) = 6,/2 andp,= 60,/2, we ob- [a,b]. The convex hull is recovered by taking the intersec-

(62 bo= fbldm(t), b1=fbt‘1dm(t),
(A2)
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tion of the conic hull with the hyperplan@,0,0,0. Follow-
ing Ref. 9 the dual cone to the curve {1%,t,t?), a<t<b
is given by the set of all non-negative polynomiajét)
=ap+a_t 1+ast+a,t? on [ab]. Noting that
(1t 41,9 =t"3(t,1t%,t3), we observe that(t)=t 1r(t)
wherer (t)=agt+a_,+a;t>+a,t3, thus the set of vectors
of coefficients &y,a_1,a;,a,) corresponding to all non-

negative polynomialg(t) is precisely the one corresponding

to all non-negative polynomials(t). Thus, from the result
of Markov and Lukas, given in Ref. 9, all non-negative
polynomials of the forng(t) on[a,b] are given by

q(t)=x3(1—at™ ) +2xgx;(t—a) +x3(t?—at)
+Yg(bt 1= 1)+2yoys(b—t) +yi(bt—t?),

(A3)
where Kq,X1) and (q,y;) are any two pairs of real num-
bers. The theory for the moment problésee Ref. 9, Chap.
3) together with Eq.(A3) shows that the conic hull of the
curve (1t~ 1t,t%), a<t<b is given by all ©g,b;,b,,b3)
for which the quadratic forms

X3(bo— aby) + 2xox1 (b, — aby) + x7(bs— ab,) =0,

A4
y3(bby—bg) + 2yoys(bby—by) + yZ(bb, —by) =0, A

Robert Lipton 4293
bb,—bs bby—b,
= A
de(bbo—bz bby—bg) (A6)
and the inequalities
bo=ab;, bs=ab,,
(A7)
bb,;=bgy, bb,=bs.

We recover the formulas for the convex hull given in Sec. llI
[Eqg. (38)], upon settingby=1 and settingc;+h=b;, ¢,
=b,, andcy=bs in Egs.(A5), (A6), and(A7).
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