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We provide new bounds on the interfacial barrier conductivity for isotropic particulate composites
based on measured values of effective properties, known values of component volume fractions, and
the formation factor for the matrix phase. These bounds are found to be sharp. Our tool is a new set
of variational principles and bounds on the effective properties of composites with imperfect
interface obtained by us@see R. Lipton and B. Vernescu, Proc. R. Soc. London Ser. A452, 329
~1996!#. We apply the bounds to solve inverse problems. For isotropic polydisperse suspensions of
spheres we are able to characterize the size distribution of the spherical inclusions based on
measured values of the effective conductivity. ©1996 American Institute of Physics.
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I. INTRODUCTION

We consider two-phase heat conducting composites w
interfacial barrier resistance between phases. Such resist
may arise from the presence of impurities at phase bou
aries. At liquid helium temperatures interfacial resistan
arises due to acoustic mismatch between component ph
as is seen in the work of Garrett and Rosenberg.1 Starting
with the efforts of Maxwell2 and Rayleigh,3 a great part of
the literature has focused on the idealized case of per
contact. There one assumes continuity of temperature
heat flux across the phase interface. On the other hand,
perfect interfaces are described by discontinuous tempera
fields. We consider a unit cubeQ filled with particles of
good isotropic conductor of conductivitysp , in a matrix of
lower conductivitysm , ~i.e., sp.sm!. We assume that no
particles touch the boundary of the cube.

In what follows we make no assumptions about the d
tribution or shape of the particles. One can think of the cu
as representing a~possibly very complicated! period cell for
a composite material. Decomposing the temperature fi
into a periodic fluctuationf̃ and a linear part the averag
intensity measured by an observer outsideQ is

¹T5E
]Q

~f̃1z–r !ndS5z. ~1!

Here ]Q is the boundary of the cube andn is the outer
normal to the boundary. The temperature fluctuation ins
the composite satisfies

Df̃50 inside each phase ~2!

and

sp~¹f̃1z!p–n5sm~¹f̃1z!m–n ~3!

sp~¹f̃1z!p–n52b~f̃p2f̃m! ~4!

on the two-phase interface. Heren denotes the normal to the
phase boundary pointing into the matrix region, andb is the
interfacial barrier conductance. Subscriptsp andm denote
the side of the interface where field quantities are evalua
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Condition ~4! accounts for the interfacial thermal barrier re
sistance. Here the jump in temperature is proportional to
heat flux across the interface. For some physical situati
the interfacial barrier resistance may be thought of as
limiting case of heat transport across bulk phases separ
by a thin, poorly conducting interphase region. Denoting t
conductivity of the interphase bysi and its thickness byl ,
the conductanceb is the finite limit of the ratios i / l as both
si and l tend to zero~see Sanchez-Palencia,4 Dunn, and
Taya5!.

In our previous work11 new variational principles and
bounds on the effective heat conductivity were introduc
These bounds are given in terms of geometric paramet
The lower bound depends on the particle and matrix volu
fractionsup ,um , interfacial surface areaS, interfacial barrier
conductivityb, and the formation factor of the matrix phas
The upper bound is given in terms of the volume fractio
and total moment of inertia of the particle interfacesa. To
fix ideas we note that for a monodisperse suspension
spheres of radiusa with prescribed volume fractionup , the
geometric parametera is given bya53upa and the total
interfacial surface areaS is S53up/a. For polydisperse sus-
pensions of spheres we havea53up^a& andS53up^a

21&,
where^–& denotes averaging over all particles in the susp
sion ~see Sec. V!.

It is of practical interest to estimate the barrier condu
tivity and geometric parameters in terms of measured val
of effective properties. In Sec. III we apply the monotonici
property to obtain new bounds on the interfacial barrier co
ductance for isotropic monodisperse suspensions of sphe
The barrier conductivity is bounded above and below
bounds that depend on sphere radius, formation fac
sphere volume fraction, and measured values of the effec
conductivity.

The monotonicity property of the bounds in these ge
metric parameters was also used in Ref. 11 to isolate a
tinguished parameterRcr5b21/(sm

212sp
21). This parameter

measures the relative importance of the interfacial resista
to the contrast between phase resistances. For isotr
monodisperse suspensions of spheres with radius equa
/79(12)/8964/3/$10.00 © 1996 American Institute of Physics
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Rcr , the effective conductivity is shown to equal that of t
matrix, i.e.,se5sm . We emphasize that this result is o
tained for suspensions of spheres at nondilute concentrat
Moreover, we found thatse,sm for suspensions of sphere
with radii less thanRcr and se.sm for spheres with radii
greater thanRcr . These results extend the work of Chiew a
Glandt8 where the critical radius is observed for dilute su
pensions.

In this article we apply a coated sphere construct
similar to that of Hashin and Shtrikman12 to provide an in-
dependent proof of the existence of the critical radius,
Sec. IV.

The bounds given in Sec. II can be applied to so
inverse problems. For isotropic particulate suspensions
conductors in a matrix of lesser conductivity, we find th
when the effective conductivity is greater than that of t
matrix, then the total moment of inertia of the interface
greater thandupRcr . On the other hand, when the effectiv
property is less than the matrix the ratio of particle volume
interfacial surface 3up/S is less thanRcr .

For polydisperse suspensions of spheres, similar ob
vations characterize the size distribution of spheres in te
of measured values of the effective conductivity. Indeed,
obtain the following alternative: if the measured value of t
effective conductivity is greater than that of the matrix, th
the arithmetic mean of the particle radii lies aboveRcr , oth-
erwise if the effective conductivity is less than that of t
matrix, then the harmonic mean of the particle radii lies b
low Rcr .

II. BOUNDS ON EFFECTIVE PROPERTIES

Writing the local conductivity ass~r ! the effective con-
ductivity for the composite is defined by

sez5E
Q

s~r !~¹f̃1z!dx. ~5!

For isotropic suspensions of particles one has the follo
ing lower bounds onse, given by~see Ref. 11!

LB~m0 ,S,b!5sm2sm@~12m0!
211~smupc!21#21,

~6!

wherec5S/b(3up)
212(sp2sm)(smsp)

21. HereS is the
total surface area of the two-phase interface andm0 is the
effective conductivity of the suspension but with the p
ticles replaced by nonconducting particles of the same sh
and a matrix of unit conductivity. The resistivitym0

21 is com-
monly known as the formation factor, in the porous me
literature. The bound is monotone increasing in the ar
mentsm0 andb. Elementary estimates give 0<m0<um and
one has

se>LB~m0 ,S,b!>LB~0,S,b!

5~umsm
21upsp

211S~3b!21!21. ~7!

The upper bound on the effective conductivity for is
tropic suspensions as derived in Ref. 11, is given by
J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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UB~a,b!

5S sp
211

umba/31up
2l12/3upsp

lba/31umup2/3lsp12/9upspba D 21

. ~8!

Herel5(sm
212sp

21)21 and

a5(
j
E

]Yj
ur2r j u2dS ~9!

is the sum of the polar moments of inertia of the particl
surfaces]Yj . The upper bound is monotone increasing in th
parametersb and a. One hasse<UB(a,b)<UB(a,`)
5HS1 whereHS1 is the Hashin–Shtrikman12 upper bound
for isotropic composites with perfectly bonded interfaces.

III. BOUNDS ON INTERFACIAL BARRIER
CONDUCTANCE

The upper and lower bounds~6! and ~8! are monotonic
in the formation factor and in the parametersS, a, andb. We
employ this property to obtain bounds on the interfacial con
ductivity in terms of the measured values of the effectiv
property and the associated geometric parameters.

To fix ideas we consider isotropic monodisperse suspe
sions of spheres of given radiusa, sphere volume fraction
up , and formation factorm0

21. From the monotonicity it is
evident that we may invert the bounds to obtain new boun
on the interfacial conductivity. We introduce the interval
I 1 ,I 2 ,I 3 defined by

I 15$seuLB~m0,2upa
21,`!<se<UB~2upa,`!%, ~10!

I 25$seuUB~2upa,0!<se,LB~m0,2upa
21,`!%, ~11!

I 35$seuLB~m0,2upa
21,0!<se,UB~2upa,0!%, ~12!

where

LB~m0,2upa
21,`!5sm2sm$@~12m0!

21

2sp /@up~sp2sm!#%21, ~13!

LB~m0,2upa
21,0!5smm0 , ~14!

UB~2upa,0!5umsm /@22~12upsm /sp!#,
~15!

UB~2upa,`!5HS1.

Here HS1 is the Hashin–Shtrikman upper bound for per
fectly bonded composites.

The bounds onb are given by

bI <b,` for se in I 1 , ~16!

bI <b<b̄ for se in I 2, ~17!

0<b<b̄, for se in I 3 , ~18!

where

bI 5
sp@sp~se2sm!1upsm~sp1se!#

a@2sp~sm2se!1up~sp1se!~sp2sm!#
, ~19!
8965R. Lipton and B. Vernescu
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aFsp~sm2se!
12m0

se2smm0
1up~sp2sm!G . ~20!

Inspection shows that the upper and lower bounds giv
by ~19! and~20! agree when the effective property equals th
matrix conductivity. This situation is not uncommon and
seen experimentally in the work in Ref. 9.

IV. MONODISPERSE SUSPENSIONS OF COATED
SPHERES

Here we apply the coated spheres construction of Has
and Shtrikman12 in the context of imperfect interface to pro
vide another proof of the existence of a critical radius fo
monodisperse suspensions of spheres.

If one uses the imperfect interface condition~4! and
computes the energy of the coated sphere with coresp and
shellsm , then one finds that the energy depends monoto
cally upon the radiusr of the core. The energy is expresse
in terms of the effective conductivity of the coated sphe
given by

se5sm1
um

1

sp

f
2sm

1
12um
3sm

, ~21!

where

f511
sp

bt
. ~22!

When the core radius equalsRcr one sees that the energy
dissipated in the coated sphere is equal to that of a coa
sphere where both sphere and shell have conductivities eq
to sm . Thus we can replace matrix material with coate
spheres of critical radius without changing the overall co
ductivity of the sample. We observe that this argument do

FIG. 1. Bounds on the interfacial barrier conductivity for periodic 3D mono
disperse suspensions of diamonds in a ZnS matrix withsm517.4 W/~mK!,
sp51000 W/~mK!, up50.4, and radiia510 mm. Here the formation factor
of the matrix phase is taken to be 0.4.
8966 J. Appl. Phys., Vol. 79, No. 12, 15 June 1996
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not depend upon the position of the other coated spheres
the suspension. Thus the resultse5sm holds for monodis-
perse suspensions at critical radius even when the susp
sions are anisotropic.

V. INVERSE PROBLEMS

The monotonicity property is also used to gather info
mation on the composite geometry from measured values
the effective conductivity.

We shall assume that the volume fractionsup andum are
known as well as the valuessp , sm , andb and bound the
geometric parametersS anda from measured values of the
effective conductivityse. The upper bound~8! is easily seen
to be monotonically increasing ina, thus we have the fol-
lowing:

if se.sm then the total moment of inertia of the inter-
face ‘‘a’’ satisfies

a.3upRcr . ~23!

On the other hand, the lower bound is monotonicall
decreasing in the interfacial surface area. Thus it follows th

if se,sm then the particle volume to interfacial surface
area ratio satisfies

3up /S,Rcr . ~24!

For polydisperse suspensions of spheres we introdu
the volume averages of the sphere radii,ai , i51,...,N, and
their reciprocals by

^a&5up(
i51

N

ai
uYi u
up

, ~25!

^a21&5up(
i51

N

ai
21 uYi u

up
, ~26!

where uYi u is the volume of thei th sphere. For isotropic
polydisperse suspensions of spheres we have thata53up^a&
andS53up^a

21& and from~42! and~43! we obtain the char-
acterization of the size distribution of the sphere radii give
by

if se.sm then ^a&.Rcr , ~27!

and if se,sm then ^a21&21,Rcr . ~28!
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