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We provide new bounds on the interfacial barrier conductivity for isotropic particulate composites
based on measured values of effective properties, known values of component volume fractions, and
the formation factor for the matrix phase. These bounds are found to be sharp. Our tool is a new set
of variational principles and bounds on the effective properties of composites with imperfect
interface obtained by usee R. Lipton and B. Vernescu, Proc. R. Soc. London Set52 329

(1996]. We apply the bounds to solve inverse problems. For isotropic polydisperse suspensions of
spheres we are able to characterize the size distribution of the spherical inclusions based on
measured values of the effective conductivity. 1©96 American Institute of Physics.
[S0021-897€06)05212-1

I. INTRODUCTION Condition (4) accounts for the interfacial thermal barrier re-

, ) , . sistance. Here the jump in temperature is proportional to the
We consider two-phase heat conducting composites Withe ¢ fiyx across the interface. For some physical situations

interfacial barrier resistance between phases. Such resistangg, interfacial barrier resistance may be thought of as the
may arise from the presence of impurities at phase boundjyiting case of heat transport across bulk phases separated

aries. At liquid helium temperatures interfacial resistanceDy a thin, poorly conducting interphase region. Denoting the

ariges due tp acoustic mismatch between component phas@&nductivity of the interphase by, and its thickness by,
as is seen in the work of Garrett and RosenBegarting the conductancg is the finite limit of the ratioo;/l as both

with -the efforts of Maxwefl and Rayleigr_f’, a great part of g and| tend to zero(see Sanchez-Palenéidhunn, and
the literature has focused on the idealized case of perfeqt 2)

L y
contact. There one assumes continuity of temperature anda In our previous work! new variational principles and

heat flu?< across the phase'lnterface'. Oon t.he other hand, "Sounds on the effective heat conductivity were introduced.
perfect interfaces are described by discontinuous temperatu:i%ese bounds are given in terms of geometric parameters

f'ilgj'. Vg/teocpnzldec; at(l)mgfc%b% féll_ec_i W't.hn p;a::cle_s gff The lower bound depends on the particle and matrix volume
I%)wer Iionr dsgivi(tm ue (ire ¢ >n u ) |v\;vtyg ,alssumeatﬂ);t no fractions6,, 0, interfacial surface are§, interfacial barrier
YOm, (€., 0p=Tpy). conductivity 8, and the formation factor of the matrix phase.

particles touch the boundary of the cube. L . .
. ._The upper bound is given in terms of the volume fractions
In what follows we make no assumptions about the dis-

I : . and total moment of inertia of the particle interfacesTo
tribution or shape of the particles. One can think of the cube. . . )
) : . . ix ideas we note that for a monodisperse suspension of
as representing @ossibly very complicatedoeriod cell for . . . )
. . . . spheres of radiua with prescribed volume fractiof,, the
a composite material. Decomposing the temperature fiel p

into a periodic fluctuationp and a linear part the average geometrlc paramete is given by a=3fpa and the total

intensity measured by an observer outs@lés interfacial surface are8@ is S=36,/a. For polydisperse sus-
y y pensions of spheres we hawe-36,(a) and S=36p(a‘l),

— ~ where(-) denotes averaging over all particles in the suspen-
VT= L (¢+-r)ndS=¢. (D sion(see Sec. V.
° It is of practical interest to estimate the barrier conduc-
Here dQ is the boundary of the cube andis the outer tivity and geometric parameters in terms of measured values
normal to the boundary. The temperature fluctuation insidef effective properties. In Sec. Il we apply the monotonicity
the composite satisfies property to obtain new bounds on the interfacial barrier con-
ductance for isotropic monodisperse suspensions of spheres.

A¢=0 inside each phase ) The barrier conductivity is bounded above and below by
and bounds that depend on sphere radius, formation factor,
- - sphere volume fraction, and measured values of the effective
op(Vo+pn=0n(Vo+{)mn () conductivity.
~ ~ = The monotonicity property of the bounds in these geo-
oVt 0)pn=—B(by— brm) (4) ey Propery ol J

metric parameters was also used in Ref. 11 to isolate a dis-
on the two-phase interface. Hamedenotes the normal to the tinguished parameteRcr:,B’ll(a;]l—agl). This parameter

phase boundary pointing into the matrix region, ghid the  measures the relative importance of the interfacial resistance
interfacial barrier conductance. Subscriptsand m denote  to the contrast between phase resistances. For isotropic
the side of the interface where field quantities are evaluatednonodisperse suspensions of spheres with radius equal to
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R., the effective conductivity is shown to equal that of the UB(a,B)
matrix, i.e., o°=o0,,. We emphasize that this result is ob-

tained for suspensions of spheres at nondilute concentrations.
Moreover, we found that°< o, for suspensions of spheres -
with radii less thanR,, and o°> o, for spheres with radii

greater tharR,, . These results extend the work of Chiew andHereA=(o '~ o, ) ™" and
Gland where the critical radius is observed for dilute sus-

pensions. a=, LYJ_|r—r"|2dS 9)

In this article we apply a coated sphere construction I
similar to that of Hashin and Shtrikmto provide an in- is the sum of the polar moments of inertia of the particle

dependent proof of the existence of the critical radius, S€€ rfaces)Y!. The upper bound is monotone increasing in the
Sec. IV. . _ parametersg and a. One haso®<UB(a,8)<UB(a,»)
The bounds given in Sec. Il can be applied to soIve:HS+ whereHS" is the Hashin—Shtrikmah upper bound

inverse problems. For isotropic particulate suspensions qfy jsotropic composites with perfectly bonded interfaces.
conductors in a matrix of lesser conductivity, we find that,

when the effective conductivity is greater than that of the
matrix, then the total moment of inertia of the interface is
greater thardd,R.,. On the other hand, when the effective ll. BOUNDS ON INTERFACIAL BARRIER
property is less than the matrix the ratio of particle volume tocCONDUCTANCE

interfacial surface 8,/S is less tharR,,.

2 -1
o1y OmBal3+ O\ +2/30,0,
P NBal3+ 0,0,213N 0y +2/90,0,Ba

®

. . . The upper and lower bound§) and (8) are monotonic
For polydisperse suspensions of spheres, similar obse[r-] the formation factor and in the paramet&sy, andB. We

vations characterize the size distribution of spheres in termgmploy this property to obtain bounds on the interfacial con-
of measured values of the effective conductivity. Indeed, Weductivity in terms of the measured values of the effective

o?ftaltr;vthe f(;l(ljow![?vg?taliternratl\:e; 'tfhth:’ t?etas;Jtrﬁd %alrrfxozr:hﬁproperty and the associated geometric parameters.
etiective conductivity 1s greater than that of the matrix, the To fix ideas we consider isotropic monodisperse suspen-

e e e, O g on f sphres of gven fcias sphere volume Tt
Y 6,, and formation factomy®. From the monotonicity it is

lrg\?vtrg' then the harmanic mean of the particle radil lies be evident that we may invert the bounds to obtain new bounds
cr-

on the interfacial conductivity. We introduce the intervals
I1,15,15 defined by

_ -1
Il. BOUNDS ON EFFECTIVE PROPERTIES I ={a°|LB(mp,26pa" *,) <o°<UB(26pa,%)}, (10)

— -1
Writing the local conductivity asr(r) the effective con- I,={c®|UB(26,a,0)<0°<LB(mp,20,a ")}, (11)
ductivity for the composite is defined by I3={oe|LB(mo,20pa‘l,0)<ae<UB(26pa,0)}, (12)

a%:f a(r)(Vp+)dx. 5y  Where
) LB(mo729pa_1.°°)=am—am{[(l—mo)—l

For isotropic suspensions of particles one has the follow- _
pic susp P —opllOp(op—om ]}t (13

ing lower bounds ow®, given by(see Ref. 11

-1 _
LB(MG,S,8) = 0l (1=Mg) "+ (0my0) 117, LB{Mo, 20,2 7,0 = 7miMo, a9
(6) UB(26,a,0) = o/ [2— (1— B0l )],
_ -1_ _ -1 H
wherec=S/B(36,) '~ (0p,— o) (0mop) . HereSiis the UB(26,3,%) =HS". (15

total surface area of the two-phase interface amdis the

effective conductivity of the suspension but with the par-Here HS" is the Hashin—Shtrikman upper bound for per-
ticles replaced by nonconducting particles of the same shagectly bonded composites.

and a matrix of unit conductivity. The resistivity, * is com- The bounds orB are given by
monly known as the formation factor, in the porous media . .
literature. The bound is monotone increasing in the argu- B<pB<%* for ¢° in I, (16)
mentsm, and 8. Elementary estimates givesm,=< 6,,, and —
one has0 g Y ? e B=p=<p for o° in Iy, (17)
o-eBLB(mO,S,ﬂ)>LB(O,S,,B) 0=8=4, for o€ in I3, (18
= (00t 0p0, " +S(38) ") N, (7~ Where
e__ e
The upper bound on the effective conductivity for iso- __ oplop(o"— om) + pom(op+ 07)] (19
tropic suspensions as derived in Ref. 11, is given by a[20p(om= %)+ Op(op+ %) (op— 0]
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not depend upon the position of the other coated spheres in
the suspension. Thus the resuft= o, holds for monodis-

101 prod perse suspensions at critical radius even when the suspen-
sions are anisotropic.
8t V. INVERSE PROBLEMS
The monotonicity property is also used to gather infor-
6+ mation on the composite geometry from measured values of

the effective conductivity.
We shall assume that the volume fractighsand 6, are

M known as well as the valuas,, o,,, and 8 and bound the
geometric parametelS and a from measured values of the
ol effective conductivityo®. The upper boundB) is easily seen
to be monotonically increasing ia, thus we have the fol-
c® lowing:
09 10 o 3 20 if 0®> 0o, then the total moment of inertia of the inter-

face “o satisfies
FIG. 1. Bounds on the interfacial barrier conductivity for periodic 3D mono-
disperse suspensions of diamonds in a ZnS matrix wife17.4 W{mK), a>30pRcr- (23
0,=1000 W(mK), 6,=0.4, and radia=10 um. Here the formation factor

of the matrix phase is taken to be 0.4. On the other hand, the lower bound is monotonically

decreasing in the interfacial surface area. Thus it follows that
if o°<o, then the particle volume to interfacial surface

— OpTmop area ratio satisfies
A= 1-mg - (20 36,/S<R (24)
a UD(Um_ o) ot— omMp + ﬂp( Op— Tim) P °r

For polydisperse suspensions of spheres we introduce
Inspection shows that the upper and lower bounds givethe volume averages of the sphere radii, i=1,... N, and
by (19) and(20) agree when the effective property equals thetheir reciprocals by

matrix conductivity. This situation is not uncommon and is N v
seen experimentally in the work in Ref. 9. (a)= 0p2 a; u (25)
=1 ep '
IV. MONODISPERSE SUSPENSIONS OF COATED N Y|
SPHERES (a =02 a ==, (26)
i=1 p

Here we apply the coated spheres construction of Hashin
and Shtrikmal? in the context of imperfect interface to pro- where|Y;| is the volume of theith sphere. For isotropic
vide another proof of the existence of a critical radius forpolydisperse suspensions of spheres we haventh@®,(a)
monodisperse suspensions of spheres. andS=30p<a’1> and from(42) and(43) we obtain the char-

If one uses the imperfect interface conditiof) and  acterization of the size distribution of the sphere radii given

computes the energy of the coated sphere with egrand by

shell g,,, then one finds that the energy depequ monotoni- ¢ o®>0, then (a)>Ry, 27)
cally upon the radius of the core. The energy is expressed
in terms of the effective conductivity of the coated sphere  and if o®<o, then (a 1) I<R,. (28
given by
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