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Sufficient conditions on the phase geometry for the reduction of even-order bounds to bounds
of second order are derived. It is found that finite-rank laminates satisfy the sufficient
conditions asymptotically as the length scale of the laminar microstructure goes to zero. This
result is used to show that the effective elastic tensors of finite-rank laminates saturate the

even-order bounds in the fine-scale limit.

I INTRODUCTION

There has been much recent progress in the develop-
ment of bounds on the effective moduli of two-phase compo-
sites. These bounds are written in terms of the known statis-
tical properties of the composite (see Brown,! Beran,?
Bergman,” Milton,* and Torquato®). The statistical proper-
ties of composites are usually given in terms of structural
parameters that depend upon »n-point correlation functions.
There now exists means of computing the structural par-
amters and correlation functions for nontrivial models.®’

We consider the even-order bounds on the effective elas-
tic moduli of a two-phase composite originally derived by
Kroner.® These bounds incorporate structural parameters
that depend upon #-point correlation functions up to order
2N. In this paper we obtain sufficient conditions on the phase
geometry for the reduction of bounds of order 2N to bounds
of order 2 (see Theorem 2.1).

For a two-phase composite we denote the ratio between
the fine structure and the macroscopic dimensions of the
composite by €. The € = 0 limit of a sequence of composites
is referred to as the fine-scale limit of the sequence. We re-
mark that the volume fraction of the inhomogeneities need
not go to zero in this limit.

We consider a special class of effective materials called
finite-rank laminates.’!! These effective materials come
from the theory of homogenization of efliptic operators.'>!?
They correspond not to a particular phase geometry but to
the fine-scale limit of a family of microstructures. We ex-
pand the effective elasticity tensor of a laminate in powers of
the anisotropy® to find that in the fine-scale limit it satisfies
the conditions sufficient for the reduction of even-order
bounds to bounds of second order (see Theorem 4.1). Using
this fact & simple proof shows that laminates saturate the
even-order bounds in the fine-scale limit (see Theorems 4.2
and 4.3).

Important previous work has been done establishing the
optimality of even-order bounds in the context of conductiv-
ity. More generally, the effective conductivity tensor of a
mixture of two isctropic phases has well-known analytic
properties as a function of its component conductivities.'*
Milton'® has shown in two dimensions that every matrix-
valued rational function compatible with these analytic
properties is the effective conductivity function of some fi-
nite-rank laminar composite. The saturation of even-order
bounds in two dimensions follows from Milton’s results.
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H. EVEN-ORDER BOUNDS AND THEIR REDUCTION
TO BOUNDS OF SECOND ORDER

We consider an elastic composite material made from
two isotropic elastic phases described by Lame shear moduli
;=12 and bulk moduli «;, i = 1,2. The phases are as-
sumed to be well ordered, i.e., 4, <g,, &, < #,. The compos-
ite is treated as a periodic material with unit period cell @ in
R . This hypothesis is general provided that the length scale
of the inhomogeneities is much smaller than unity.'’ Fur-
thermore, we suppose that the composite is statistically ho-
mogeneous, enabling us to write ensemble averages as vol-
ume averages. We remark that although the phases are iso-
tropic, the resulting composite can be anisotropic.

The phase geometry of the composite is given exactly by
the characteristic functions of materials 1 and 2

1
X2 = {0 otherwise ,

if x is in material 2
n=1-—x, (2.1
where

ledy:gl’ Jl’zdy:ez-
[ Q

The elasticity tensor of the composite is defined by the
piecewise-constant tensor

Cx) = (1 — u)C + x:C, .
Here
C=2ul+ (e, —u)icl, i=12,

where | is the identity on 3 X 3 symmetric matrices and [ is
the 3 <3 identity matrix.

We suppose that the average strain in a unit period cell
of the composite is given by the symmetric 3 X 3 matrix €.
The local strain is given by e{u) + €, where u is the Q-peri-
odic displacement field and

(2.2)

e,.j(u):f”-'l—fz-f:‘!ii. (2.3)
The local strain solves

div{C(x)[e(u) + €1} =0 in O, (2.4)
and the effective elastic tensor C° is defined by

Ceie = (C(x)[e(u) + €] te(u) + &) . (2.5)

Here and throughout the paper { ) denotes integration over
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the unit period cell g

We introduce the space & of (-periodic mean-zero
strain fields. The space & can be written as the sum of two
orthogonal subspaces &, and &, ie, € =6 ,0&.'°
Here &, is the set of strain fields in & that are derived from a
J-periodic displacement field v that itself is the gradient of
some scalar potential, and & _ is the set of trace-free strain
fields. We define the operators I', , and T, , to be the projec-
tions onio &, and % _, respectively.

It is well known from perturbation theory® that the fluc-
tuating part of the local strain satisfies the following integral
equations:

elu) = — T y.8C(e(u) + €)1 (2.6)
e{u) =T°[y,8C(e(u) + €)1, (2.7
where 8C =C, — C, and
: 3 1 .
e P 4T, i=172. 2.8
3 + 4, ;ﬂ—+2ﬂi b ! 28

In Fourier space the operators T' are local. Indeed, given
a square-integrabie (-periodic matrix field
Fe=3, &lr)e®™ =, T and T° are defined by

To= S Tsw , i=12, (2.9)
Kk#£Q
where « = «/|k], and
A oA 5; A~ ~ 1 A N
Tiw) = e T, (R) + — ', (%) . 2.10
(«) P Ly (5 + " 15 (8 ( )
Here
L (R)6(k) = 2GRIRRK® R (2.11)
and
., (0)5(k) = [6(x)k] 8k + k® [6(k)k]
— UGS K (2.12)

For any (-periodic square-integrable polarization ten-

One has equality in (2.13) for the choice
P=P* =y, (8C)e{u) + €} . (2.15)

Here e{u) + ¢ is the actual strain field in the composite, i.e.,
e{u) solves Eq. (2.4). Similarly equality in (2.14) holds for
the choice

P=P*=v (6C)le{u) +¢€}. (2.16)

There is great freedom in the choice of polarization ten-
sors appearing in the Hashin-Shtrikman bounds. The funda-
mental idea is to choose a class of polarization tensors that
yield bounds in terms of known statistical information about
the composite, 2% 1819

For a sufficiently smail perturbation 8C we can approxi-
mate the optimal polarization P * given in Eq. {2.15) by ex-
panding the strain field e(#) + € in a perturbation series
taking only the first few terms. Indeed, from Eq. (2.6) we
have

e(w) +e=e+ Y (—DI(Ty50) e, (2.17)
i1

and the optimal polarization tensor is approzimated by
N

Vo1
P;;(zgc(e‘% 3 - 1)’(T‘1/2§C)"5>.,

P=1

(2.18}

This choice of Pin Eg. (2.13) provides a lower bound on the
effective elastic tensor in terms of #-point correlation func-
tions up tc order 2. The n-point correlation function is the
probability that 1 points lie for example in material 2. Simi-
lar remarks can be made about the upper Hashin-Shtrikman
bound.

Motivated by Eq. (2.18) we consider the finite-dimen-
sional class 4 of polarization tensors given by

; N—1
%= {P Is ﬁXﬁC( S (- 1)"(T5@50)!‘nm)}; ,
i =0

(2.19)

sor P the classical Hashin-Shirikman bounds'® ' on the eft 4
fective elasticity tensor C¢ are given by where 7°,7'Y,...,5"Y ) are arbitrary symmetric 3 X 3 matri-
ces. We write out Eq. (2.13} in terms of the polarizations
(C*—Cpe:exsup {2e: {y,P) given by Eq. (2.19) to obtain an even-order lower bound of
v o . order ZN:
— P (8C + TP} (2.13) (e —Cpe: e>sup {2¢: (y,P)
and e )
— P (CT 4+ TP}
(G, —CY e €>Sl;p (e (G —y2)P) = su (g0, gy,
i 1 )P 50_1 Tz) '{T]““'rf” """" ﬂ(N 1‘,}
— (1 =y P: ( - (2.20)
X (1 —7)P)}. (2.14) where
3
LZN(,Z?(O),“",’,?(N—— 1) )
N1 . .
=7 z {(SCxy (T, 8CY ) c €
I=0
Nl : . ; o N1 P 5 . B
- ( I {8Cr, (T80 : 1o (T 80 ) + 5 {80k (T80 7" : TG (T'x,6C) f#»)) a
i=0 i—0
j=0 J=0
{(2.20)
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Similarly we consider the class @ of polarization tensors given by

{ LP ).’150(2 (T*y 5C)’57“’)}

(2.22)

and obtain from Eq. (2.14) an upper even-order bound of order 2N:

(C, —Ce:e> sup U2V, gV Dy
7¥ =3

where

UZN(,”(O) s (N— 1))

N-—-1
=2 ¥ {(8Cx (T2 8C)'?) t e
i=0

[
o

When the phase function y, is given by a statistically
homogeneous random field the upper and lower even-order
bounds contain statistical information given in terms of n-
point correlation functions up to order 2N. We remark that
although the perturbation expansion (2.17) holds only for
small perturbations 8C the even-order bounds apply for all
values of the perturbation.

We observe that for the following smaller classes of po-
larization tensors given by

€? = {PP= y,6Cn'"} (2.25)
and

7 ={P|P=y,6Cn"} (2.26)

that the even-order bounds (2.20) and (2.24) reduce to the
well-known second-order bounds'®?° given by

(C°—Cpe:exsup L2
?711

L2(5?) = 28,7 O (6,80 + (r Ty )™

(2.27)
and
(C, — C)e: exsup U (™),
1?"
UZ(’-’?Q) = 26177(0) CE€— 770 : (8,6C1 <X1Tzl’1>)’7](m
{(2.28)

We now present sufficient conditions on the phase ge-
ometry such that the even-order bounds algebraically reduce
to second-order bounds.

Theorem 2.1, Given the phase functions y,,¥, = | — ¥y
then the even-order lower bound of order 2 given by Eq.
{2.20) reduces algebraically to the second-order bound giv-
en by Eq. (2.27) if

(12(Ty,8C)") = Lﬁzﬁ;&ﬁ@ﬁ_

=1L.,2KN-1
gl

(2.29)
and the even-order upper bound of order 2¥ given by Eq.
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(2 (8Cx (T2, 8Cy 5 : x, (T 8C) ) —
J

(2.23)

z (8Cx(T2,8C) '™ : T26Cy (T2 ,50)-5;(1‘»). (2.24)

J—O

(2.24) reduces algebraically to the second-order bound giv-
en by Eqg. (2.28) if

2 i
(1:(T?,80)) = £W~—ﬁ‘@, Pi=1,.,2N— 1.

(2.30)

Proof. We prove the theorem for the even-order lower
bound, noting that the proof for the upper bound is identical.
The theorem is proved using two lemmas.

Lemma 2.2. Given y,, the even-order lower bound
(2.20) reduces algebraically to the second-order lower
bound (2.27) when

(2P (BC '+ ThHy, P

(2 LT

(2.31)
o, g2

for all Pin 7.

Proof of Lemma 2.2. ¥If Eq. (2.31) holds then the lower
even order bound given by (2.20) is written

{C°=C)e: e>§gp [26: {v.P)

—{x.P): (8CNI

<X2T1X2>
a + 6’% )(X2P>] .

(2.32)

As P ranges over all elements in 7 it is evident that (y,P)
ranges over all symmetric 3 X3 matrices. Therefore it fol-
lows that Eq. (2.32) reduces to the second-order bound
{2.27) by replacing {y,#) by 6,M in Eq. (2.32), where M is
any symmetric 3 X 3 matrix. B

Lemma 2.3. Given y,, the equality
(¥R (SCT '+ Thy,P)

—1 T

= (){2P>:(5(C + A 2)(2>)<;( P) (2.33)
holds for Pin ¢ if and only if
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- { (XzTEX25C> )

Ga(T750))
85

, I=1.,28—1.

(2.34)

Proof of Lemma 2.3. We first suppose that Eq. (2.33)
holds and deduce Eq. {2.34). We observe from Eq. (2.8)
that T' is 2 linear combination of the two projection opera-
tors [, and T, ,, therefore T' is a self-adjoint operator on
the space of {-periodic square-integrable 3 X 3 matrix fields
with respect to the [L*(2)]°™ inner product. From this
fact we deduce the following useful identities:

(G8C(Ta60) 7"« 2T 388y )

= {1, 8C(T' 1, 8C)Y T Hn@ ', fj=1..,N~1
(2.35)
{SC(T 80 Ti,6C (T80 ')
= (y8C(T .80y Ny ', i j=1.,N—1
(2.36)
and
(. 80(Ty,8C) ) = (,6C(Ty,8CY ), j=1,. . N—1L
(2.37)

Expanding Pin Eq. (2.33), using the identities (2.35)~
(2.37), and noting that Eq. (2.33) holds for all choices of
79,5,V yields

(7 8C(THy,6CY 1)

==§= (80T 1850 (1 T,8C) ) (2.38)

fori,j=0,t,...,N — 1 and
<X25C(T1X25C)i+j+ 1>

1
— (1. 5C(TH,5C) ) i’-@;—-—lﬁ (.6C(T'1,5C))

2

(2.393

fori,j=10,1,... N — 1.

A simple computation shows that Eqs. (2.38) and
(2.39) are equivalent to Eq. (2.34). Therefore (2.33) im-
plies (2.34). To show the necessity of condition (2.34) we
note that the conditions (2.38} and (2.39) imply (2.33).
Thus we see that (2.34) implies (2.33) since (2.34) is equiv-
alent to the conditions (2.38) and (2.39).

Theorem 2.1 now follows directly from Lemmas 2.2 and
2.3,

. EFFECTIVE ELASTICITY TENSORS OF FINITE-
RANK LAMINATES

A finite-rank laminate is defined iteratively. To fix ideas
we show how to construct a rank-2 laminate. One starts with
a core of material 2 and layers it with a coating of material 1
in Iavers of thickness € perpendicular to a specified direc-
tion #,. One then takes this finelv layered material and again
layers with a coating of material 1 in layers of thickness ¢
perpendicular to a second direction n,. The € = 0 limit of
this microgeometry is called a rank-2 laminate. Conversely,
one could start with a core of material I and layer it with a
coating of material 2 and so on. Laminates of higher rank are
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constructed in the same way.

Laminates made starting with the weaker material 1 as
core and reinforcing with layers of the stronger material 2
are referred to as strong laminates. The weak laminates cor-
respond to using material 2 as core and layering with materi-
al i.

The characteristic function of material 2 for the weak
rank-2 laminate described in the introduction can be written

as
=2 () (3)

for € > 0. Here y'(x/¢€) is the characteristic function of the
layers of width € containing material 2 and y*(x/¢€?) is the
characteristic function of material 2 inside those layers.
Analogously for finite € the characteristic function of mate-
rial 2 for a weak rank-j laminate can be written as

X; (x) :XI (_{,) XZ (35?:) .o ;(j (_x_,) .
€/ € €

Here Xl (x/¢) is the characteristic function of the layers of
width € containing material 2, /1/2 (x/€%) is the characteristic
function of the layers of width € containing material 2 and
so on. Finally, y/(x/€’) is the characteristic function of ma-
terial 2 inside the layers of width ¢/~ .

For future reference let {y) denote the average of the
characteristic function y' over the unit period cell. It follows
that the total volume fraction of material 2 is given by

x5 (x) (3.1}

(3.2)

ﬁ] =6, (3.3)

and -
zaﬁz e <1 av< re <Gl
i o o (3.4)

Explicit formulas have been developed for tensors de-
scribing the effective properties of finite-rank laminates.” !
For prescribed volume fractions 8, and &, of materials 1 and
2 the effective elasticity tensors C and C of rank-j laminates
with laver directions given by the unit vectors n',n%,...,n’ are

,(C—C) '=8C"" 46T (3.5)
for weak laminates and

O (C, —C) ' =8C""~9,T*? (3.6)
for strong laminates.

Here

Zp[T(rz), s=12, 0<gp.<}, Zp,mi

i-1 i=1
(3.7}

and for any unit vecior v, ‘?"(v) is given by formula (2.10).
The quantities 6,p, and 6,p, appearing in 6,T* and 8,T*?
are the relative proportions of layer material introduced in
the ith lamination. Formuias (3.3) and (3.6) were devel-
oped by Francfort and Murat.’

We now indicate how the effective tensor C of a weak
finite-rank laminate can be written in terms of the sequence
of phase geometries {y5} given by Eq. (3.2). We consider
the constant tensor
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rsThs) s (3.8)

where y5 is given by Eq. (3.2) and T' is given by Eq. (2.8).
Expanding the integrand of Eq. (3.8} in a Fourier series
. yields

Ty =3 mw T, (3.9)
KF#£0
where ?‘(;c) is given by (2.10) and
¥ () = (™ x5 (x)) . (3.10)

Upon taking the limit as € goes to zero in Eq. (3.9), one finds
after an appropriate iteration of Eq. {15) in the paper by
Avellaneda and Miiton®® that

i
lim (iT'x5) =66, 3 piT' (), (3.11)
€~ i—1
where
Iij o m lI{n—i m)
= CRTERA SO VITTAY § (3.12)
8, 6,
fori=1,.,j—land
] — J
o == (3.13)
&,
It follows from Egs. (3.4}, (3.12), and (3.13) that
J
pi >0, Zp,-:l. (3.14)

i=1
We remark that as we vary over all laminar microstructures
{x5} the sequence g,,5,,...,p; can be made to be any set of

i

(C°—Cpe:ex> su

N—1

i=0

N1
z 3 (8Cys (Tys8CYn) 16 — <
1) =0

+ Y {6Cxs (Th26C)in® :T'éCx;a*x;ac)fn“»ﬂ .
F== 0

positive weights satisfying Eq. (3.14).2"

It now follows from Egs. (3.5) and (3.11) that the effec-
tive elastic tensor of a weak finite-rank laminate character-
ized by the sequence of phase functions {y% } is given by

T
92(@"‘ Cl)_l =6C~! +Eim<x—k€‘:‘“,

e-0 >

(3.15)

where (y5) = 8, for all € 0.

Similarly, the effective elastic tensor of a strong finite
rank laminate characterized by the seguence of phase func-
tions {y{ } is given by

—_ ETZ €
0,(Cy— Ty~ = 6C—" — tim XX

€-0 1

(3.16)

where (y{) =6, forall e> 0.

V. SATURATION OF EVEN-ORDER BOUNDS BY
LAMINATES

In this section we consider the lower even-order bounds
{2.20) and (2.21) for a family of laminar phase geometries
{¥5} given by Eq. (3.2) for > 0. We shall pass to the e = 0
limit in these bounds to find that the bounds are saturated by
the effective elasticity tensors of weak finite-rank laminates.
A similar conclusion holds for the even-order upper bounds.

We denote by C the effective elasticity tensor of a weak
finite-rank laminar phase geometry y5 given by Eq. (3.2)
and write the corresponding even-order lower bounds:

N1
3 {80k (Ty28C) ™ : x5 (T'x38C) 'y )
i=0
ji—0

(4.1)

Applying the identities (2.36) and (2.37), passing to the € = § limit in Eq. (4.1), and noting that lim,_,C* = C yields

(C—Cpe:ex sup  L(y9.,p0 Dy,
- A0} m,y’,i!\’ — 13

i

Here L is defined by

N1
L. g™ y=2 % Eing (8Cx5 (T'y58C)Yn" 1€
o <

N1
_< > lm (ECx5 (T y58C) M yg®
i €

i=0

From perturbation theory we have the following identi-
ties for finite-rank faminates:
Theorem 4. [. Given the sequence of laminar phase geo-
metries {y5 } described by Eq. (3.2), one has
) _ (Lm, _, (ysT'y56C))’
fim (15 (T50)) = ==
€ 2

(4.3}
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N—1
(j)+ Z hné <5CX; (T1X550)1+j+1>17(i‘) :nlj)

). (4.2}
§=0Q €U
J=0

]

fori=1,2,..,2N — 1. (The proof of Theorem 4.1 is given at
the end of this section.)

It follows immediately from Theorems 4.1 and 2.1 that
the even-order bounds in the € = 0 limit reduce to bounds of
second-order for laminar phase geometries. Indeed, we have
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sup L{n(m,m,?i(x\/a- l))

(5 (N —1
e} ’

o

= sup {269 1€ — 59 (8,86C !
7/“

+ lim T w9 . (4.4)

Moreover, a siraple procf shows the following.

Theerem 4. 2. For a given sequence of laminar phase geo-
metries {y% } described by Eq. (3.2) the associated effective
elasticity tensor C saturates the even-order lower bound in
the € = 0 limit, i.e.,

(C—Cpe:e= sap LYW Dy (4.5)
Proof:

(C—Cye:ex> sup
- 7,(("“_"77(.\/

7

) L(ﬂ(()}’."’,’?("v l))

= sup {260,571 € — 5V : (8,607
7"
+lim (T 7"}

=sup {20,5" e — 639"
g

(g___cl)wln(m}
:(ngI)EZS. (4~6)

Here the second to the last equality follows from formula
(3.15) for the effective tensor of a finite rank laminate. B

A similar argument show the following.

Theorem 4.3, For a given sequence of laminar phase geo-
metries {y5 }, the associated effective elasticity tensor C of a
strong laminate saturates the even-order upper bound in the
€ = 0 Limit.

We conclude this section with a proof of Theorem 4.1.
Toprove Theorem 4.1 we shall expand Cfas a power series in
the anisotropy 8C and pass to the € = 0 limit to find a power-
series expansion for C having terms of the form

lim (8Cys (T'¥56C)") . (4.7)
€0

Alternately, we use the laminate formula (3.15) to find
an equivalent series expansion in 8C for the effective tensor
C with terms given by
(lim__, (¥3 T'¥58C))°

gi! '
Theorem 4.1 then follows from the uniqueness of power se-
ries,

Proof of Theorem 4. 1. We introduce the following.

Lemma 4.4. The effective tensor C of a finite-rank weak

laminate characterized by the sequence { ¥5 } can be expand-
ed for sufficiently small 8C in the power series

8C (4.8}

@

C=C + 3 tim [6C(— D (Ty56C)) ] .

i=o €0

(4.9}
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Proof. Given a sequence of finite-rank laminar geome-
tries {5 } the associated effective tensor for € > O is given by

Cre:e={C(x)e(u) + €] se(u) + €,
(4.10)

where C = (1 — ¥5)C, + ¥5C,, {e(u) +€)=¢, and
e{u®) solves

e{u) = — T{8Cys[elu) +€l}. {4.11)
From Eq. (4.11} we see that

(F+T8Cys  e(e) + €l =€, (4.12)
thus

e(u) +e= (I + T'8Cy5) e. (4.13)

For &C sufficiently small we expand the right-hand side of
Eq. {(4.13) in powers of 6C and write Eq. (4.10) as

Cie:e=Cie:e+ i {{ - DBCYs (T8 e: €.
i=0

(4.14)

This expansion is equivalent to

C'=C,+ 3 ({— 1)8Cy; (T'y58C)) .

i==0

Passing to the € = 0 limit in Eq. (4.15) yields

(4.15)

C=C,+1lim 3 ((— DBCK(T'¥58C)) . (4.16)
-0 7 Tp
To conclude the proof of Lemma 4.4 we show that

fim 3 ((— 1)6Cy3 (T¥580))
€~0 /20
= 3 tim {{ = 1)8Cy5 (T'4560)) .

f—p €=0

(4.17)

We prove Eq. (4.17) by introducing the family of tensor-
valued analytic functions {R, ()}, € > 0 where R_(z) is de-
fined by

R.(z2)=C,+ i ({ — 1)6Cys (Tlys8C)H 2.
=0

(4.18)
The set {R,(z)}, €> 0 is 2 normal family of analytic func-
tions for z in the region |z| < |6C| ™. Since {R, (2)} is a nor-
mal family, we see that as € tends to zero, R, (2} converges
uniformly to the analytic function R,(z) given by

Ry =C, + 3 A7, (4.19)
i=0

Using the uniform convergence of R_(z) we deduce from
Cauchy’s integral formula that
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Hm (( — 1)"8Cys (T'x58C)™)
€--0

R .
—tim [ B8) 4
=0 217‘i ¥ gn i
2i )y g7
1 pn| =aAm. (4.20)
n! dZ" z=0

Here y is a simple closed curve containing z = O in the region
|z| < |8C |~ . Therefore for 5C sufficiently small, z = 1 lies
inside |z| < |6C| ' and Eq. (4.17) follows. ]

Alternately, it follows from the laminate formuia (3.15)
that

Lemma 4.5. The effective tensor C of a finite-rank lami-
nate characterized by the sequence { v5 } can be expanded for
sufficiently small 8C in the power series

% (i N ,eTl € 50 i
C=Ci+ 3 80(— 1) mf““(gj X000
i==0 2

Proof. From Eq. (3.15) simple algebraic manipulation
yields

(4.21)

e‘Ti & —1
C=C, +6,5C (1+ lim Mac) L (422)
- -0 5
For 8C sufficiently small we expand the right-hand side of
(4.22) in a Neumann series to recover Eq. (4.21). &
From the uniqueness of power series we obtain from

Lemmas 4.4 and 4.5 that
lim, o (x5 T'ys 28C)

TR (4.23)
2

tim (5Cy% (T'y56C)") = 86C
-0

for 8C sufficiently small. -
Lastly, we remark that if we replace §C by A8C in Eq.
(4.23) where 4 is a scalar, then it follows from the homo-
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geneity of both sides of Eq. (4.23) that

] - s (lime_ o (T 580
lim (5CX§ (T1X§5C)‘) —5C {hm, O;X,-Z_;X}!;) )
€-+0 2

(4.24)

for the perturbatioin (;C. Therefore we see that Eq. (4.23)
holds for perturbations §C of all magnitudes and Theorem
4.1 is proved.
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