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The problem of bounding the e¬ective conductivity of a two-phase composite with
an imperfect interface is considered. The interface can be either highly conducting
or resistive, and both the material properties and geometric arrangement of the
phases can be anisotropic. The problem is formulated variationally and by choosing
appropriate trial ­ elds, new bounds are obtained in terms of upper and lower bounds
on the e¬ective conductivity of a composite with the same microgeometry in which
the phases are perfectly bonded. The methodology also applies to composites with
a nonlinear interface, and a particular example is described.
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1. Introduction

The transmission conditions at the interface separating materials in multi-phase
composites can have a signi­ cant e¬ect on the overall properties. This is seen in
the experimental work of Garret & Rosenberg (1974) and Hasselman & Donaldson
(1992). Electrical contact resistance often appears, due to the presence of a thin
highly resistive layer or `interphase’ between two conducting phases. The e¬ects of
a thin layer can be modelled by an interface with appropriate discontinuous trans-
mission conditions. Here, the electric potential jumps across the interface, while the
normal component of current is continuous across it. On the interface, the jump in
the electric potential is proportional to the normal component of the current.

On the other hand, the e¬ective properties of mixtures can be strongly in®uenced
by surface conduction of current in thin layers between bulk phases. The conduction
layer between phases is often modelled by an interface across which the normal com-
ponent of current su¬ers a jump, whereas the electric potential is continuous across
the interface. Here, the jump in the normal current is proportional to the surface
Laplacian of the electric potential at the interface. Both of these transmission con-
ditions are distinct from the standard `perfectly bonded’ interface conditions, where
both the electric potential and current are continuous across material interfaces. We
refer to the former interface transmission condition as a resistive interface and to the
latter as a highly conducting interface.

In this paper we derive new bounds on the overall conductivity tensor for these
two cases. In addition, we consider nonlinear interfacial transmission conditions that
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model the dielectric breakdown of a thin interphase between two materials. New
bounds are obtained for this case. The methods we develop are new and variational
in nature.

The variational principles for the description of the e¬ective conductivity for multi-
phase composites with resistive interface follow from the work of Hashin (1992).
These principles are the analogues of the Dirichlet and Thompson variational prin-
ciples for perfectly bonded composites. Variational principles analogous to those of
Dirichlet and Thompson for the e¬ective conductivity of composites with highly
conducting interface are developed in Lipton (1997a). New variational principles of
comparison type for resistive interfaces are introduced in the work by Lipton & Ver-
nescu (1995, 1996). The variational principles of Lipton & Vernescu (1996) recover
those of Hashin & Shtrikman (1962) in the limit of perfectly bonded interface condi-
tions. For the highly conducting interface case, variational principles of comparison
type were introduced in Lipton (1997a). These principles also recover those of Hashin
& Shtrikman (1962) in the limit of perfect bonding.

Lipton & Vernescu (1996) obtained upper and lower bounds on the e¬ective con-
ductivity when the interface is resistive, using variational principles of comparison
type. These bounds were applied to predict new size e¬ects for particle reinforced
suspensions. For a composite consisting of a distribution of particles embedded in a
matrix, the lower bound on the e¬ective conductivity is given in terms of the e¬ective
conductivity of a composite having the same microgeometry, with non-conducting
inclusions. The lower bound also contains additional geometric information, includ-
ing the particle size distribution and the particle volume fraction. It is shown in
Lipton & Vernescu (1996) that for ­ xed particle volume fraction, this bound is opti-
mal in the limit when the size of the inclusions tends to zero. The associated upper
bound on the e¬ective conductivity is given in terms of the Hashin{Shtrikman upper
bound for the e¬ective conductivity of a perfectly bonded composite with the same
geometry, as well as information on the particle size distribution and particle volume
fraction. We show here that this bound can be improved. To ­ x ideas, we consider
an isotropic monodisperse suspension of spheres of radius a. For a matrix of con-
ductivity ¼ 2 containing an isotropic monodisperse suspension of spherical particles
of conductivity ¼ 1, we denote the e¬ective conductivity by ¼ e. The volume fraction
of the particles and matrix are given by c1 and c2, respectively. The interfacial con-
tact resistance is characterized by ­ , with units of conductivity per unit length. We
suppose that the particles are better conductors than the matrix, i.e. ¼ 1 > ¼ 2. We
introduce the function C(x) de­ ned by

C(x) = x ¡ ¼ 1(c1 + ® (x ¡ ·¼ ))2

¼ 1 ® 2(x ¡ ·¼ ) + c1(1 + (a­ )=¼ 1)
; (1.1)

where ® = ( ¼ 1 ¡ ¼ 2)¡1 and ·¼ = c1 ¼ 1 + c2 ¼ 2. One easily checks that this function
is monotone increasing with x. With this function in hand, we can write the upper
bound on ¼ e, given by (3.62) of Lipton & Vernescu (1996) as

¼ e 6 C(HS + ); (1.2)

where HS + is the Hashin{Shtrikman upper bound on the e¬ective conductivity for
perfectly bonded composites ~¼ given by

~¼ 6 HS + = ¼ 1 ¡ c2

® ¡ c1=(3 ¼ 1)
: (1.3)
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This provides the motivation to search for a tighter upper bound that is obtained by
replacing HS + with ~¼ . The methods developed in this paper establish the desired
upper bound

¼ e 6 C(~¼ ); (1.4)

where ~¼ is the e¬ective property of a composite with the same microstructure, but
with perfectly bonded inclusions (see theorem 4.2).

When the interface is highly conducting, upper and lower bounds on the e¬ective
conductivity are obtained in Lipton (1997a). These bounds were also applied to pre-
dict new size e¬ects for particle reinforced suspensions. When the interface is highly
conducting, the comparison variational principles developed in Lipton (1997a) are
used to obtain an upper bound expressed in terms of the e¬ective conductivity of a
matrix containing a distribution of perfectly conducting particles. The upper bound
is also given in terms of the particle size distribution and the particle volume frac-
tion. It is shown in Lipton (1997b) that for ­ xed particle volume fraction, this bound
is optimal in the limit when the size of the inclusions tends to zero. The associated
lower bound is given in terms of the Hashin{Shtrikman lower bound for the e¬ec-
tive conductivity of a perfectly bonded composite with the same geometry, together
with information on the particle size distribution and particle volume fraction. We
show here that this bound can be improved. The highly conducting interface is char-
acterized by ¬ , with units of conductivity multiplied by unit length. To ­ x ideas,
we restrict our attention again to mono-disperse suspensions of spheres of common
radius a and introduce the function H(x) de­ ned by

H(x) = x ¡ (c1 + ® (x ¡ ·¼ ))2

® 2(x ¡ ·¼ ) ¡ c1(a=(2 ¬ ))
: (1.5)

One easily checks that this function is monotone increasing with x. With this function
in hand, we can write the lower bound on ¼ e given by (6.19) of Lipton (1997a) as

¼ e > H(HS¡); (1.6)

where HS¡ is the lower Hashin{Shtrikman bound on the e¬ective conductivity ~¼ of
a perfectly bonded composite given by

~¼ > HS¡ = ¼ 1 ¡ c2

® ¡ c1=(3¼ 1)
: (1.7)

Again, one seeks to establish a tighter lower bound obtained by replacing HS¡ with
~¼ . We are able to establish the desired lower bound given by

¼ e > H(~¼ ); (1.8)

where ~¼ is the e¬ective property of a composite with the same microstructure but
with perfectly bonded inclusions (see theorem 3.2).

In order to obtain the tighter bounds, we start with variational principles of Dirich-
let type for both the resistive and highly conducting interface cases. Our approach
is to partly follow the derivation of the comparison principles of Lipton & Vernescu
(1996) and Lipton (1997a), in that we consider the Fenchel dual of the surface ener-
gies associated with the interfacial transmission conditions. Once we have dualized
the surface energies, we obtain a variational structure for the bulk energy analogous
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to the problem of ­ nding the e¬ective properties of a linear thermoelastic compos-
ite. This latter problem was considered by Talbot & Willis (1992) in the context of
­ nding bounds for nonlinear composites. The solution was given by Talbot & Willis
(1992), who used formulae of Levin (1967) and Laws (1973), and involves the e¬ective
properties of the purely mechanical problem. In the present context, this allows the
bounds to be expressed in terms of the e¬ective conductivity tensor of the perfectly
bonded composite with the same microgeometry.

We apply this new method to also recover the lower bounds of Lipton & Vernescu
(1996) for the resistive interface case and the upper bound of Lipton (1997a) for the
highly conducting interface case. We go on to provide new upper and lower bounds
on the e¬ective properties when both conductors are anisotropic. The methodology
provided here can be adapted to nonlinear interfacial transmission conditions. To
­ x ideas, we consider an interface condition that models dielectric breakdown at
an interface between two materials. Here, the dielectric potential is allowed to be
discontinuous across the interface separating the particle and matrix phases. The
jump in the potential ¿ across the interface is written as ¿ p ¡ ¿ m = [ ¿ ], where
the subscripts indicate the side of the interface on which the potential is evaluated.
On the part of the interface where ¡ ¿ 0 < ¡ [ ¿ ] < ¿ 0, no current passes across the
interface. At points on the interface where ¡ [ ¿ ] reaches ¡ ¿ 0, breakdown occurs and
the normal current ®ows through the interface into the particle. On the portion of
the interface where ¡ [ ¿ ] reaches ¿ 0, breakdown also occurs and the normal current
®ows into the matrix. We apply the bounds to obtain new size e¬ects for particle
reinforced composites in x 6.

The paper is organized as follows. In x 2 the basic variational structure is outlined,
in xx 3 and 4 the new bounds for a composite with a highly conducting interface and
a resistive interface, respectively, are derived and some results for random composites
are presented in x 5. We obtain new bounds for composites with nonlinear interface
conditions in x 6.

2. Formulation

The medium considered here is constructed by selecting a cube Q of composite and
replicating it to form an in­ nite periodic medium. For convenience, Q is assumed to
have unit volume and to contain the origin. The composite consists of a distribution
of N particles with conductivity tensor ¾1, embedded in a matrix with conductivity
tensor ¾2. The region occupied by particle r is denoted « r and has boundary ¡ r.
The conductivity tensor ¾(x) of the medium is given by

¾(x) = ¾1f1(x) + ¾2f2(x); (2.1)

where fr(x) is the characteristic function of the region occupied by phase r, taking
the value 1 in that phase and zero outside. In what follows, the particles and matrix
are designated phases 1 and 2, respectively. If the electric potential is decomposed
into a periodic ®uctuation ~¿ and a linear part ·E x, the average electric ­ eld as
measured by an outside observer is

·E =
@Q

( ~¿ + ·E x)n ds; (2.2)
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where @Q is the boundary of Q and n is the outward normal to @Q. In the sequel,
¡ will denote the internal boundary between the phases and a jump in a quan-
tity q across ¡ will be represented by [q] = q1 ¡ q2. First, if the interface is highly
conducting, ~¿ is continuous across ¡ and satis­ es

¢ ~¿ = 0; in each phase;

[¾(r ~¿ + ·E)] n = ¬ ¢s(~¿ + ·E x); on ¡ :
(2.3)

Here, n is the unit normal pointing into phase 2 and ¢s is the Laplace{Beltrami
operator on ¡ , de­ ned by

¢s( ~¿ + ·E x) = ¯ i ¯ i( ~¿ + ·E x); (2.4)

where ¯ i is the tangential gradient on ¡ ,

¯ iÁ = Á;i ¡ (n rÁ)ni: (2.5)

The limiting cases ¬ = 0 and ¬ = 1 of the tangential conductivity correspond to a
perfectly bonded composite and a matrix containing perfectly conducting inclusions
respectively. The variational principle for the e¬ective conductivity tensor ¾e is

1
2

·E ¾e ·E = inf
¿ 2 V Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx + 1

2
¬

¡

j ¯ (¿ + ·E x)j2 ds ; (2.6)

where
V = f¿ 2 W 1;2(Q); ¿ is Q periodicg: (2.7)

In the second problem considered, the interface is resistive and ~¿ satis­ es

div(¾(x)(r ~¿ + ·E)) = 0 in phases 1 and 2;

[¾(x)(r ~¿ + ·E)] n = 0 on ¡ ;

¾2(r ~¿ + ·E) n = ¡ ­ [ ¿ ] on ¡ :

(2.8)

The parameter ­ ¡1 represents the barrier resistance and the two cases ­ = 1 and
­ = 0 correspond to perfect contact and a perfectly insulating interface, respectively.
Here, the variational principle is

1
2

·E ¾e ·E = inf
¿ 2 W Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx + 1

2
­

¡

([ ¿ ])2 ds ; (2.9)

where W is the space of all Q-periodic square integrable functions such that r ¿ is
square integrable in each phase. For the nonlinear interface condition, ~¿ satis­ es

div(¾(x)(r ~¿ + ·E)) = 0 in phases 1 and 2;

[¾(x)(r ~¿ + ·E)] n = 0 on ¡
(2.10)

and

¾2(x)(r ~¿ + ·E) n = 0 on ¡ ; where ¡ ¿ 0 < ¡ [ ~¿ ] < ¿ 0;

¾2(x)(r ~¿ + ·E) n 6 0 on ¡ ; where ¡ [ ~¿ ] = ¿ 0;

¾2(x)(r ~¿ + ·E) n > 0 on ¡ ; where ¡ [ ~¿ ] = ¡ ¿ 0:

(2.11)
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Here, ¾2(x)(r ~¿ + ·E) n denotes the normal current on the matrix side of the
interface. For this case, we have that the overall energy is the energy density given
by

~W ( ·E) = inf
¿ 2 W Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx +

¡

Ws( ¡ [ ¿ ]) ds ; (2.12)

where

Ws( ¡ [ ¿ ]) =

0; ¡ ¿ 0 < ¡ [ ~¿ ] < ¿ 0:

1; ¡ [ ~¿ ] > ¿ 0;

1; ¡ [ ~¿ ] 6 ¡ ¿ 0:

(2.13)

Here, the potential ~¿ is the minimizer. This is established in the appendix.

3. Bounds for a composite with a highly conducting interface

In this section upper and lower bounds on the energy are obtained starting from
the variational principle (2.6). The ­ rst result that we present is a lower bound
on the e¬ective conductivity tensor for an anisotropic suspension of anisotropically
conducting particles in an anisotropically conducting matrix. We introduce the `scale’
tensor U with components

U ij =
¡

¯ k( ¿ i) ¯ k( ¿ j) ds; (3.1)

where the functions ¿ j are the solutions of

¢s ¿ j = ¡ nj ; x 2 ¡ r;

¢ ¿ j = 0; x 2 « r ;
(3.2)

and nj is the jth component of the outward normal n. The `scale’ tensor U was
introduced in Lipton (1999). Next we introduce the tensors S and T given by

S = c1I ¡ (¾1 ¡ ¾2)¡1(·¾ ¡ ~¾);

T = (¾1 ¡ ¾2)¡1(·¾ ¡ ~¾)(¾1 ¡ ¾2)¡1 + ¬ ¡1 U :
(3.3)

Here, ~¾ is the e¬ective conductivity of a perfectly bonded composite with the same
microgeometry and ·¾ = c1¾1 + c2¾2. The lower bound on the e¬ective conductivity
is given by the following result.

Theorem 3.1 (lower bound on the e® ective conductivity).

·E ¾e ·E > ·E f~¾ + ST ¡1Sg ·E: (3.4)

When the particles are spheres of possibly di¬erent radii a1; a2; : : : ; an, we consider
the `volume-averaged radius’ hai given by

hai =

n

i= 1

V (ai)ai;

where c1 £ V (ai) is the volume fraction occupied by spheres of radius ai. For this
case, the scale tensor is U = c1

1
2
haiI (see Lipton 1999). When the conductivities
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of the particles and the matrix are isotropic and the particles form an isotropic
monodisperse suspension of spheres of radius a, the scale tensor is U = c1

1
2
aI and

the lower bound becomes as follows.

Theorem 3.2 (lower bound on the e® ective conductivity for isotropic
suspension of spheres|highly conducting interface).

¼ e > H(~¼ ): (3.5)

We now establish the lower bound. First note that, for any vector v,

1
2
¬ ¡1v2 = sup

w
fv w ¡ 1

2
¬ w2g; (3.6)

and so
1
2
¬ jwj2 > v w ¡ 1

2
¬ ¡1jvj2: (3.7)

We apply this estimate to bound the integrand of the surface integral in (2.6) to
obtain

1
2

·E ¾e ·E > inf
¿ 2 V Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx+

¡

[v ¯ ( ¿ + ·E x) ¡ 1
2
¬ ¡1jvj2] ds :

(3.8)
Next, choose v = ¯ ( ¿ j ² j) on the surface of each particle, where ² j are the components
of a constant vector ´. Then

¡ r

v ¯ ( ¿ + ·E x) ds =
¡ r

¯ ( ¿ j ² j) ¯ ( ¿ + ·E x) ds

= ¡
¡ r

( ¿ + ·E x)¢s( ¿ j ² j) ds

=
« r

´ (r ¿ + ·E) dx; (3.9)

after using (3.2) and the divergence theorem. It now follows that

1
2

·E ¾e ·E > inf
¿ 2 V Q

f1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) +f1(x)´ (r ¿ + ·E)gdx ¡ 1

2
¬ ¡1´ U ´:

(3.10)
The problem of ­ nding the in­ mum in (3.10) is analogous to ­ nding the energy

of a linear thermoelastic composite. The solution given by Talbot & Willis (1992) is
given, for completeness, in the appendix and leads to the bound

1
2

·E ¾e ·E > 1
2

·E ·¾ ·E + c1´ ·E

¡ 1
2
[ ·E + (¾1 ¡ ¾2)¡1´] (·¾ ¡ ~¾)[ ·E + (¾1 ¡ ¾2)¡1´] ¡ 1

2
¬ ¡1´ U ´:

(3.11)

Maximizing the right-hand side of (3.11) with respect to ´ gives (3.4), and the lower
bound is established.

Next we present a new upper bound on the e¬ective conductivity tensor for
anisotropic suspensions of particles with anisotropic conductivity in a matrix with
anisotropic conductivity. We introduce the surface energy tensor G de­ ned by

G = ¡
¡

Hn « x ds; (3.12)
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where H = ¡ div n is the mean curvature. The e¬ective conductivity of a composite
with perfectly conducting inclusions, with the same microgeometry, is given by ¾ 1 .
The upper bound is given by the following result.

Theorem 3.3 (upper bound on the e® ective conductivity).

·E ¾e ·E 6 ·E U ·E; (3.13)

where

U = f¾ 1 ¡ (¾ 1 ¡ ¾2)[¾ 1 ¡ ¾2 + c1(¾1 ¡ ¾2) + ¬ G ]¡1(¾ 1 ¡ ¾2)g: (3.14)

One readily checks that the tensor

[¾ 1 ¡ ¾2 + c1(¾1 ¡ ¾2) + ¬ G ]¡1

is positive de­ nite. For isotropic composites with isotropically conducting inclusions
and matrix, equation (3.13) recovers the upper bound given by (5.10) in Lipton
(1997a). To obtain the upper bound, we relax the in­ mum in (2.6) and allow for the
substitution of any admissible trial ­ eld into the integrals. In the rth particle, choose

¿ + ( ·E ¡ ´) x = Cr; (3.15)

where Cr is a constant and ´ is a constant vector. Then, as [ ¿ ] = 0 on ¡ , the trial
­ eld in the matrix satis­ es

¿ + ( ·E ¡ ´) x = Cr (3.16)

on the surface of the rth particle. Hence ¿ in the matrix is the ®uctuating part of the
­ eld in a matrix containing a population of perfectly conducting particles, subject
to an applied ­ eld ·E ¡ ´. Now, by writing r ¿ + ·E = r ¿ + ( ·E ¡ ´) + ´, it is easy
to show that

Q

f2(x)(r ¿ + ·E) ¾2(r ¿ + ·E) dx

=
Q

f2(x)(r ¿ + ·E ¡ ´) ¾2(r ¿ + ·E ¡ ´) dx + 2´ ¾2( ·E ¡ ´) + c2´ ¾2´:

(3.17)

The energy in the particles is easily calculated and the surface integral is dealt with
by noting that, on ¡ , ¢s(´ x) = H´ n. Then, using (3.15),

¡ r

j ¯ ( ¿ + ·E x)j2 ds = ¡
¡ r

¢s( ¿ + ·E x)( ¿ + ·E x) ds

= ¡
¡ r

H(´ n)(´ x) ds: (3.18)

Using (3.17) and taking the in­ mum over ­ elds satisfying (3.15) gives the bound

1
2

·E ¾e ·E 6 inf
¿ Q

1
2
f2(x)(r ¿ + ·E ¡ ´) ¾2(r ¿ + ·E ¡ ´) dx

+ ´ ¾2( ·E ¡ ´) + 1
2
´ ·¾´ + 1

2
¬ ´ G ´: (3.19)

The ­ rst term in (3.19) is the energy of a matrix containing a distribution of
perfectly conducting inclusions and, after minimizing with respect to ´, the bound
is ­ nally obtained.
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4. Bounds for a composite with a resistive interface

We start by presenting a new upper bound for the e¬ective conductivity for particle
reinforced conductors with resistive interface. We introduce the surface moment of
inertia tensor de­ ned by

M =
N

r = 1 ¡ r

(x ¡ xr) « (x ¡ xr) ds; (4.1)

where xr is a reference point inside the rth particle. We introduce the tensors N
and M given by

N = c1¾1 ¡ (¾1 ¡ ¾2)¡1¾1(·¾ ¡ ~¾);

M = ¡ ¾1(¾1 ¡ ¾2)¡1(·¾ ¡ ~¾)(¾1 ¡ ¾2)¡1¾1 + (c1¾1 + ­ M ):
(4.2)

The upper bound is given by the following result.

Theorem 4.1 (upper bound for particulate composites with resistive
interface).

·E ¾e ·E 6 ·E f~¾ ¡ NM ¡1N g ·E: (4.3)

One easily checks that the tensor M is positive de­ nite. For a mono-disperse
suspension of spheres of radius `a’, calculation gives M = ac1I. When the composite
is an isotropic suspension of isotropically conducting spheres in an isotropic matrix,
the upper bound (4.3) becomes as follows.

Theorem 4.2 (upper bound on the e® ective conductivity for isotropic
suspension of spheres|resistive interface).

¼ e 6 C(~¼ ): (4.4)

The upper bound is found by choosing the trial ­ eld

¿ = ¿ p + ¿ 0; (4.5)

where ¿ p 2 V and

¿ 0 =
´ (x ¡ xr) in rth particle;

0 in the matrix;
(4.6)

where ´ is a constant vector. Substituting this into the integrals in (2.9) leads to

1
2

·E ¾e ·E 6
Q

f1
2
(r ¿ p + ·E) ¾(x)(r ¿ p + ·E) + f1(x)´ ¾1(r ¿ p + ·E)gdx

+ 1
2
´ (c1¾1 + ­ M )´: (4.7)

Next, take the in­ mum over ¿ p in (4.7) and use the result in the appendix to get

1
2

·E ¾e ·E 6 1
2

·E ·¾ ·E + c1´ ¾1
·E

¡ 1
2
( ·E + (¾1 ¡ ¾2)¡1¾1´) (·¾ ¡ ~¾)( ·E + (¾1 ¡ ¾2)¡1¾1´)

+ 1
2
´ (c1¾1 + ­ M )´; (4.8)
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where ~¾ is the e¬ective conductivity tensor of the perfectly bonded composite.
Finally, the right-hand side of (4.8) is minimized with respect to ´ to obtain the
upper bound.

We present a lower bound for particle reinforced composites with resistive interface.
We introduce the tensor B de­ ned by

B =
¡

n « n ds; (4.9)

and the tensors R and Q given by

R = (¾2 ¡ ¾0)¾¡1
2 ;

Q = ¾¡1
2 (c2¾2 ¡ ¾0)¾¡1

2 + c1¾¡1
1 + ­ ¡1B :

(4.10)

The lower bound is given by the following result.

Theorem 4.3 (lower bound for particulate composites with resistive
interface).

·E ¾e ·E > ·E f¾0 + RQ¡1Rg ·E: (4.11)

A straightforward calculation shows that the tensor

(c2¾2 ¡ ¾0)

is positive de­ nite. For isotropic composites with isotropically conducting inclusions
and matrix, equation (4.11) is precisely the lower bound given by (3.13) in Lipton &
Vernescu (1996).

To obtain a lower bound, we follow Lipton & Vernescu (1996) and complete the
square to ­ nd that

1
2
­

¡

([ ¿ ])2 ds >
¡

v[ ¿ ] ds ¡ 1

2­ ¡

v2 ds; (4.12)

for any scalar v. Now introduce a comparison composite with conductivity tensor

¾̂(x) = f1(x)¾0 + f2(x)¾2; (4.13)

where ¾0 is chosen so that ¾1 ¡ ¾0 is positive de­ nite. Then

1
2
P (¾1 ¡ ¾0)¡1P = sup

E
fP E ¡ 1

2
E (¾1 ¡ ¾0)Eg; (4.14)

for any vector P , and so

1
2
E ¾1E > 1

2
E ¾0E + P E ¡ 1

2
P (¾1 ¡ ¾0)¡1P ; (4.15)

for any vectors P and E. Using (4.12) and (4.15) in (2.9) gives

1
2

·E ¾e ·E > inf
¿ 2 W Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx

¡
Q

f1(x) 1
2
P (¾1 ¡ ¾0)¡1P dx +

¡

v[ ¿ ] ds ¡ 1

2­ ¡

v2 ds ;

(4.16)
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for any vector P and scalar v. Next, let ¿ ¤ be the minimizer of

inf
¿ 2 V Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx; (4.17)

so that ¿ ¤ is continuous. It follows that ¿ ¤ satis­ es

div[¾̂(x)(r ¿ ¤ + f1(x)P )] = 0; x 2 Q; (4.18)

and
¾2(r ¿ ¤ + ·E) n = (¾0(r ¿ ¤ + ·E) + P ) n; x 2 ¡ : (4.19)

For any ¿ 2 W , let
¿ = ¿ ¤ + ¿ 0; (4.20)

where ¿ 0 = ¿ ¡ ¿ ¤ . Then

Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx

>
Q

f1
2
(r ¿ ¤ + ·E) ¾̂(x)(r ¿ ¤ + ·E) + f1(x)P (r ¿ ¤ + ·E)gdx

+
¡

[ ¿ 0]f¾0(r ¿ ¤ + ·E) + P g n ds;

(4.21)

on using the divergence theorem, equations (4.18), (4.19) and omitting the term
involving r ¿ 0 ¾̂(x)r ¿ 0. It now follows that, for any ¿ 2 W ,

Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx +

¡

v[ ¿ ] ds

>
Q

f1
2
(r ¿ ¤ + ·E) ¾̂(x)(r ¿ ¤ + ·E) + f1(x)P (r ¿ ¤ + ·E)gdx

+
¡

[ ¿ 0]f¾0(r ¿ ¤ + ·E) n + P n + vgds:

(4.22)

If ¾0 and v are now chosen to be zero and ¡ P n, respectively, the right-hand side
of (4.22) is independent of ¿ 0 and, from (4.16), we obtain the bound

1
2

·E ¾e ·E > inf
¿ 2 V Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx

¡ 1

2­
P BP ¡ 1

2
c1P ¾¡1

1 P ; (4.23)

in which P has now been chosen to be a constant vector. Using the result in the
appendix, the ­ rst term on the right-hand side of (4.23) can be expressed in terms of
¾0, the e¬ective conductivity tensor of a matrix containing a distribution of perfectly
insulating particles. The result is

1
2

·E ¾e ·E > 1
2
c2

·E ¾2
·E + c1P ·E ¡ 1

2
( ·E ¡ ¾¡1

2 P ) (c2¾2 ¡ ¾0)( ·E ¡ ¾¡1
2 P )

¡ 1
2
c1P ¾¡1

1 P ¡ 1

2­
P BP

(4.24)

The bound follows after optimizing this with respect to P .
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5. Results and discussion

Results have been obtained for an isotropic distribution of spherical inclusions and
for a distribution of aligned spheroids. The ­ rst composite for which results have
been obtained consists of spheres of inclusion phase, with radius a, coated with a
corona of matrix phase. These coated spheres are packed in Q to occupy 60% of its
volume and any gaps are ­ lled with matrix phase. The spheres are assumed to be
distributed isotropically and both phases are isotropic with conductivities ¼ 1 and ¼ 2.

When the interface is highly conducting, it is easy to check that the upper bound
(3.13) coincides with that of Lipton (1997a). The tensor G was given by Lipton
(1997a) and is (2=a)c1I . The simplest bound is found using the trivial upper bound
given by 1 for ¾ 1 , while an improved bound can be found using the bound of Bruno
(1991). The lower bound (3.5) relies on knowledge of any lower bound for ~¾ = ~¼ I ,
where ~¼ is the e¬ective conductivity of the perfectly bonded composite. The simplest
choice of lower bound is

~¼ >
c1

¼ 1

+
c2

¼ 2

¡1

: (5.1)

An improved bound can be obtained by using the Hashin{Shtrikman lower bound.
In this case, the lower bound of Lipton (1997a) given by (1.6) is recovered. The
bound (3.5) does allow for the use of more sophisticated lower bounds and, for the
composite considered here, can be further improved by using the lower bound of
Bruno (1991) for ~¼ . Bounds for the e¬ective conductivity are displayed in ­ gure 1
when ¼ 1=¼ 2 = 0:2 for the volume fractions c1 = 0:1296 and c2 = 0:4826. It can be
seen that use of the lower bound of Bruno (1991) improves on the bound of Lipton
(1997a), given by (1.6) using the Hashin{Shtrikman bound. It should be noted,
however, that the latter bound and the simplest upper and lower bounds are valid
for all isotropic composites, whereas the bounds of Bruno incorporate details of the
microstructure.

When the interface is resistive, it is easy to check that the lower bound (4.11) is
the same as that given by Lipton & Vernescu (1996) (see (3.13) of that paper). A
simple lower bound can be found by using the trivial lower bound on ¾0 given by 0,
while an improved bound is found by using the lower bound of Bruno (1991) for ¾0.
The tensor B in (4.9) was given by Lipton & Vernescu (1996) and is (c1=a)I. The
upper bound (4.4) requires an upper bound on ~¾. The simplest is found by using

~¼ 6 c1 ¼ 1 + c2 ¼ 2; (5.2)

while improved bounds can be found by either using the Hashin{Shtrikman or Bruno
upper bound. Here, the bound obtained using the Hashin{Shtrikman bound coincides
with those obtained by Lipton & Vernescu (1996), as given by (1.2). By choosing
the reference point xr in (4.1) to be the centre of the rth sphere, the tensor M is
found to be c1aI . Results are displayed in ­ gure 2 when ¼ 1=¼ 2 = 5, and it can be
seen that using the bound of Bruno (1991) improves on the upper bound of Lipton
& Vernescu (1996), obtained here using the Hashin{Shtrikman bound. Bounds have
also been obtained for a distribution of aligned isotropic spheroids with semiaxes
(1=a; 1=a; "=a) with a highly conducting interface when " = 1

2
. The tensor G is

evaluated numerically, while the tensor U is estimated. For a particle of any shape,
one has the bound on the scale tensor U derived in Lipton (1999). The bound is
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Figure 1. Bounds for a composite with a highly conducting interface: (a) c1 = 0:1296;
(b) c1 = 0:4826. The curves are labelled as follows. U and L are the simple upper and lower
bounds obtained by using in¯nity for ¼ 1 and (5.1). B+ and B ¡ are the upper and lower bounds
obtained by using the bounds of Bruno (1991) and HS ¡ is the lower bound obtained by using
the Hashin{Shtrikman lower bound.
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Figure 2. Bounds for a composite with a resistive interface: (a) c1 = 0:1296; (b) c1 = 0:4826.
The curves are labelled as follows. U and L are the simple upper and lower bounds obtained by
using (5.2) and zero for ¼ 0 . B+ and B ¡ are the upper and lower bounds obtained by using the
bounds of Bruno (1991) and HS+ is the upper bound obtained by using the Hashin{Shtrikman
upper bound.

given by
r U r 6 c1( ¼ 1­ )¡1jrj2; (5.3)

where r is any vector and ­ is the surface to volume dissipation introduced by Lipton
(1998). Equality is seen to hold for spheres. For spheroidal inclusions, a lower bound
for ¼ 1­ can be calculated numerically from formulae given by Lipton (1998) for star-
like particles. Results are shown in ­ gure 3, when ¼ 1=¼ 2 = 0:2 and c1 = 0:3. The
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Figure 3. Bounds for a distribution of aligned ellipsoids with highly conducting interface. The
curves are labelled as follows. U and L are the simple upper and lower bounds obtained by using
in¯nity for ¼ 1 and (5.1). HS ¡ is the lower bound obtained by using the Hashin{Shtrikman lower
bound.

upper bound was found by substituting in­ nity for ¾ 1 in (3.13), the simple lower
bound was generated using the lower bound (5.1) and the Hashin{Shtrikman lower
bound was found by using formulae given by Willis (1977). Some improvement is
obtained by using the new lower bound (3.4).

6. A composite with a nonlinear interface

The problem de­ ned by (2.12) is now considered. First, to obtain a lower bound,
note that, for any x and y,

Ws(x) > xy ¡ W ¤
s (y); (6.1)

where W ¤
s is the convex dual of Ws, given by

W ¤
s (y) = ¿ 0jyj: (6.2)

The same reasoning that led to (4.23) can now be used to obtain

~W ( ·E) > inf
¿ 2 V Q

f1
2
(r ¿ + ·E) ¾̂(x)(r ¿ + ·E) + f1(x)P (r ¿ + ·E)gdx

¡ 1
2
c1P ¾¡1

1 P ¡ ¿ 0
¡

jP nj ds: (6.3)

The in­ mum can be evaluated using the result in the appendix. For an isotropic
distribution of isotropic spherical inclusions, the result, after maximizing with respect
to P , is

~W ( ·E)

W2( ·E)
>

¼ 0

¼ 2

+
(1 ¡ ¼ 0=¼ 2 ¡ 1

2
® )2

c1 ¼ 2=¼ 1 + c2 ¡ ¼ 0=¼ 2

; ® < 2(1 ¡ ¼ 0=¼ 2);

¼ 0

¼ 2
; ® > 2(1 ¡ ¼ 0=¼ 2);

(6.4)
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where W2(E) = 1
2
¼ 2jEj2 and

® =
3c1 ¿ 0

aj ·Ej : (6.5)

An upper bound is found by substituting the trial ­ eld given by (4.5) and (4.6)
directly into the integral on the right-hand side of (2.12) and using the reasoning
leading to (4.8) to get

~W ( ·E) 6 1
2

·E ·¾ ·E + c1´ ¾1
·E + 1

2
c1´ ¾1´

¡ 1
2
( ·E + (¾1 ¡ ¾2)¡1¾1´) (·¾ ¡ ~¾)( ·E + (¾1 ¡ ¾2)¡1¾1´); (6.6)

where ´ is subject to the restriction j´ (x ¡ xr)j < ¿ 0 in the rth particle. After
minimizing with respect to ´, the bound for an isotropic distribution of isotropic
spheres is

~W ( ·E)

W2( ·E)
6

~¼

¼ 2

+
¼ 1

¼ 2

c1( ¼ 1 ¡ ¼ 2)2 ¡ ¼ 1(·¼ ¡ ~¼ )

( ¼ 1 ¡ ¼ 2)2

® 2

9c2
1

¡ 2
¼ 1

¼ 2

~¼ ¡ ¼ 2

¼ 1 ¡ ¼ 2

®

3c1
; ® < ® 0;

~¼

¼ 2
¡ ¼ 1

¼ 2

(~¼ ¡ ¼ 2)2

c1( ¼ 1 ¡ ¼ 2)2 ¡ ¼ 1(·¼ ¡ ~¼ )
; ® > ® 0;

(6.7)
where

® 0 =
3c1( ¼ 1 ¡ ¼ 2)(~¼ ¡ ¼ 2)

c1( ¼ 1 ¡ ¼ 2)2 ¡ ¼ 1(·¼ ¡ ~¼ )
: (6.8)

We note that, as ¿ 0 ! 1, equation (6.4) implies that the lower bound tends to
the e¬ective conductivity of a matrix containing a distribution of perfect insula-
tors, whereas, if ¿ 0 ! 0, equation (6.7) implies that the upper bound tends to
the e¬ective conductivity of the perfectly bonded composite. It is also worth noting
that the method used here would also apply for more general forms of Ws and can
also be applied, in principle, to a highly conducting interface exhibiting nonlinear
behaviour.

The simplest upper and lower bounds are found by using ~¼ = ·¼ and ¼ 0 = 0,
respectively, in (6.7) and (6.4). Improved upper bounds are found by using either
the Hashin{Shtrikman bound for ~¼ or the bound of Bruno (1991). The lower bound
can be improved by using the lower bound of Bruno (1991) for ¼ 0. Bounds for ~W =W2

are shown in ­ gure 4 when ¼ 1=¼ 2 = 0:2 for volume fractions of spheres of 0.1296 and
0.4826.

Appendix A.

In the present context, the result of Talbot & Willis (1992) is that, if

~WT ( ·E; P ) = inf
¿ 2 V Q

[ 1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) + P (r ¿ + ·E)] dx; (A 1)

where P is a piecewise constant vector, then, for two-phase materials,

~WT ( ·E; P ) = 1
2

·E ·¾ ·E + ·E P ¡ S;
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Figure 4. Bounds for a composite with a nonlinear interface: (a) c1 = 0:1296; (b) c1 = 0:4826.
The curves are labelled as follows. U and L are the simple upper and lower bounds obtained by
using (5.2) and zero for ¼ 0 in (6.7) and (6.4), respectively. B+ and B ¡ are the upper and lower
bounds obtained by using the bounds of Bruno (1991) and HS + is the upper bound obtained
by using the Hashin{Shtrikman upper bound.

where

S = 1
2
[ ·E + (¾1 ¡ ¾2)¡1(P1 ¡ P2)] (·¾ ¡ ~¾)[ ·E + (¾1 ¡ ¾2)¡1(P1 ¡ P2)]; (A 2)

where ·P = c1P1 + c2P2 and ~¾ is the e¬ective conductivity tensor of the composite.
Finally, we establish that the solution of (2.11) is the minimizer of (2.12). The

overall energy is easily seen to be equivalent to

~W ( ·E) = inf
¿ 2 K Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx ; (A 3)

where K is the closed convex subset of the Hilbert space de­ ned by W in x 2 given
by

K = f¿ in W j ¡ ¿ 0 6 ¡ [ ¿ ] 6 ¿ 0g: (A 4)

We set

F ( ¿ ) =
Q

1
2
(r ¿ + ·E) ¾(x)(r ¿ + ·E) dx;

and well-known methods (see Duvaut & Lions 1976) show that the minimizer is
characterized by the variational inequality

Q

F 0( ¿ ) (r ¿ ¡ rv) dx > 0; (A 5)

for all v in K . This is easily seen to be equivalent to (2.11).
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