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Relaxation through Homogenization for Optimal
Design Problems with Gradient Constraints1
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2
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Abstract. The problem of the relaxation of optimal design problems
for multiphase composite structures in the presence of constraints on
the gradient of the state variable is addressed. A relaxed formulation
for the problem is given in the presence of either a finite or infinite
number of constraints. The relaxed formulation is used to identify mini-
mizing sequences of configurations of phases.
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1. Introduction

In the study of the optimal design of composite structures, much effort
has focused on the problems of optimization of design criteria in the absence
of constraints on the gradients of the field variables. In this article, a theory
is developed for the relaxation of optimal design problems for multiphase
composite structures in the presence of constraints on the gradient. An
example of where such a theory would be useful is the design of a multiphase
insulator with a prescribed overall dielectric constant subject to the con-
straint that, inside the composite, the electric field does not exceed a critical
value. This type of problem is important in the applications (Ref. 1), where
large values of the local electric field are attributed to material breakdown
(Ref. 2).

To fix the ideas, the paper is written in the physical context of multi-
phase dielectric materials. The design domain is a bounded open set Ω in
Rm and the multiphase dielectric is made up of N anisotropic dielectric
materials with dielectric constants given by the mBm symmetric positive
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matrices A1 , A2 , A3 , . . . , AN . A particular choice of the component dielec-
tric constants is specified by the array

Aq G(A1 , A2 , A3 , . . . , AN)

and the dielectric constant at each point in the design domain is given by

C (Aq , x)G ∑
iG1

N

χ i (x)Ai .

Here, χ i is the indicator function of the set occupied by the i th dielectric
phase, with χ iG1 for x in the ith phase and χ iG0 elsewhere. The design
space consists of all partitions of Ω into N Lebesgue measurable subsets
Ω1 , Ω2 , . . . , ΩN occupied by the different dielectrics subject to the resource
constraints

meas(Ωi)⁄γ i .

Here,

∑
i

γ i ¤meas(Ω ),

and the vector of resource constraints is written as

γq G(γ 1 , γ 2 , . . . , γ N).

The electric potential in the composite is denoted by φ and, for a prescribed
distributed charge density, f satisfies

−div(C (Aq , x)∇φ )Gf. (1)

Here, the potential φ is zero on the boundary of Ω. From the theory of the
Poisson equation, it is well known that the potential lies in the Sobolev
space H1

0 (Ω ) and f can be chosen from the dual space H−1(Ω ). The design
criteria is a function of the potential and is denoted by F (φ ). The types of
criteria considered here are those associated with overall energy dissipation,
given by

F (φ )G�
Ω

φ f dx,

or the distance of the potential from a desired target potential φ̂ , given by

F (φ )G�
Ω

�φAφ̂ �2 dx.

Both of these objective functions are continuous with respect to weak con-
vergence in H1

0 (Ω ). The results given here are not restricted to this situation
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and apply to any design criteria that is continuous with respect to G-conver-
gent sequences of designs (Ref. 3).

For a given tolerance KH0 and a prescribed nonnegative function p(x),
the basic gradient constraint is given by

�
Ω

p(x) �∇φ �2 dx⁄K2. (2)

For simplicity, p(x) is chosen to be in the space of infinitely differentiable
functions continuous on the closure of Ω, i.e., p(x) in CS(Ω̄). For a finite
collection of functions p1 , p2 , . . . , pj , one has the set of constraints given by

�
Ω

pk (x) �∇φ �2 dx⁄K2, pk (x)¤ 0, kG1, 2, . . . , j. (3)

Last, one may consider the infinite number of constraints given by

�
Ω

p(x) �∇φ �2 dx⁄K2 �
Ω

p(x) dx, p(x)¤ 0 in CS(Ω̄), (4)

which is equivalent to the local constraint

�∇φ �⁄K, almost everywhere in Ω. (5)

The basic gradient-constrained optimal design problem is given by

PG inf
configurations,
meas(Ωi)⁄γ i

F (φ ), (6)

where φ is a solution of the equation of state (1) and is subject to the
gradient constraint given by (2). Optimal design problems subject to either
a finite or an infinite number of gradient constraints are formulated in the
same way.

The goal of this analysis is to present a theory of relaxation for these
problems that provides the theoretical underpinnings for a numerical
approach to the solution of the design problem. The problem as stated
above is not readily amenable to numerical solution. The fundamental rea-
son for this is that problems of this type do not possess configurations for
which the infimum in (6) is obtained; see Refs. 4–6. Thus, any approach
that seeks to identify optimal configurations is most likely to fail. Instead,
one must seek a methodology for systematically identifying minimizing
sequences of configurations that approach the infimum of (6).

In the absence of gradient constraints, problems of this kind have been
the object of intense and fruitful study. One approach to these problems is
the relaxation of the design problem through the extension of the design
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space. This is accomplished using the theory of homogenization. This
approach can be found in the seminal work of Ref. 7 and Ref. 8. The
approach taken here follows the philosophy given in Ref. 7 and Ref. 8 and
provides a relaxation of the design problem (6) through an extension of the
design space. However, the extended design space for the gradient-con-
strained design problem is seen to be a generalization of the one developed
for the unconstrained problem. Loosely speaking, in the absence of gradient
constraints, the design space is extended to include all effective dielectric
tensors made from composites formed from the constituent dielectric mater-
ials. However, for gradient-constrained optimal design problems, it is found
that the relaxed problem requires the extension of the design space to
include all the effective dielectric tensors viewed as functions of the dielectric
tensors of the constituent materials.

In order to proceed, the optimal design problem over configurations is
reformulated in an equivalent way. For a given array Aq , a neighborhood
N (Aq ) of Aq is introduced. Arrays in this neighborhood are denoted by

Pq G(P1 , P2 , . . . , PN).

The neighborhood is chosen such that all matrices Pi in the array Pq satisfy
the constraint

0FλFPiFΛ.

The associated set of controls

C (Pq , x)G ∑
iG1

N

χ i(x)Pi ,

for Pq in the neighborhood N (Aq ) for which �Ω χ i dx⁄γ i , is denoted by

C (Aq , γq ), and the design problem is given by

PG inf
C (Pq , x) in C (Aq ,γq )

F (φ ), (7)

where φ is a solution of the equation of state (1) and is subject to the
gradient constraint given by (2). As before, optimal design problems subject
to either a finite or an infinite number of gradient constraints are formulated
in the same way.

The notion of homogenization is given in the theories of G-convergence
and H-convergence; see Ref. 9 and Ref. 10. Both notions of convergence
coincide for the problem addressed here. A comprehensive introduction to
the theory of G-convergence together with extensive references to the litera-
ture is given in Ref. 11.



JOTA: VOL. 114, NO. 1, JULY 2002 31

Definition 1.1. G-Convergence. The sequence {Cn(Pq , x)}SnG1 G-con-
verges to CS(Pq , x) if and only if, for any open set ω ⊂⊂ Ω and any f in
H−1(ω ), the solutions wn in H1

0 (ω ) of

−div(Cn(Pq , x)∇wn)Gf (8)

satisfy

wn %w , weakly in H1
0 (ω ),

Cn(Pq , x)∇wn %CS(Pq , x)∇w , weakly in L2(ω )N,

where w is the H1
0 (ω ) solution of

−div(CS(Pq , x)∇w )Gf. (9)

The resource constraints for a G-convergent sequence of controls is
handled in the usual way by assuming that the associated sequence of
characteristic functions {χn

i }
S
nG1 satisfy

χn
i % θ i , in LS(Ω ) weak*. (10)

The design space is extended to include the set of all functions CS(Pq , x) for
which there exists a sequence of controls {Cn(Pq , x)}SnG1 G-converging to

CS(Pq , x) for all Pq in N (Aq ) and �Ω θ i dx⁄γ i . The set of all such functions

CS(Pq , x) is the G-closure of the set C (Aq , γq ) and is denoted by G C (Aq , γq ).

We point out that C (Aq , γq ) is contained in G C (Aq , γq ). Its evident that the
extension of the design space introduced here is more general than the usual
one in that it involves the notion of tensor-valued effective dielectric func-
tions as opposed to effective dielectric tensors.

The next step in the relaxation procedure is the correct description
of the gradient constraints (2)–(5) in the extended design space. Given a
sequence {Cn(Pq , x)}SnG1 that G-converges to CS(Pq , x) for every Pq in N (Aq ),
the local corrector function associated with the sequence {Cn(Aq , x)}SnG1 is
introduced. Consider a cube Q(x, r) of side length r centered at some point
x in Ω. For r sufficiently small, Q(x, r) is contained within Ω. Given a vector
E in RN, the local corrector function is written as ϕn,r

E , where ϕn,r
E is the

H1
0 (Q(x, r)) solution of

−div(Cn(Aq , y)(∇ϕn,r
E CE ))G−div(CS(Aq , y)E ), for y in Q(x, r). (11)

The local corrector functions are used to define the directional derivatives
of the G-limit CS(Pq , x) in the following theorem.

Theorem 1.1. Given that {Cn(Pq , x)}SnG1 G-converges to CS(Pq , x) for
every Pq in N (Aq ), the directional derivative of CS(Pq , x) at Aq with respect
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to the ith component conductivity in the direction specified by the mBm
symmetric matrix Mi is given by

∂CS�∂Mi E · E

G ∑
kG1

m

∑
lG1

m

[Mi ]kl�lim
r→0

lim
n→S

(1��Q(x, r) �)

B�
Q(x,r)

χn
i (∇kϕn,r

E CEk)(∇lϕn,r
E CEl) dy� (12)

and exists almost everywhere in Ω and for every E in Rm.

From Theorem 1.1, it follows that the definition of the ith phase gradi-
ent, denoted by (∇i

klC
S(Aq , x))E · E, is given by the local formula

(∇i
klC

S(Aq , x))E · E

Glim
r→0

lim
n→S

(1��Q(x, r) �)�
Q(x,r)

χn
i (∇kϕn,r

E CEk) (∇lϕn,r
E CEl) dy (13)

and

(∇i
kkC

S(Aq , x))E · E

Glim
r→0

lim
n→S

(1��Q(x, r) �)�
Q(x,r)

χn
i �∇ϕn,r

E CE ) �2 dy, (14)

where repeated indices indicate summation. Theorem 1.1 provides explicit
formulas for the derivatives of the G-limit in terms of the microscopic prob-
lems (11). The identification of the suitable microscopic problems together
with the local formulas (12)–(14) are necessary for numerical solution
schemes based on relaxation through homogenization; see Ref. 12. General
differentiability properties of the G-limits obtained without the use of local
formulas are presented in Ref. 13. Differentiability properties for the the
effective dielectric tensor in the contexts of periodic homogenization and
statistically homogeneous random media were presented in Ref. 14.

The relaxation scheme developed here follows from the homogen-
ization result given below. In order to state the result, one considers a
sequence of configurations and a function CS(Pq , x) for which the sequence
of controls {Cn(Pq , x)}SnG1 G-converges to CS(Pq , x) for every Pq in N (Aq ).
From homogenization theory, there exists a potential φS such that the
sequence of potentials {φn}SnG1 in H1

0 (Ω ) satisfying

−div(Cn(Aq , x)∇φn)Gf (15)
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converges weakly to φS in H1
0 (Ω ), where

−div(CS(Aq , x)∇φS)Gf. (16)

The following homogenization theorem allows one to pass to the
homogenization limit in the gradient constraints of the form (2)–(5).

Theorem 1.2. Homogenization Limit of Weakly Converging
Gradients. For any function p(x) in CS(Ω̄),

lim
n→S

�
Ω

p(x) �∇φn�2 dxG�
Ω

p(x)(σ (x)CI )∇φS · ∇φS dx, (17)

where the covariance σ (x) is a nonnegative matrix defined by

σ (x)E · EG ∑
iG1

N

(∇i
kkC

S(Aq , x))E · EA�E�2, (18)

for all vectors E in Rm.

The homogenization limit of the gradient constraints is given in the
following corollary.

Corollary 1.1. Homogenization Limit of Gradient Constraints. For
some nonnegative p in CS(Ω̄), if it is known that

�
Ω

p(x) �∇φn�2 dx⁄K2 (19)

for the sequence {φn}SnG1 given above, then ∇φS satisfies

�
Ω

p(x)(σ (x)CI )∇φS · ∇φS dx⁄K2. (20)

Similarly, if one has the local constraint �∇φn�⁄K almost everywhere in Ω,
then ∇φS satisfies

1(σ (x)CI )∇φS · ∇φS⁄K, (21)

almost everywhere in Ω.

The covariance can be thought of as a new effective property charac-
terizing the interaction between the local microstructure and the macro-
scopic electric field A∇φS. It has been introduced in the contexts of
periodic and statistically homogeneous random composites in Refs. 15–16.
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In the general context of G-convergent sequences of matrices, the local for-
mula for σ is given in Theorem 1.1 of Ref. 17.

The relaxed formulation for the basic gradient-constrained optimal
design problem is introduced. For p(x)¤ 0 and p(x) in CS(Ω̄), the relaxed
formulation of (7) is

QPG inf
CS(Pq , x) in G C (Aq ,γq)

F (φ ), (22)

subject to the constraint

�
Ω

p(x)(σ (x)CI )∇φ · ∇φ dx⁄K2, (23)

where φ is the H1
0 (Ω ) solution to the state equation

−div(CS(Aq , x)∇φ )Gf, (24)

and σ is defined by (18).
The first important feature of the relaxed problem is that the infimum

of the relaxed design problem is attained by a control in G C (Aq , γq ).

Theorem 1.3. There exists a control ĈS(Pq , x) in G C (Aq , γq ) and a state
variable φ̂ in H1

0 (Ω ) for which

−div(ĈS(Aq , x)∇φ̂ )Gf (25)

and

QPGF (φ̂ ), (26)

where

�
Ω

p(x)(σ̂ (x)CI )∇φ̂ · ∇φ̂ dx⁄K2 (27)

and

σ̂ (x)E · EG ∑
iG1

N

(∇i
kkĈ

S(Aq , x))E · EA�E�2, (28)

for every E in Rm.

The second important feature is the connection between the minimizer
ĈS(Pq , x) of the relaxed problem and minimizing sequences of configur-
ations. To make the connection, the following optimal design problems are
introduced. For p(x)¤ 0 and p(x) in CS(Ω̄),

PjG inf
C (Pq , x) in C (Aq ,γq )

F (φ ), (29)
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subject to the constraint

�
Ω

p(x) �∇φ �2 dx⁄K2(1C1�j ), (30)

where φ is the H1
0 (Ω ) solution to the state equation

−div(C (Aq , x)∇φ )Gf. (31)

Its clear that, as j tends to infinity, the constraints given in the design prob-
lems Pj approach the constraint associated with (7). The problems Pj share
the same feature as (7) in that they are optimal design problems over con-
figurations of N dielectrics. The connection between the minimizer of the
relaxed problem and minimizing sequences of configurations is given in the
following theorem.

Theorem 1.4. Given a minimizer ĈS(Pq , x) of QP, there is a sequence
of configurations and associated controls {Cj (Pq , x)}SjG1 in C (Aq , γq ) such
that, for all Pq in N (Aq ), the sequence {Cj (Pq , x)}SjG1 G-converges to
ĈS(Pq , x) and the state variables φ j satisfy the constraints (30). For this case,
one has

lim
j→S

F (φ j )GQP. (32)

Moreover, given any (H0, there exists an index JH0 such that, for all
jHJ,

Pj⁄F (φ j )⁄PjC( (33)

and

lim
j→S

PjGQP. (34)

Thus, one can use the minimizer for the relaxed problem to recover nearly-
optimal constrained-gradient designs of N dielectrics.

The locally-constrained optimal design problem is given by

inf
C (Pq , x)inC (Aq ,γq )

F (φ ), (35)

where φ is a H1
0 (Ω ) solution of the equation of state (1) and is subject to

the gradient constraint given by

�∇φ �⁄K, almost everywhere in Ω. (36)
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The local constraint can be given also in the equivalent form (4). Moreover,
choosing a countable dense subset {pk}

S
kG1 of the set of nonnegative func-

tions in CS(Ω̄), the local constraint is equivalent to

�
Ω

pk (x) �∇φ �2 dx⁄K2 �
Ω

pk (x) dx, for 1⁄kFS. (37)

The relaxed formulation of (35) is

QRG inf
CS(Pq , x) in G C (Aq ,γq )

F (φ ), (38)

subject to the local constraint

1(σ (x)CI )∇φ · ∇φ ⁄K, almost everywhere in Ω, (39)

where φ is the H1
0 (Ω ) solution to the state equation

−div(CS(Aq , x)∇φ )Gf (40)

and σ is defined by (18). The first important feature of the relaxed problem
is that the infimum of the design problem is attained by a control in
G C (Aq , γq ).

Theorem 1.5. There exists a control ĈS(Pq , x) in G C (Aq , γq ) and a state
variable φ̂ in H1

0 (Ω ) for which

−div(ĈS(Aq , x)∇φ̂ )Gf (41)

and

QRGF (φ̂ ), (42)

where

1(σ̂ (x)CI )∇φ̂ · ∇φ̂ ⁄K, almost everywhere in Ω, (43)

and

σ̂ (x)E · EG ∑
iG1

N

(∇i
kkĈ

S(Aq , x))E · EA�E�2, (44)

for every E in Rm.

The second important feature is the connection between the minimizer
ĈS(Pq , x) of the relaxed problem and minimizing sequences of configur-
ations. To make the connection, consider a countable dense subset
{pk}

S
kG1 of the nonnegative functions in CS(Ω̄). For a finite collection of

these functions SjG{pk}
j
kG1 , the following optimal design problems are
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introduced:

P̃jG inf
C (Pq ,x) in C (Aq ,γq )

F (φ ), (45)

subject to the constraints

�
Ω

pk (x) �∇φ �2 dx⁄K2 �
Ω

pk (x)(1C1�j ) dx, for pk in Sj , (46)

where φ is the H1
0 (Ω ) solution to the state equation

−div(C (Aq , x)∇φ )Gf. (47)

It is clear that, as j tends to infinity, the constraints given in the design
problems P̃j approach the constraint given by (37). The problems P̃j share
the same feature as (35) in that they are optimal design problems over all
configurations of N dielectrics. The connection between the minimizer of
the relaxed problem and minimizing sequences of configurations is given in
the following theorem.

Theorem 1.6. Given a minimizer ĈS(Pq , x) of QR, there is a sequence
of configurations and associated controls {Cj (Pq , x)}SjG1 in C (Aq , γq ) such
that, for all Pq in N (Aq ), the sequence {Cj (Pq , x)}SjG1 G-converges to
ĈS(Pq , x) and the state variables φ j satisfy the constraints (46). For this case,
one has

lim
j→S

F (φ j )GQR. (48)

Moreover, given any (H0, there exists an index JH0 such that, for all
jHJ,

P̃j⁄F (φ j )⁄P̃jC( (49)

and

lim
j→S

P̃jGQR. (50)

Thus, one can use the minimizer for the relaxed problem to recover nearly-
optimal constrained-gradient designs of N dielectrics.

The paper is organized as follows. In Section 2, the local formula for
the derivative of the effective dielectric tensor viewed as a function of its
constituent dielectric constants is derived together with a local homogen-
ization theorem. In Section 3, Theorem 1.2 is derived; the relaxation the-
orems are proved in Section 4. In Section 5, an overview of the results given
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here and recent results for problems where the design criteria are given in
terms of the L2 norm of the gradient are discussed in the conclusion.

2. Local Formulas for the Derivative of the G-Limit and Local
Homogenization

In this section, we prove Theorem 1.1. We consider a sequence
{Cn(Pq , x)}SnG1 that G-converges to CS(Pq , x) for every Pq in N (Aq ). Given
the sequence {Cn(Aq , x)}SnG1 , a vector E in Rm, and an open set ω ⊂ Ω, we
introduce the local corrector functions ϕn

E , where ϕn
E is the H1

0 (ω ) solution
of

−div(Cn(Aq , x))(∇ϕn
ECE ))G−div(CS(Aq , x)E ), in ω . (51)

Equation (51) is written in the variational form given by

�
ω

Cn(Aq , x)(∇ϕn
ECE ) · ∇ψ dxA�

ω
(CS(Aq , x)E ) · ∇ψ dxG0, (52)

for all ψ in H1
0 (ω ). In the sequel, a generic open subset of Ω is denoted by

ω . The measure of ω is denoted by �ω �, and standard a priori estimates
using the Cauchy inequality in (52) give

�
ω

�∇ϕn
E �2 dx⁄ (4Λ2�λ2) �ω ��E�2, (53)

�
ω

�∇ϕn
ECE�2 dx⁄ (4Λ2�λ2C1) �ω ��E�2. (54)

We now list the convergence properties for the sequence of corrector
functions.

Lemma 2.1. The sequence {ϕn
E}SnG1 converges weakly to zero in

H1
0 (ω ). Thus,

∇ϕn
E % 0, weakly in L2(ω )N, (55)

and

Cn(Aq , x)(∇ϕn
ECE )%CS(Aq , x)E, weakly in L2(ω )N. (56)

The proof is standard; see Ref. 10.
For δβ and Mq such that AqCδβMq lies in N (Aq ), consider the sequence

{Cn(AqCδβMq , x)}SnG1 . Here, Mq is taken to be an array of dielectric tensors
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that are identically zero except for the ith component dielectric tensor Mi.
Here,

�Mi �G1∑
k,l

[Mi ]
2
kl .

The sequence of coefficients {Cn(AqCδβMq , x)}SnG1 differs from
{Cn(Aq , x)}SnG1 by the increment δβMiχn

i . The G-limit for the sequence
{Cn(AqCδβMq , x)}SnG1 is written as CS(AqCδβMq , x). We set

δCGCS(AqCδβMq , x)ACS(Aq , x,)

and examine the dependence of δC with respect to δβ .
The first step is to examine the dependence of (1��ω �) �ω δC E · E dx

with respect to the increment δβ . The correctors associated with the
sequence {Cn((AqCδβMq , x)}SnG1 are denoted by ϕ̂n

ECE · x, where ϕ̂n
E are the

H1
0 (ω ) solutions of

�
ω

Cn((AqCδβMq , x)(∇ϕ̂n
ECE ) · ∇ψ dx

A�
ω

(CS(AqCδβMq , x)E ) · ∇ψ dxG0, (57)

for all ψ in H1
0 (ω ), and

Cn(AqCδβMq , x)(∇ϕ̂n
ECE )%CS(AqCδβMq , x)E, weakly in L2(ω )N, (58)

∇ϕ̂n
E % 0, weakly in L2(ω )N. (59)

For any choice of p(x) in CS(ω̄ ), it follows from (56) and (58) that

(1��ω �)�
ω

p(x)δC E · E dx

G lim
n→S

(1��ω �)�
ω

p(x)(Cn(AqCδβMq , x)(∇ϕ̂n
ECE )

ACn(Aq , x)(∇ϕn
ECE )) · E dx. (60)

Writing

Cn(AqCδβMq , x)GCn(Aq , x)CδβMiχn
i ,

ϕ̂n
EGϕn

ECδϕn,

where

δϕnGϕ̂n
EAϕn

E ,
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and substitution into (60) gives

(1��ω �)�
ω

pδC E · E dx

G lim
n→S

(1��ω �)�
ω

pδβMiχn
i (∇ϕn

ECE ) · E

CpδβMiχn
i ∇δϕn · ECpCn(Aq , x)∇δϕn · E dx. (61)

To proceed further, we subtract (52) from (57) to obtain, for every ψ in
H1

0 (ω ), the equation

0G�
ω

δβMiχn
i (∇ϕn

ECE ) · ∇ψ dxC�
ω

Cn(Aq , x) ∇δϕn · ∇ψ dx

C�
ω

δβMiχn
i ∇δϕn · ∇ψ dxA�

ω
δCE · ∇ψ dx. (62)

Choosing ψG( pϕn
E) in (62), substitution into (61), and taking limits give

(1��ω �)�
ω

pδC E · E dx

Gδβ lim
n→S

[(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · (∇ϕn
ECE ) dx

C(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · ∇δϕn dx]. (63)

Writing

S̄ Glim sup
n→S

(1��ω �)�
ω

pδβMiχn
i (∇ϕn

ECE ) · ∇δϕn dx, (64a)

Sq Glim inf
n→S

(1��ω �)�
ω

pδβMiχn
i (∇ϕn

ECE ) · ∇δϕn dx, (64b)

standard a priori estimates are used to obtain

�S̄ �⁄ ��p��SK�E�21�δβ �, �Sq �⁄ ��p��SK�E�21�δβ �, (65)

where K is a constant independent of δβ and the choice of ω ⊂ Ω and
��p��S is the maximum value of p on ω̄ . We establish the following lemma.
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Lemma 2.2. For every ω ⊂ Ω and function p in CS(ω̄ ), the limit

lim
n→S

[(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · (∇ϕn
ECE ) dx] (66)

exists and

(1��ω �)�
ω

pδC E · E dx

Gδβ lim
n→S

�(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · (∇ϕn
ECE ) dx�CδβR(δβ , ω , p), (67)

where

�R(δβ , ω , p) �⁄ ��p��SK�E�21�δβ �. (68)

Proof. We put

HnG(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · (∇ϕn
ECE ) dx, (69a)

RnG(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · ∇δϕn dx, (69b)

and from (54) we see that

H̄Glim sup
n→S

Hn and Hq Glim inf
n→S

Hn

are finite. Passing to subsequences as necessary, we deduce that

(1��ω �)�
ω

pδCE · E dxGδβH̄CδβR̄(δβ , ω , p), (70)

where for each δβ , R̄(δβ , ω , p) is a cluster point of the sequence {Rn}
S
nG1

and from (65) it is evident that

R̄(δβ , ω , p)⁄ ��p��SK�E�21�δβ �.

Similar considerations give

(1��ω �)�
ω

pδCE · E dxGδβHq CδβRq (δβ , ω , p), (71)

where Rq (δβ , ω , p) is a cluster point of the sequence {Rn}
S
nG1 and

Rq (δβ , ω , p)⁄ ��p��SK�E�21�δβ �.



JOTA: VOL. 114, NO. 1, JULY 200242

It is evident from (70) and (71) that Hq GH̄. From this, we deduce that

Rq (δβ , ω , p)GR̄(δβ , ω , p). R(δβ , ω , p),

and the lemma is established. �

With Lemma 2.2 in hand, we establish Theorem 1.1. We consider sub-
sets ω of Ω given by cubes Q(x, r) and the associated local corrector func-
tions are denoted by ϕn,r

E . We put

H(x, r)G lim
n→S

(1��Q(x, r) �)�
Q(x,r)

Miχn
i (∇ϕn,r

E CE ) · (∇ϕn,r
E CE ) dy, (72)

and we introduce the functions f̄(x) and fq(x) defined everywhere in Ω by

f̄(x).lim sup
r→0

H(x, r), (73)

f_(x).lim inf
r→0

H(x, r). (74)

The estimate (54) shows that these functions are bounded on Ω. Given the
increment δβ , we consider the intersection of the Lebesgue points of
CS(Aq , x) and CS(AqCδβMq , x). We choose pG1, and from Lemma 2.2 we
have the following identity:

δC E · EGlim
r→0

(1��Q(x, r) �)�
Q(x,r)

δC E · E dy

Gδβ lim
r→0

(H(x, r)CR(δβ , Q(x, r), 1)), (75)

almost everywhere on Ω and for any E in Rm. Passing to subsequences if
necessary, one has

δC E · EGδβ ( f̄(x)CR̄(δβ , x)), a.e. on Ω, (76)

where R̄(δβ , x) is a cluster point of the sequence {R(δβ , Q(x, r), 1)}rH0 and

�R̄(δβ , x) �⁄K�E�2�1�δβ �.

A similar consideration shows that

δC E · EGδβ ( f_(x)CRq (δβ , x)), a.e. on Ω, (77)

where Rq (δβ , x) is a cluster point of the sequence {R(δβ , B (x, r), 1)}rH0 and

�Rq (δβ , x) �⁄K�E�21�δβ �.

We subtract (77) from (76) to obtain

f̄(x)Af_(x)GRq (δβ , x)AR̄(δβ , x), a.e. on Ω, (78)
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to see that

� f̄(x)Af_(x) �F2 K�E�21�δβ �, a.e. on Ω. (79)

Since f̄(x) and f_(x) are independent of the increment δβ , we deduce that

lim
r→0

lim
n→S

(1��Q(x, r) �)�
Q(x,r)

Miχn
i (∇ϕn,r

E CE ) · (∇ϕn,r
E CE ) dy (80)

exists almost everywhere on Ω. In this way, it is seen that

Rq (δβ , x)GR̄(δβ , x).R(δβ , x)

and that

δC E · EGδβ lim
r→0

lim
n→S

(1��Q(x, r) �)

B�
Q(x,r)

Miχn
i (∇ϕn,r

E CE ) · (∇ϕn,r
E CE ) dy

CδβR(δβ , x), a.e. on Ω, (81)

where

R(δβ , x)FK�E�21�δβ �.

It is evident from (81) that (∂CS�∂Mi )E · E exists and is given by

(∂CS�∂Mi )E · EGlim
r→0

lim
n→S

(1��Q(x, r) �)

�
Q(x,r)

Miχn
i (∇ϕn,r

E CE ) · (∇ϕn,r
E CE ) dy, (82)

and Theorem 1.1 follows.
Collecting results, we substitute (81) into (67) of Lemma 2.3 to obtain

the local homogenization theorem.

Theorem 2.1. Local Homogenization Theorem. Under the hypoth-
eses of Theorem 1.1, given any ω⊂ Ω and p in CS(ω̄ ), the sequence of local
correctors {ϕn

ECE · x}SnG1 defined by (51) satisfy

lim
n→S

(1��ω �)�
ω

pMiχn
i (∇ϕn

ECE ) · (∇ϕn
ECE ) dx

G(1��ω �)�
ω

p(∂CS�∂Mi )E · Edx. (83)
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For future reference, it is noted that the estimate (54) gives the bound

σ (x)E · E⁄ (4Λ2�λ2) �E�2, (84)

almost everywhere in Ω for E in Rm.

3. Homogenization of the Products of Weakly Converging Sequences of
Gradients

In this section, Theorem 1.1 and Theorem 2.1 are applied together with
a localization argument to establish Theorem 1.2. Recall that the sequences
of solutions of (15), denoted by {φn}SnG1 , converge weakly to the solu-
tion φS of (16) and the associated sequence of coefficient matrices
{Cn(Pq , x)}SnG1 G-converges to CS(Pq , x) for every Pq in N (Aq ).

The first step in the proof is to approximate φS by piecewise-affine
functions. Given (H0, there exists a function w( in H1

0 (Ω ) which is piece-
wise affine on Ω and

�
Ω

�∇w(A∇φS�2 dxF(2; (85)

see for example Ref. 18. The gradient of w( is constant on the open sets
ω i

( and

Ω̄G*
κ (( )

iG1
ω̄ i

( .

In each open set ω i
( , one has

w(GEi · xCci,

where Ei is a constant vector in Rm and ci is a constant.
The global corrector {φn,(}SnG1 is introduced. The right-hand side

f (G−div(CS(Aq , x) ∇w()

is chosen and φn,( is defined to be the H1
0 (Ω ) solution of

−div(Cn(Aq , x)∇φn,()Gf (. (86)

One obtains easily the following convergence properties.

Lemma 3.1. For ( fixed,

φn,( %w(, as n → S, in H1
0 (Ω ), (87a)

Cn(Aq , x)∇φn,( %CS(Aq , x)∇w(, in L2(Ω )m. (87b)
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The error between the weakly converging sequences {φn}SnG1 and the
sequence of global correctors {φn,(}SnG1 can be controlled uniformly with
respect to n. This is made precise in the following lemma.

Lemma 3.2. There exists a constant C0 independent of n and ( such
that

�
Ω

�∇φnA∇φn,( �2 dx⁄C2
0(Λ�λ )2(2, for all nH0. (88)

Proof. We start by showing that

�� f(Af ��H−1(Ω)⁄(Λ.

Given ψ in H1
0 (Ω ), we have

�FH−1( f (Af ), ψHH 1
0 �G��

Ω
CS(Aq , x) (∇w(A∇φ ) · ∇ψ dx�

⁄Λ�
Ω

�∇w(A∇φ ��∇ψ �, dx

⁄(Γ��ψ ��H 1
0 (Ω), (89)

and the claim follows. Next, one has the estimate given by

λ�
Ω

�∇φnA∇φn,( �2 dx⁄�
Ω

Cn(Aq , x)(∇φnA∇φn,() · (∇φnA∇φn,() dx

⁄ �� f(Af ��H−1C01�
Ω

�∇φnA∇φn,( �2 dx, (90)

where C0 depends only on Ω and m and comes from the Poincaré–Friedrichs
inequality. The inequality (88) follows by noting that

�� f(Af ��H−1⁄Λ( . �

Collecting results, we write

φGw(Cr(, φnGφn,(Czn,(.

Here, r( and zn,( are in H1
0 (Ω ) and satisfy

�
Ω

�∇r( �2 dxF(2, �
Ω

�∇ zn,( �2 dxF(2, for all nH0. (91)
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Given p(x) in CS(Ω̄), one observes that

1G ∑
jG1

N

χn
j (x)

and writes

�
Ω

p�∇φn�2 dxG�
Ω

p� ∑
jG1

N

χn
j (x)	 �∇(φn,(Czn,( )�2 dx

G ∑
iG1

κ (( )

∑
jG1

N

�
ω i

(

pχn
j �∇φn,( �2 dxCO(( ). (92)

The lemma that gives the connection between global and local correc-
tors is provided by the following localization result.

Lemma 3.3. Localization Lemma. Let ϕ i,n,(
Ei be the H1

0 (ω i
() solution

of

−div(Cn(Aq , x))(∇ϕ i,n,(
Ei CEi))G−div(CS(Aq , x)Ei). (93)

Then,

lim
n→S

�
ω i

(

�∇ϕ i,n,(
Ei CEiA∇φn,( �2 dxG0. (94)

Proof. From the properties of the local corrector introduced in Sec-
tion 2, one has

ϕ i,n,(
Ei % 0, weakly in H1

0 (ω i
(), (95a)

Cn(Aq , x)(∇ϕ i,n,(
Ei CEi)%CS(Aq , x)Ei, weakly in L2(ω i

()
m. (95b)

The properties of the global corrector φn,( imply that it is a solution of

−div(Cn(Aq , x)∇φn,()G−div(CS(Aq , x)Ei), on ω i
( ; (96)

i.e., for all ψ in H1
0 (ω i

(),

�
ω i

(

Cn(Aq , x)∇φn,( · ∇ψ dxG�
ω i

(

CS(Aq , x)Ei · ∇ψ dx, (97)

and

φn,( %w(GEi · xCci, weakly in H1(ω i
(), (98a)

Cn(Aq , x)∇φn,( %CS(Aq , x)Ei, weakly in L2(ω i
()

m. (98b)

The lemma now follows immediately from Remark 1 of Section 10 in Ref.
10. �
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The local homogenization Theorem 2.1 and the localization Lemma
3.3 are applied and we work up from small to intermediate scales to find
that

∑
iG1

κ (( )

�
ω i

(

p(σ (x)CI )Ei · Ei dx

G ∑
iG1

κ (( )

∑
jG1

N

�
ω i

(

p∇ j
kkC

S(Aq , (x))Ei · Ei dx

G ∑
iG1

κ (( )

∑
iGj

N

lim
n→S

�
ω i

(

pχn
j �∇ϕ i,n,(

Ei CEi�2 dx

G lim
n→S

∑
iG1

κ (( )

∑
jG1

N

�
ω i

(

pχn
j �∇φn,( �2 dx. (99)

Proceeding from large scales down to intermediate scales, we see that

lim
n→S

�
Ω

p�∇φn�2 dxG lim
n→S

∑
iG1

κ (( )

�
ω i

(

p�∇φn,( �2 dxCO(( )

G ∑
iG1

κ (( )

�
ω i

(

p(σ (x)CI ) Ei · Ei dxCO(( )

G�
Ω

p(σ (x)CI )∇w( · ∇w( dxCO(( ). (100)

Since ( is arbitrary and recalling (84) and (91), we obtain the desired result
given by

lim
n→S

�
Ω

p�∇φn�2 dxG�
Ω

p(σ (x)CI )∇φS · ∇φS dx, (101)

and Theorem 1.2 follows.

4. Relaxation

In this section, the properties of the relaxed problem (38) given by
Theorems 1.5 and 1.6 are established. The proofs of Theorems 1.3 and 1.4
follow identical lines. In establishing the properties of the relaxed problem,
the following compactness result will be used.

Theorem 4.1. Compactness Property. Given any sequence
{Cn(Pq , x)}SnG1 in C (Aq , γq ), there exists a subsequence {Cn′(Pq , x)}Sn′G1 and a
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function CS(Pq , x) in G C (Aq , γq ) such that Cn′(Pq , x) G-converges to
CS(Pq , x) for all Pq in N (Aq ).

This property follows immediately from Ref. 13.
A special sequence of controls {Cn(Pq , x)}SnG1 in C (Aq , γq ) is constructed.

This sequence will be used to establish Theorems 1.5 and 1.6. To construct
this sequence, consider a minimizing sequence {CS,n(Pq , x)}SnG1 for QR. The
associated set of electric potentials for the sequence {CS,n(Aq , x)}SnG1 is
denoted by {φn}SnG1 and

QRG lim
n→S

F (φn).

For each n, there exists a sequence of controls {Cn,k(Pq , x)}SkG1 in
C (Aq , γq ) such that Cn,k(Pq , x) G-converges to CS,n(Pq , x) for every Pq in N (Aq ).
The associated potentials φn,k in H1

0 (Ω ) satisfy the state equation

−div(Cn,k(Aq , x)∇φn,k)Gf, (102)

and for every nonnegative p in CS(Ω̄), the homogenization Theorem 1.2
gives

lim
k→S

�
Ω

p(x) �∇φn,k�2 dxG�
Ω

p(x)(σn(x)CI )∇φn · ∇φn dx

⁄K2 �
Ω

p(x) dx, (103)

where the covariance matrix σn(x) is

σn(x)E · EG ∑
iG1

N

(∇i
kkC

S,n(Aq , x))E · EA�E�2, (104)

for all vectors E in Rm. A countable dense subset {pl}
S
lG1 of the set of

nonnegative functions in CS(Ω̄) is introduced. Given n, put

SnG{pl}
n
lG1 ;

then, there exists an index kn for which

�
Ω

pl �∇φn,kn�2 dx⁄K2 �
Ω

pl (1C1�n) dx, for every pl in Sn , (105)

�F (φn,kn)AF (φn) �F1�n, (106)

and

−div(Cn,kn(Aq , x)∇φn,kn)Gf. (107)
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Passing to a subsequence if necessary and appealing to the compactness
property, there exists a function C̃S(Pq , x) in G C (Aq , γq ) for which

{Cn,kn(Pq , x)}SnG1 G-converges to C̃S(Pq , x) (108)

for all Pq in N (Aq ).

Definition 4.1. The sequence {(Cn,kn(Pq , x)}SnG1 constructed above
satisfying (105)–(108) is called a configuration minimizing sequence.

The potential associated with the control C̃S(Pq , x) is denoted by φ̃ and

−div(C̃S(Aq , x)∇φ̃ )Gf. (109)

We proceed to establish Theorem 1.5. For each pl in {pl}
S
lG1 , it follows that

�
Ω

pl (x)(σ̃ (x)CI )∇φ̃ · ∇φ̃ dxG lim
n→S

�
Ω

pl �∇φn,kn�2 dx

⁄K2 �
Ω

pldx, (110)

where

σ̃ (x)E · EG ∑
iG1

N

(∇i
kkC̃

S(Aq , x))E · EA�E�2, (111)

for every E in Rm. Thus, by density, for any nonnegative p in CS(Ω̄), one
has

�
Ω

p(x)(σ̃ (x)CI )∇φ̃ · ∇φ̃ dx⁄K2 �
Ω

p(x) dx, (112)

and C̃S(Pq , x) is an admissible control for QR. It is evident from the conti-
nuity of the objective function and (106) that F (φ̃ )GQR and Theorem 1.5
follows.

To prove Theorem 1.6, one considers the design problems P̃j given by
(45) and starts by showing that P̃j⁄QR. For the configuration minimizing
sequence {(Cn,kn(Pq , x)}SnG1 of Definition 4.1, it is evident that, given the
index j, one has that, for all nHj, Cn,kn(Pq , x) is admissible for P̃j and

P̃j ⁄ F (φn,kn).

Sending n to infinity shows that

P̃j ⁄QR.
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Noting that P̃j is monotone increasing with j and bounded above implies
the existence of lim j→S P̃j . Next, it is shown that

QRG lim
j→S

P̃j .

Given jH0, one can choose a design denoted by Cj (Pq , x) with associated
electric potential φ j in H1

0 (Ω ) for which

�
Ω

pk (x) �∇φ j�2 dx⁄K2 �
Ω

pk (x)(1C1�j ) dx, for pk in Sj , (113)

and

−div(Cj (Aq , x)∇φ j )Gf, (114)

where

P̃j⁄F (φ j )⁄P̃jC1�j. (115)

From the compactness property and passage to subsequences if necessary,
there exists a function C̄S(Pq , x) in G C (Aq , γq ) such that Cj (Pq , x) G-converges
to C̄S(Pq , x) for for all Pq in N (Aq ). The associated potential φ̄ in H1

0 (Ω )
solves

−div(C̄S(Aq , x)∇φ̄ )Gf. (116)

Here,

lim
j→S

F (φ j )GF (φ̄ ),

and arguing as above, the associated covariance σ̄ satisfies

�
Ω

p(x)(σ̄ (x)CI )∇φ̄ · ∇φ̄ dx⁄K2 �
Ω

p(x) dx, (117)

for every p in CS(Ω̄). Thus, C̄S(Pq , x) is an admissible design for QR.
Observing that

QR⁄ F (φ̄ )G lim
j→S

F (φ j )

and that (115) gives the set of inequalities

QR⁄ lim
j→S

F (φ j )⁄ lim
j→S

P̃j ⁄QR, (118)

one concludes that

QRG lim
j→S

P̃j .
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Lastly, (49) is established. Consider the configuration minimizing sequence
{(Cn,kn(Pq , x)}SnG1 . It is evident that the control Cj,kj(Pq , x) is admissible for
P̃j ; thus,

Pj ⁄ F (φ j,kj). (119)

The upper inequality in (49) follows recalling that

lim
j→S

F (φ j,kj)GQR,

where φ j,kj is the state variable associated with Cj,kj(Aq , x) and on noting that

lim
j→S

P̃jGQR.

5. Conclusions

The results given here are intended to provide the underpinnings for
numerical methods for the design of multiphase composites for optimal per-
formance subject to constraints on the gradient of the state variable. Future
work will apply the theory developed here to the numerical design of func-
tionally-graded materials.

It should be pointed out that, for the case of two-phase mixtures, with
one component having a nonzero dielectric constant and the other being
zero, the comprehensive theory developed in Ref. 19 provides a relaxed
formulation for the design problem when the constraint is given in terms of
the L2-norm of the gradient. Here, the fact that one of the dielectrics is zero
delivers an optimal design problem of self-adjoint type. However, when
both dielectric constants are nonzero, the problem becomes nonself-adjoint
and a design problem of the kind treated here is recovered.

Recently, problems involving design criteria given directly in terms of
the L2-norm of the gradient have been addressed (Refs. 20–25). Here, the
objective is to force the gradient to be as close as possible to a target field
in the L2 norm. This problem is one of minimizing the mean-square devi-
ation of the gradient of the state. Gradient-based methods for the numerical
identification of minimizing sequences of configurations are given in Ref.
20, while the full relaxation for the problem has been found recently in Ref.
21. In Ref. 22, a philosophy similar to Ref. 19 is adopted, and the new
concept of constrained quasiconvex envelope is introduced. The constrained
quasiconvex envelope is computed explicitly in Ref. 23 for this problem. It
is shown in Ref. 23 that the only minimizing sequences for the minimization
of the mean-square deviation of the gradient of the state are the well-known
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rank-one layered microstructures. The earlier work given in Ref. 24 indi-
cates the existence of a dense class of targets for which the relaxation is
accomplished through computation of the strong L2-closure of the set of
controls. The explicit representation of this set is given in Ref. 24. For the
case of N anisotropic conductors, the strong L2 closure is given in Ref. 25.
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