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MACHINE COMPUTATION USING THE EXPONENTIALLY CONVERGENT
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Abstract. A multiscale spectral generalized finite element method (MS-GFEM) is presented for the
solution of large two and three dimensional stress analysis problems inside heterogeneous media. It can
be employed to solve problems too large to be solved directly with FE techniques and is designed for
implementation on massively parallel machines. The method is multiscale in nature and uses an optimal
family of spectrally defined local basis functions over a coarse grid. It is proved that the method has an
exponential rate of convergence. To fix ideas we describe its implementation for a two dimensional plane
strain problem inside a fiber reinforced composite. Here fibers are separated by a minimum distance
however no special assumption on the fiber configuration such as periodicity or ergodicity is made. The
implementation of MS-GFEM delivers the discrete solution operator using the same order of operations
as the number of fibers inside the computational domain. This implementation is optimal in that the
number of operations for solution is of the same order as the input data for the problem. The size of
the MS-GFEM matrix used to represent the discrete inverse operator is controlled by the scale of the
coarse grid and the convergence rate of the spectral basis and can be of order far less than the number
of fibers. This strategy is general and can be applied to the solution of very large FE systems associated
with the discrete solution of elliptic PDE.
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1. Introduction

Over the past two hundred years there has been a sustained effort to develop quantitative theories for
the analysis of multi-scale phenomena. The early investigations of Poission [46] (1822) sought to represent
the physical response of heterogeneous media by an “equivalent” homogeneous one. The subsequent work of
Mosotti (1850) [36], Maxwell (1873) [37], and Rayleigh (1892) [47] proposed methods for recovery of effective
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coefficients. It is interesting to note that this intense activity occurred a full century before the mathematical
development of homogenization theory for partial differential equations in the 1960’s. A survey of the nineteenth
and early twentieth century literature on this topic is given in the 1926 review paper of Lichternecker [34]. New
engineering challenges motivated by the technology of the mid 20th century brought research activity to bear on
structural and transport properties of heterogeneous media including multiphase polymer systems [13], catalytic
materials [52], and fiber reinforced composites [2, 18, 26, 28, 29]. The mathematical theory of homogenization
embodied in the notion of G-convergence can be traced to the work of DeGiorgi ([49] example p. 661) and
the work of Spagnolo [49, 50]. More recent theory addresses problems with non-symmetric coefficients and the
notion of H-convergence, [41]. Homogenization theory for periodic media and extensions to many important
problems in mathematical physics are developed in the work of [12,16,48]. The modern mathematical theory of
effective coefficients and their relation to microstructure has seen explosive development since the late 1980’s
and reviews of many important developments can be found in the recent monographs [40, 56].

Modern computational technology is driving the development of numerical approaches to multiscale problems.
These approaches have gained traction in the applications and the last 40 years has witnessed a growing scientific
literature addressing the numerical treatment of multiscale problems. The field has grown such that it is not
possible to provide an exhaustive review within this paper. Here we refer to the recent monograph [21] for an
extensive survey of this growing literature. Contemporary approaches to numerical multi-scaling can be split
into two categories, exemplified by (1) Variational Multiscale Methods (VMS) and (2) Multiscale Finite Element
Methods (MsFEM).

The scheme behind (VMS) [33] is to (a) additively decompose the solution space VR into fine and coarse scale
contributions, (b) solve the fine scale equations as driven by the coarse scale residual, (c) use the fine scale so-
lution operator M to eliminate the fine scale solution and represent it as a linear function of the coarse scale
residual and (d) solve this modified problem over the coarse scale space. Here M is referred to as the recon-
struction operator [19,20] or as the fine scale Green’s function [32]. The operator M is naturally related to the
corrector appearing in homogenization theory [42]. In discrete implementations the space VR is the usual finite
element (FE) space obtained on refining the grid associated with the FE coarse scale space VC . Elements of the
fine scale space VF ⊂ VR are chosen to have compact support and taken to be orthogonal to VC in the H1

0 inner
product. To fix ideas the coarse scale space is spanned by hat functions associated with the coarse mesh. In
this scheme it is seen that higher fidelity approximations to the nonlocal solution operator M are obtained by
redefining VF to include functions with progressively larger support sets (oversampling). Adaptive oversampling
methods within the frame work of VMS are introduced and developed in [35, 42]. Recently novel approxima-
tion methods have been introduced that provide rigorous convergence rates for multiscale methods and are
appropriate for the VMS scheme [15, 43, 44]. The use of harmonic coordinates [43] and the transfer property
of the flux norm [15], and its localization [44] turn out to provide explicit rates of convergence for multi-scale
methods of VMS type. For VMS posed over the coarse scale mesh of diameter H a convergence rate of O(H)
is seen to follow from suitable oversampeling [44]. The reader is also referred to the recent papers [35] for
discussion of convergence rates for VMS and dependence on the support of the fine scale basis functions. Re-
lated but independent developments in multiscale approaches exploiting the interplay between local and global
computation and homogenization theory are put forth in the Heterogeneous Multiscale Methods introduced
in [19, 20, 24].

The idea behind (MsFEM) is to consider a coarse mesh with dimensions larger than the heterogeneity of the
medium and instead of using linear or polynomial FE basis functions one uses a finite dimensional space of local
solutions to the problem over each element of the coarse mesh. This method has two components to it. The
first is to create a local approximation space over each coarse element of the mesh and the second requires one
to “paste” these elements together. This idea was suggested within the Partition of Unity Method (PUM) for
pasting together local approximations and analyzed in one dimension in [10] and for higher dimensional problems
using special local solutions in [6] and generalized broadly see, [9, 21, 38, 54] and the citations given there. This
idea but with a different strategy for pasting together local bases is proposed in [22, 23] and is analyzed in
generality there. To illustrate the ideas developed in [22,23] consider a problem in two dimensions and let ω be
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a triangular or quadrilateral element. Here have the following three basic choices for the construction of the
local function space inside ω.

1. Linear boundary data. We retain linearity at the boundary of the element ∂ω and generate local shape
functions as solutions of the homogenous multiscale equation inside the element with boundary conditions
on ∂ω associated with linear or bilinear FE. We point out there is a loss of accuracy in this approach since the
trace of the exact solution over the boundary of the element is not well approximated by a linear function.

2. Better boundary approximation. To improve the boundary approximation over ∂ω we first solve a one di-
mensional problem on every edge of ω with boundary condition on the vertices taken to be the nodal values
of FE functions. Typically the equation on each edge of the element is the restriction of the two dimen-
sional problem to that edge. This approach leads to better accuracy and both approaches 1) and 2) deliver
conforming elements.

3. Oversampling. Let ω∗ be the triangle (quadrilateral) ω enlarged by a factor of 2. Here we take ω ⊂ ω∗ to be
concentric and the diameter of ω∗ is twice that of ω. We prescribe the traces of the linear FE shape functions
on boundary of ω∗. Using this boundary data we solve the local problem over ω∗. The local approximation
is then obtained on restricting these solutions to ω. Here this approach leads to nonconforming elements.
This approach to constructing local bases is referred to as oversampling [21].

Each approach listed above is a generalization of the linear FEM. It is evident that these methods immediately
extend if one applies higher order FE boundary conditions on the edges and provides a corresponding higher
order MsFEM. Several variations of these ideas have been applied and developed for multiscale problems and
an overview of recent literature is given in [21].

We may also interpret MsFEM as a domain decomposition method. Here the elements ω appearing in the
MsFEM could be understood as a domain decomposition of the computational domain Ω, over which the
problem is formulated. The methods 1) and 2) listed above are domain decompositions without overlap and
can be understood as a simple mortar method. For further developments of the mortar approach to multiscale
problems and significant generalizations along these lines see [1]. While the approach 3) employs oversampling
and this delivers a domain decomposition with overlap.

We continue with the theme of domain decomposition and cover Ω with domains ωi such that ∪iωi = Ω. The
multiscale approach has two components: 1) Local Approximation. On every ωi we propose m dimensional spaces
Vi ⊂ H1(ωi) such that the exact solution u for the multiscale problem can be well approximated by a function
vi ∈ Vi over the element ωi such that ‖ u − vi ‖E(ωi)

≤ εi. 2) Construction of a H1(Ω) global approximation
from local approximations. Here we suppose we have employed a scheme (e.g. partition of unity) for “pasting”
the functions vi together to construct a “continuous” function v belonging to H1(Ω) and

∑
i

‖ u− v ‖2
E(ωi)

≤ C
∑

ε2i (1.1)

where ‖ · ‖E(ωi) is the energy norm over the element ωi and C independent of u and vi. As in the previous case
one is faced with the dual issues of finding accurate local approximations and the global problem of combining
the local approximations to obtain an approximation to the solution u. Here the local functions could be pasted
or combined to form a global function using non-overlapping or overlapping elements.

The Generalized Finite Element Method (GFEM) is an overlapping domain decomposition method where
global approximations are obtained by pasting together local approximations through a partition of unity. Par-
tition Unity Methods (PUM) originated in [6] and were further extended and analyzed in [4,5,9,38] and applied
to multiscale problems in [3,25,53–55]. The GFEM utilizes the results of independent local computations carried
out across the computational domain. The GFEM is constructed by covering the computational domain Ω by a
collection of preselected subsets ωi, i = 1, 2, . . . , n and constructing finite dimensional approximation spaces Ψi

over each subset using local information. The the global approximation is constructed by pasting the local
approximations together using the partition of unity functions subordinate to the covering {ωi}n

i=1. Since each
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space Ψi is computed independently the full “global” solution is obtained by solving a global (macro) system
which is an order of magnitude smaller than the system corresponding to a direct application the finite element
method to the full structure. This provides an opportunity for the significant reduction of the computational
work involved in the numerical modeling of large heterogeneous problems. Several advantages for applying this
strategy to compute fields inside heterogeneous media are listed below:

1. Solution of a global problem with drastically reduced degrees of freedom.
2. Independent local mesh generation versus the generation of a globally defined mesh.
3. Completely independent parallel computation of local problems.

Recent work [7] identifies optimal local finite dimensional approximation spaces Ψi for rough (L∞) coefficients.
These new approximation spaces, related to the spectra of restriction operators, provide exponential accuracy
in terms of the local degrees of freedom dim(Ψi). In principal this means that to achieve a global approximation
error of τ with respect to the energy norm one needs to employ lnd+1 ( 1

τ ) local basis functions on each subdomain.
This newfound low dimensionality for special local approximation spaces expands the potential for high fidelity
machine computation of elastic fields inside very large multiscale heterogeneous structures. The crucial aspect
of our approach is that it allows for the solution of problems that are too large to solve using traditional FEM
discretizations on a given computational resource. This type of approach developed here and in [7] is called
Multiscale Spectral GFEM.

In related work local bases are defined for any shape regular mesh of size H with O(H) convergence rate
using lnd+1 1

H bases functions per nodal point [27]. Here construction of the near field components of the local
bases parallels the work of [35, 44] while the far field bases components are motivated by the approximants
developed in the theory of H-matrices [14]. The optimality of this type of local basis remains to be established.

In this paper we address the elastic problem and introduce the appropriate optimal local approximation
spaces. As in [7] the best choice of local approximation is motivated by the Kolomoragov n-width and we use it
to identify and prove the existence of spectrally defined finite dimensional optimal local approximation spaces.
In doing so we establish the existence of an explicitly defined optimal local approximation space for this problem.
We also provide an estimate to show that it is possible to achieve a local approximation error of τ with respect
to the energy norm using at most lnd+1( 1

τ ) local basis functions see, Section 7. We point out that numerical
experiments show that the approximation error can be actually be achieved using far less local basis functions
in the pre-asymptotic regime see, [55]. With these estimates in hand the current paper addresses the numerical
implementation of Multiscale Spectral GFEM (MS-GFEM) for a fiber reinforced composite medium. For this
case we identify the relevant error estimate in Section 5 and estimates for machine time required for constructing
an approximate solution within a prescribed tolerance τ using a parallel computer in 6. Moreover the size of the
MS-GFEM matrix used to represent the discrete inverse operator is small on the order of ln2(d+1)( 1

τ ). Along
the way we identify open problems in elliptic regularity theory and challenges facing numerical implementation
on large parallel computers. We show how these issues influence our ability to carry out machine computation
for very large multiscale problems as exemplified by the composite example treated here.

2. The fiber composite problem

The over all methodology formulated in this paper is quite general and applies to mathematical formula-
tions of linear elasticity described by measurable tensor valued coefficients. Such generality is required for the
development of mathematically rigorous solution strategies. On the other hand the machine computation of
displacement fields inside engineering materials requires a precise description of the heterogeneous material
properties. We begin with the general formulation of the equilibrium problem for an anisotropic heterogeneous
linearly elastic medium and then specialize our treatment to two dimensional plane strain problems for uni-
directional fiber reinforced composites.

Let Ω ∈ R
d, d = 2, 3 be a bounded domain with Lipschitz boundary ∂Ω. We start by formulating the problem

for the system of linear elasticity used for the determination of elastic displacement fields u0 : Ω �→ R
d. The
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equilibrium equation of linear elasticity is given by

−div(A(x)e(u0(x))) = f(x), x ∈ Ω. (2.2)

Where e(u0) is the elastic strain and is the symmetric part of the gradient of the displacement ∇u0 given by
e(u0) = (∇u0 + ∇uT

0 )/2. The elasticity tensor of an anisotropic heterogeneous medium is characterized by a
measurable tensor valued field Aijkl(x) ∈ L∞(Ω) for i, j, k, l = 1, d. Aijkl = Aijlk = Ajikl = Aklij . We suppose
the tensor satisfies the standard coercivity and boundedness conditions and for any symmetric d× d matrix e

α | e |2≤ Ae : e ≤ β| e |2, x ∈ Ω (2.3)

where Ae : e = Aijkleijekl, and | e |2= e2ij . For this choice of elasticity coefficient the solution is sought in the
Sobolev space H1(Ω; Rd) and the right-hand side (the body force) lies in the dual space H1(Ω; Rd)∗.

The mathematical formulation of our physical problem is a boundary value problem for the strongly elliptic
system given by the linear elastic system (2.2). The weak solution is formulated in the standard variational way.
We introduce the “energy” bilinear form

B(u,v) =
∫

Ω

Ae(u) : e(v)dx,u,v ∈ H1(Ω; Rd), (2.4)

and the energy norm
‖ u ‖E(Ω)= (B(u,u))1/2. (2.5)

By E(Ω) we define the energy space given by the quotient space H1(Ω; Rd)/R equipped with the energy norm.
Here the linear space of rigid motions R is given by

R = {a + b ∧ x; a and b, in R
d}. (2.6)

In what follows we will write B(u,v) = (u,v)E(Ω).
Let F1(v) =

∫
∂Ω

v · g dx, be the functional of the tractions and F2(v) =
∫
Ω

f · v dx, be the load functional.
We assume that the natural consistency condition between F1 and F2 given by

F1(v) + F2(v) = 0, for all v ∈ R (2.7)

is satisfied.
The elastic displacement field u0 in Ω is the solution of the problem, u0 ∈ E(Ω),

B(u0, v) = F (v) =F1(v) + F2(v), ∀v ∈ E(Ω), (2.8)

and is uniquely specified up to a rigid motion. If additionally on Γ ⊂ ∂Ω the boundary condition is u = uΓ

then the unique solution u0 ∈ E(Ω),u0 = uΓ satisfies B(u0,v) = F (v), ∀v ∈ E(Ω), v = 0 on Γ . If F2 = 0 then
u0 is the A-harmonic function satisfying B(u0,v) = 0, ∀v ∈C∞

0

The solution of a particular physical problem requires the specialization of the general formulation to the
case at hand. Here we focus on the physical problem of calculating stresses and strains inside a uni-directional
carbon fiber epoxy resin composite. This type of structural composite is commonly used in commercial aircraft
and wind turbines primarily due to its high specific stiffness and strength. The principle objective of this paper
is to describe the problem of numerical calculation of local fields inside engineering composite systems. The
goal is to highlight the issues and problems related to machine computation of local fields inside structural
composites typically requiring 108 degrees of freedom per square centimeter of fibrous composite material.

We formulate a deterministic two dimensional elasticity problem for a uni-directional fiber reinforced com-
posite. It is assumed that the fiber positions and diameters are available through image data. In the the two
dimensional formulation we make the idealization and assume that the fiber cross sections are are circular.
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Figure 1. Fiber-reinforced composite.

Figure 2. Microstructure.

In actuality the fibers are more like deformed cylinders. Here we emphasize that the fiber distribution is not
periodic, so that the theory and computational analysis based on the assumption of a periodicity or almost
periodicity characterized by an elastic tensor field of the type A(x,x/ε) where the tensor field A is smooth in
the first variable periodic and oscillatory in the second variable cannot be used.

We will consider the square domain Ω = (−κ, κ) × (−κ, κ) where the length κ is given in meters denoted
by m. The boundary of Ω is denoted ∂Ω. We have | Ω |= 4κ2[m]2. We assume that the fiber volume fraction
is W � 50%. The fiber cross sections are circular with diameters d ranging between 5 μm ≤ d ≤ 10 μm
Here 1 μm = 10−6 m. The fibers provide structural stiffness and their stiffness greatly exceeds the matrix.
The domain Ω contains approximately (2 × 105κ)2 fibers. As indicated we assume that the locations and the
diameters of the fibers are known from image data see, Figures 1, 2 and for more see, [3].

For this case the elasticity tensor field is piecewise constant and of the form

Aijkl(x) =
E(x)

2(1 − ν(x))
δijδkl +

E(x)
2(1 + ν(x))

{δilδjl + δilδjk − δijδkl} (2.9)

where

E(x) = 24 GPa for x in the fibers, 3.6 GPa for x in the epoxy matrix
ν(x) = 0.24 for x in the fibers, 0.3 for x in the epoxy matrix. (2.10)

The mathematical formulation of the two dimensional plane strain problem is given by (2.8) with A(x) given
by (2.9) and boundary conditions given by traction in units of GPa or displacement in units of meters m. Here
x = (x1, x2), u = (u1, u2), where both quantities are expressed in units of meters m. The elasticity tensor field
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A(x) defines the isotropic elastic properties of the matrix and the fibers. It is evident that the tensor A(x) is
varies rapidly across the structure and hence is very “rough” see, Figures 1 and 2. The assumption that the
fibers are represented by cylinders is an idealization. However it serves to illustrate the ideas and challenges
behind machine computation of fields inside complex media.

The basic goal of this paper is to formulate and develop a multi-scale and highly parallelizable numerical
method for obtaining approximate solutions u0,appr to elastic deformations inside composite structures that
satisfy ‖ u0 − u0,appr ‖E(Ω)≤ τ ‖ u0 ‖E(Ω)were τ is a given tolerance.

3. Generalized finite elements and multiscale formulation

For completeness we now review the basic theory of the GFEM method as it applies to the problem treated
here. For the proofs we refer to [4]. The elastic deformation u0 inside the composite is a solution of the problem
u0 ∈ E(Ω),u0 = uΓ on Γ ⊂ ∂Ω,

B(u0,v) = F (v), ∀v ∈ E(Ω),v = 0 on Γ (3.11)

Let {Ωj}N
j=1, j = 1, 2 . . . , N be open set of open patches satisfying Ωj ⊂ Ω and Ω = ∪N

j=1ωj and assume that
any x ∈Ω belongs at most to ς patches ωj . Let {φj}N

j=1 be family of functions defined on Ω, having piecewise
continuous derivatives, and satisfying the following properties

φj(x) = 0, for x ∈ Ω \ ωj , j = 1, 2, . . . , N, (3.12)

N∑
j=1

φj(x) = 1, ∀x ∈ Ω, (3.13)

max
x∈Ω

| φj(x) |≤C1, j = 1, 2, . . . , N (3.14)

max
x∈Ω

| ∇φj(x) |≤C2/diam(ωj), j = 1, 2, . . . , N (3.15)

where 0 ≤ C1, C2 < ∞ and diam(ωj) is diameter of ωj. It is evident that {φj} is a partition of unity on Ω.
To every ωj we associate on ωj an m(j) + 3−dimensional space Vj given by the span of functions ξji = (1ξji,
2ξji) ∈ E(Ω), i = 1, 2, . . . ,m(j), together with the span of the basis, ξj,m(j)+1 = (1, 0), ξj,m(j)+2 = (0, 1),
ξj,m(j)+3 = (−x2, x1) for the three dimensional space of rigid motions in R

2 denoted by R. Let

ξj =
m(j)+3∑

i=1

bjiξji, bji ∈ R, i = 1, . . . ,m(j) + 3. (3.16)

Let S be the span of all functions of the form

ψ =
N∑

j=1

φjξj , ξj ∈ Vj (3.17)

or equivalently S is given by the span

S = span{ηji, i = 1, 1, 2, . . . ,m(j) + 3, j = 1, 2, . . . , N}. (3.18)

where
ηji = φjξji ∈ E(Ω). (3.19)

The space Vj is called a local approximation space and the space S the finite element space. Now we have
Theorem 3.1.



500 I. BABUŠKA ET AL.

Theorem 3.1. Suppose first that Γ = ∅, i.e, only boundary tractions on ∂Ω tractions are prescribed. 1. Every Vj

contains the subspace of rigid body motions and ‖ v ‖L2(ωj)≤ C3diam (ωj) ‖ v ‖E(ωj) for all v ∈ E(ωj) satisfying∫
ωj

(v · r)dωj = 0 where r is a rigid body motion. 2. Let u ∈E(Ω) and for every j there is ξj ∈ Vj such that

‖ u− ξj ‖E(ωj)≤ εj (3.20)

then there exists ξj ∈ Vj such that for

ξ =
N∑

j=0

φjξj (3.21)

we have

‖ u− ξ ‖E(Ω) ≤ C4

⎛
⎝ N∑

j=1

ε2j

⎞
⎠ = C4ε (3.22)

with C4 = (2ς(C2
1 + C2

2C
2
3 ))1/2. If Γ �= ∅ and ωj ∩ Γ, then Vjis the hyperplane such that if ξ ∈Vj then ξ = uΓ

on ωj ∩ Γ

Now we are able to formulate the GFEM. Consider the boundary value problem (3.11) and assume first that
Γ = ∅. Let u0 be the solution of the problem (3.11), i.e., u0 ∈ E(Ω) satisfies

B(u0,v) =F (v), ∀v ∈E(Ω). (3.23)

and the solution is unique up to rigid body motion. Now the GFEM approximation u0,appr ∈ S, satisfies

B(u0,appr,v) = F (v),v ∈ S. (3.24)

and the solution is also unique up to rigid body motion. It immediately follows from Theorem 3.1 that

‖ u0 − u0,appr ‖E(Ω)≤ C4ε. (3.25)

If Γ �= ∅, and ωj ∩ Γ �= 0 we can assume that once the space Vj is properly modified that (3.25) holds.

4. Optimal local approximation spaces via spectral bases

In this section we introduce the optimal local bases. The basis functions appear as solutions of a special
kind of eigenvalue problem involving A harmonic functions. In fact it turns out that it is impossible to improve
on their approximation properties; this is shown in Section 7 where an exponential upper bound on the local
approximation error is developed.

Let ω ⊂ ω∗ ⊂ Ω ⊂ R
2 be two concentric square domains inside the composite material introduced in

Section 3. We choose an intermediate length scale H . We assume H is larger than the length scale of the fiber
diameter and fiber spacing d but smaller than the dimensions of the domain Ω containing the composite. To
fix ideas we write H = γd, where γ ∼ 1 × 102. Here we take ω = (−(1 + α)H/2, (1 + α)H/2)2, 0 < α < 1 and
ω∗ = (−(1 + α)H, (1 + α)H)2. The energy inner products associated with these subsets are defined by

(u,v)E(ω∗) =
∫

ω∗
Ae(u) : e(v) dx. (4.26)

(u,v)E(ω) =
∫

ω

Ae(u) : e(v) dx. (4.27)
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For any open subset S of the computational domain Ω we introduce the space of functions HA(S; R2) defined
to be the functions in H1(S; R2) that are A-harmonic on S, i.e., v ∈ H1(S; R2) and

(v, ϕ)E(S) =
∫

S

Ae(v) : e(ϕ) dx, ∀ϕ ∈ C∞
0

(
S; Rd

)
. (4.28)

Since we work with the energy inner product we introduce the quotient space of HA(ω∗; R2) with respect to
rigid motions R denoted by HA(ω∗; R2)/R. We also introduce the subspace H0

A
(ω∗; R2) given by elements of

HA(ω∗; R2) perpendicular to rigid motions with respect to the L2(ω∗; R2) inner product. Here we recall that
HA(ω∗; R2)/R equipped with the energy norm is isometric to H0

A
(ω∗; R2). We define the linear map T from

HA(ω∗; R2)/R into HA(ω; R2)/R as the restriction of u ∈ HA(ω∗; R2)/R to ω,, i.e., T u(x) = u(x) for x ∈ ω.
The operator T is compact, this follows immediately from an application of the the Caccioppoli inequality
Lemma 7.6 together with the Rellich Kondrachov embedding theorem on ω∗ see [7]. Let T ∗ be the adjoint
mapping i.e., (T ϕ, ψ)E(ω) = (ϕ, T ∗ψ)E(ω∗) for all ϕ ∈ HA(ω∗; R2)/R and ψ ∈ HA(ω; R2)/R and the operator
T ∗T is a compact operator mapping HA(ω∗; R2)/R into itself. The eigenvalue problem for the self adjoint
bounded compact operator is written

T ∗T ϕ = λϕ. (4.29)

The eigenfunction, eigenvalue pairs are denoted by ϕj and λj , j = 1, 2, . . . With λj > 0 and the eigenvalues
form a decreasing sequence λj ≥ λj+1. The eigenvalues λj ≤ 1, j = 1, 2, . . . are shown to decay exponentially
i.e.,

λj � e−jq

, (4.30)

where q = 1
3−ε. For three dimensional problems q = 1

4−ε, see Theorem 7.3, equation (7.58) and the discussion in
Section 7. The eigenfunctions ϕj form a complete orthonormal system for HA(ω∗; R2)/R, i.e., (ϕi,ϕj)E(ω∗) = 0
for i �= j, ‖ ϕj ‖E(ω∗)= 1. In addition they enjoy orthogonality on ω, i.e., (ϕi, ϕj)E(ω) = 0 for i �= j and

‖ ϕj‖E(ω) = λ
1/2
j ‖ ϕj ‖E(ω∗) . (4.31)

For ϕ ∈ HA(ω∗; R2)/R one has

ϕ =
∞∑

j=1

cjϕj , with cj = (ϕ,ϕj)E(ω∗)

∞∑
j=1

c2j =‖ ϕ‖2
E(ω∗) and ‖ ϕ ‖2

E(ω)=
∞∑

j=1

c2jλj . (4.32)

From which we deduce the approximation property∥∥∥∥∥∥ϕ−
m∑

j=1

cjϕj

∥∥∥∥∥∥
2

E(ω)

=
∞∑

j=m+1

c2jλj ≤ λm+1 ‖ ϕ‖2
E(ω∗). (4.33)

It now follows that any A harmonic function ϕ ∈HA(ω∗; R2)/R can be approximated over ω by the m dimensional
space V = span{ϕj : j = 1, 2, . . . ,m} with the error given by λm+1 ‖ ϕ‖E(ω∗). Moreover this choice of space
V is optimal in the sense that no other other m dimensional space can lead to a better approximation for all
ϕ ∈ HA(ω∗; R2)/R. This is shown in Section 7. It is pointed out that the optimal approximation space is not
necessarily unique.

Presently the a priori knowledge of the higher regularity of the eigenfunctions {ϕj} for fiber composites
remains an open question. As of now it is not known if the eigenfunctions belong to the Besov space Hα(ω∗),
for some α > 1. With this in mind we make the hypothesis.
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Hypothesis 4.1. We consider the Besov space Bα
2,∞(ω∗) denoted by Bα(ω∗) and suppose that the following

inequality holds

‖ ϕj ‖Bα(ω∗)≤ CH−1/2jβ ‖ ϕj‖E(ω∗), (4.34)

with α = 3/2 and β ≥ 1/2.

We assume α = 3/2 since the matrix A associated with the fiber reinforced composite in (2.4) is piecewise
constant see, Figure 2. Here we will also assume that the fibers are not touching.

Remark 4.2. Here the exponent β is not chosen. However because of the exponential approximation properties
the maximum number of spectral basis elements required for a prescribed approximation error τ grows slowly,
i.e., j ≤ [ln(τ−1)]d+1. This feature mollifies the influence of the exponent β.

As before d denotes the length scale associated with the fiber diameters and distance between fibers. We
consider a uniform mesh of diameter h < d chosen to deliver an approximation with an accuracy τ . For this
mesh the best piecewise bilinear finite element approximation to ϕj is denoted by ϕ∗

j,h and

‖ϕj − ϕ∗
j,h‖E(ω∗) ≤ Ch1/2 ‖ ϕj ‖B3/2(ω∗) . (4.35)

Combing this estimate with the regularity hypothesis (4.34) delivers the desired estimate in terms of the energy
‖ ϕ‖E(ω∗) given by

‖ϕj − ϕ∗
j,h‖E(ω∗) ≤ Ch1/2H−1/2jβ ‖ ϕ‖E(ω∗). (4.36)

Here we have addressed the approximation of A harmonic functions over local domains ω ⊂ ω∗. When the
equilibrium equation (2.2) is inhomogeneous on ω∗ we can decompose the solution into u0 = u − χ+ χ, where
χ belongs to H1

0 (ω∗; R2) and is the local particular solution of

−div(A(x)e(χ(x))) = f(x)

for x ∈ ω∗. Here the difference u0 −χ belongs to HA(ω∗; R2) and can be approximated exponentially well using
the spectral basis {ϕj}m

j=1.
We now consider local domains ω that border the boundary ∂Ω. The configuration of ω and ω∗ for domains

bordering the boundary is shown in Figure 3 see, section 7. Here ω ⊂ ω∗ and both domains have boundary
components that coincide with ∂Ω. Spectral bases can be found for domains ω∗ bordering the boundary ∂Ω for
which the solution u0 is A-harmonic and satisfies a homogeneous traction or Dirichlet condition on ∂ω∗ ∪ ∂Ω.
The spectral bases for domains bordering the boundary also satisfy (4.31), (4.32), (4.33), and the associated
eigenvalues decay exponentially (4.30) see, Theorem 7.5. When faced with non-homogeneous boundary condi-
tions on ∂ω∗ ∪ ∂Ω, and body force f we solve for the local particular solution η of

−div(A(x)e(η(x))) = f

for x ∈ ω∗ with non-homogeneous traction or Dirichlet boundary conditions on ∂ω∗∪∂Ω and η = 0 on ∂ω∗∩Ω.
For this case the difference u0 − η is A-harmonic with homogeneous boundary conditions on ∂ω∗ ∪ ∂Ω and can
be approximated exponentially well by the spectral basis.

5. Multiscale spectral GFEM and error estimates

In this section we provide a priori error estimates for the discrete approximation of the composite material
problem introduced in Section 2. We start by assuming that the local spectral bases can be computed with
infinite accuracy. We apply this hypothesis and use the local spectral basis within the GFEM Galerkin scheme
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Figure 3. Local domains.

to provide the a priori error estimate given by (5.39). In the second part of this section we introduce the
discrete finite element approximation to the local spectral bases. This is used together with (5.39) to establish
the a priori error estimate for the GFEM implementation using the discrete local approximation. This estimate
is given by (5.48). This estimate allows us to assess the computational complexity of the multi-scale GFEM
using optimal local bases provided in Section 6.

Recall that the domain containing composite material is given by Ω = (−κ, κ)2. We cover it with a mesh
defined by the nodal points zi,j = (xi, yj), xi = iH, yj = jH, with i, j = ±0, 1, 2, . . . , n, and H = κ/(1 +α)(n+
1/2) where 0 < α < 1 is chosen below. Let Qi,j be squares with center zi,j and side length μ(Qi,j) = H . We
define ωi,j to be given by the square Qα

i,j with center in zi,j and side length μ(Qα
i,j) = (1 + α)H, 0 < α < 1.

Further let ω∗
i,j = Ω ∩Qα∗

i,j with α∗ = β(1 +α). Now we fix α = 1/4 and β = 2. For this choice the domains ω∗
ij

are squares of side length H∗ = 2.5H. It is evident that Ω = ∪i,jωi,j and the domains ωi,j overlap where the
width of the overlap region is H/4. In what follows domains ωi,j bordering ∂Ω, (i.e., ωi,j ∩ ∂Ω �= 0) are called
boundary subdomains and all others are referred to as interior subdomains. Consider interior subdomains ωij

and let φi,j = 1 on Qi,j , φ
i,j = 0 on Ω − ωi,j and be piecewise linear on ωi,j −Qi,j . For boundary domains ωi,j

set φi,j = 1 over parts where ωi,j does not overlap any other ωk,l. It is clear that these functions φi,j constitute
a partition of unity i.e.,

∑
i,j φ

i,j = 1 and can be employed within the GFEM see, Section 3.

On every interior domain ωij ⊂ ω∗
i,j ⊂ Ω the functions ϕ(l)

i,j l = 1, . . . ,m(i, j) are elements the local spectral

bases introduced in the previous section. Consider the span of the local basis ϕ(l)
i,j , l = 1, . . . ,m(i, j) defined on

ω∗
i,j together with the three dimensional span of the basis for rigid rotations in R

2 and denote this m(i, j) + 3

dimensional space by W
m(i,j)
i,j . If ω∗

i,j is a boundary subdomain and a non-homogenous boundary condition is

prescribed on the boundary component common to ∂ω∗
i,j and ∂Ω, then the space Wm(i,j)

i,j is augmented by ψp
i,j

where the function ψp
i,j is the A-harmonic function satisfying the non-homogeneous boundary condition and

ψp
ij = 0 on ∂ω∗

ij ∩ Ω. In addition if the right hand side is not zero the we augment the space Wm(i,j)
i,j by a

function χijwhere χij is a particular solution on of ω∗
ij with homogeneous Dirichlet boundary data on ∂ω∗

ij .
For the two dimensional problem treated here we have N = (2n)2 subdomains ωij and the associated partition
of unity

∑
ij φij = 1. We set m = minij{m(i, j)} and for this explicit application the multi-scale GFEM basis

Wm is given by the span of all functions of the form

ϕ =
∑

|i|≤1,|j|≤n

φijξij , ξij ∈W
m(i,j)
i,j . (5.37)
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We write this as Wm =
∑

i,j φijW
m(i,j)
i,j and Wm ⊂ E(Ω). Let ϕp =

∑
ij φijψ

p
ij be the sum of local particular

functions and set ϕ =
∑

ij φijξij where ξij belong to the local spectral basis over ωij . Then ϕp +ϕ ∈Wm. Given
a solution u0 of the boundary value problem (3.11) we consider its restriction to ωij . Note that u0 − (ϕp +ϕ) =
(u0 − ϕp)− ξij on ωij and u0 − ϕp is A-harmonic on ω∗

ij and we recall the exponential approximation property
of the local spectral bases described in the previous section to see that we can construct a ϕ ∈ Wm for which

‖u0 − (ϕp + ϕ)‖E(ωij) = ‖(u0 − ϕp) − ϕ‖E(ωij)

≤ C0e−(m(i,j)+1)q

‖u0 − ϕp‖E(ω∗
ij)

≤ C1e−(m+1)q‖u0‖E(ω∗
ij)
. (5.38)

Now we apply Theorem 3.1 to discover that there is an approximation ϕ ∈Wm for which

‖ u0 − ϕ ‖2
E(Ω)≤ C

∑
i,j

e−2(m(i,j)+1)q ‖ u0 ‖2
E(ω∗

i,j)
≤ C2e−2(m+1)q ‖ u0 ‖2

E(Ω)= C2τ2 ‖ u0 ‖2
E(Ω) . (5.39)

Here we have set τ = e−(m+1)q

, where q = 1
3 − ε. This is the a priori estimate for the error assuming a perfect

computation of the local spectral bases. Here we view the local domains ωij as coarse elements of size H . In the
estimate (5.39) we have assumed that the eigenvalue problem can be solved exactly.

With the estimate (5.39) in hand we now carry out the a priori estimate assuming a finite element
approximation of the spectral bases on ω∗

ij . Let Tij,h be uniform mesh square of elements size h on ωij

which coincides with the boundary ∂ω∗
ij and ∂ωij . The finite element space of bilinear elements on Tij,h

is written Vij,h. Denote by HA,h(ω∗
ij) the space of discrete A-harmonic functions on ω∗

ij , i.e., HA,h(ω∗
ij) =

{v ∈Vij,h, B(v, z) =0, ∀z ∈Vij,h, z = 0 on ∂ω∗
ij}. Now the finite element approximation to the spectral problem

is to find ϕ(l)
ij,h ∈ HA,h(ω∗

ij) and λ(l)
ij,h such that(

ϕ
(l)
ij,h, χ

)
E(ωij)

= λ
(l)
ij,h

(
ϕ

(l)
ij,h, χ

)
E(ω∗

ij)
, ∀χ ∈ HA,h(ω∗

ij). (5.40)

Based on the relation between the approximate eigenfunctions ϕ(l)
ij,h and the best bilinear finite element approx-

imation of the exact eigenfunctions ϕ∗(l)
ij,h see, [11], and using the Hypothesis 4.1 and the associated inequali-

ties 4.34 and (4.36) we have ∥∥∥ϕ(l)
ij − ϕ

(l)
ijh

∥∥∥
E(ω∗

ij)
≤ C1(l)

∥∥∥ϕ(l)
ij − ϕ

∗(l)
ij,h

∥∥∥
E(ω∗

ij)
(5.41)

and ∣∣∣λ(l)
ij − λ

(l)
ijh

∣∣∣ ≤ C2(l)
∥∥∥ϕ(l)

ij − ϕ
∗(l)
ij

∥∥∥2

E(ω∗
ij)
. (5.42)

Unfortunately the dependence of the constants C1and C2 on l is not available. Hence we make the

Hypothesis 5.1. We have that the positive constants C1 and C2 are bounded above by Clα

Applying hypotheses 4.1, 5.1 and (4.36) we get∥∥∥ϕ(l)
ij − ϕ

(l)
ijh

∥∥∥
E(ω∗

ij)
≤ CH−1/2lα+βh1/2 ‖ ϕ(l)

ij ‖E(ω∗
ij)

(5.43)

and ∣∣∣λ(l)
ij − λ

(l)
ijh

∣∣∣1/2

≤ CH−1/2h1/2lα+β ‖ ϕ(l)
ij ‖E(ω∗

ij)
(5.44)
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Recalling (5.38) we see that u0 − ϕp ∈ HA(ω∗
i,j ; R

2) can be approximated by local spectral bases so that for

m ∼ [ln(τ−1)]3, ‖ u0 − (ϕp +
∑m

l=1 c
(l)
ij ϕ

(l)
ij ) ‖E(ωij)≤ Cτ ‖ u0 − ϕp ‖E(ω∗

ij)
. Applying this we see that

∥∥∥∥∥(u0 − ϕp) −
m∑

l=1

c
(l)
ij ϕ

(l)
ij,h

∥∥∥∥∥
E(ωij)

≤
∥∥∥∥∥(u0 − ϕp) −

m∑
l=1

c
(l)
i,jϕ

(l)
ij

∥∥∥∥∥
E(ωij)

+
m∑

l=1

∣∣∣c(l)ij

∣∣∣ ∥∥∥ϕ(l)
ij − ϕ

(l)
ij,h

∥∥∥
E(ω∗

ij)

≤ Cτ ‖(u0 − ϕp)‖E(ω∗
ij)

+ CH−1/2h1/2
m∑

l=1

∣∣∣c(l)ij

∣∣∣ lα+β

≤ Cτ ‖ (u0 − ϕp) ‖E(ω∗
ij)

+CH−1/2h1/2mα+β(
∞∑

l=1

c
(l)2
ij )1/2

≤ C(τ +H−1/2h1/2(log τ−1)3(α+β)) ‖ (u0 − ϕp) ‖E(ω∗
ij).

(5.45)

It now follows that the solution u0 can be approximated on ωij by the finite element approximation of the local
spectral basis and local particular solution denoted by ϕp

h∥∥∥∥∥u0 −
(
ϕp

h +
m∑

l=1

c
(l)
ij ϕ

(l)
ij,h

)∥∥∥∥∥
E(ωij)

≤ C(τ +H−1/2h1/2(1 + [log τ−1]3(α+β))) ‖ u0 ‖E(ω∗
ij)
, (5.46)

where C is independent of τ , h, H and i, j. Hence given τ we can select h to get

inf
{c(l)}

‖ u0 −
(
ϕp

h +
∑

c(l)ϕ
(l)
ij,h

)
‖E(ωij)≤ Cτ ‖ u0 ‖E(ω∗

ij).
(5.47)

Let Wm(i,j)
i,j,h be the span of the functions vk, k = 1, 2, 3 and ϕ

(l)
i,j,h, l = 0 . . . ,m(i, j) augmented with the finite

element approximations to the local particular solutions and take W (m)
h =

∑
i,j ⊕φijW

(m(i,j))
i,j,h . It is now evident

that there is an approximation u0,appr ∈W
(m)
h for which

‖u0 − u0,appr‖E(Ω) ≤ Cτ ‖ u0 ‖E(Ω) . (5.48)

which is the fully discrete analog of (5.39).
We conclude with the following remarks

Remark 5.2. In the estimate (5.46) above we had chosen h ∼ τ2 to recover (5.47). This is because we used
a uniform mesh and first order finite elements when the eigenfunctions participating in the spectral basis had
discontinuous gradient across material interfaces.

Remark 5.3. The eigenfunctions are piecewise analytic inside ω∗ and have singular behavior at the points of
∂ω∗ where it is intersected by the fiber boundaries. The theory of the eigenvalue problem is very general. It
requires only that the distance of the boundaries ∂ω∗ and ∂ω is of the same order as the diameter of ω. Hence we
can create a “wiggly” ω∗∗ when the boundary ∂ω∗∗ is separated from the fibers by a distance on the order of the
fiber diameter and is near by to the boundary of ω∗. In this scenario the eigenfunctions belong to the “broken”
Sobolev space of arbitrary order. Here a broken Sobolev space is the space which belongs to H1(ω∗∗) and also to
Hk within the fibers and exterior to the fibers. For this case if we use the curved elements or GFEM/XFEM
we can get high order rate of convergence i.e. N ∼ τ−2/(k−1)where N is the number of degrees of freedom. Note
that the exponential decay of the eigenvalues λ(l) leads to very mild assumptions about the regularity of the
eigenfunctions as put forth in Hypothesis 4.1.
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6. Computational complexity for MS-GFEM

In this section the aim is to assess the computational complexity and estimate the cost of the proposed
MS-GFEM method for solving the composite material problem. The assessment is qualitative in that it is
expressed in terms of constants which are theoretically known but are not necessarily optimal. The computation
consists of the following parts: 1) Construction of the uniform mesh of size H on Ω over which the subdomains
ωi,j and ω∗

i.j are defined. 2) Construction of the spectrally defined shape functions ϕl
ij,h on each subdomain

ωi,j . 3) Construction of the stiffness matrix and the right hand side of the MS-GFEM problem. 4) Solving the
system of equations of MS-GFEM. Components 1, 2, 3 can be carried out independently over each subdomain
ωij and are used to construct the linear system in part 4. To give perspective on a large parallel machine each
subdomain computation can be carried out on a separate core independently of the other cores. The linear
system to be solved in part 4 is much smaller in size when compared to the full FE discretization of the problem
and can be solved using parallel algorithms.

1. Construction of the coarse mesh of size H and the associated domains ωij,ω
∗
ij . This step is straight forward

and inexpensive. In what follows we will identify the considerations leading to an optimal choice of H that
minimizes the time of computation.

2. The construction of the local shape functions ϕl
ij,h on each ωij. involves five components.

(a) On ω∗
ij we construct the uniform mesh of squares of size h so that the boundaries ∂ωijand ∂ω∗

ij coincide
with the mesh. The size h is chosen according to the tolerance τ as discussed in the previous section.

(b) Construction of the stiffness matrix for the problem on ω∗
ij . From the previous section these domains are

squares of sidelength β(1 + α)H = H∗. Because the tensor A is discontinuous across material interfaces
we point out that adaptive integration schemes need to be used. Because of the sparsity of the stiffness
matrix the number of operations required for assembly is O(H∗/h).

(c) Construction of the space HA,h(ω∗
ij) of discrete A-harmonic functions on ω∗

ij . Motivated by the numerical
experiments of [55] we construct a 2N dimensional space of discrete finite element A-harmonic functions
spanned by the functions {wl

ij,h} on ω∗
ij . These functions are defined to be discretely A-harmonic with

traces on ∂ω∗
ij corresponding to the basis of harmonic polynomials of degree ≤ N . The choice of N

is determined at the time of computation and is conditioned on the eigenvalue λ(2N+1)
ij,h of the discrete

spectral problem (5.40). Here we choose N such that λ(2N+1)
ij,h ≤ τ. We then select the dimension of the

discrete approximation space to be m such that λ2m+1
ij,h ≤ τ . For the purposes of estimation we start

with N = 100. The functions wl
ij,h can be computed iteratively using conjugate gradient methods and

preconditioning or by Gaussian elimination. Here we will assume that each of the discrete functions wl
ij,h

is obtained iteratively using q iterations so that O(2Nq(H/h)2) operations are required to construct a
discrete 2N dimensional harmonic subspace of HA,h(ω∗

ij). Alternatively using Gaussian elimination would
require O((2NH/h)3) operations to create the 2N dimensional subspace.

(d) Construction of the eigenvalue problem leading to the local shape functions ϕl
ij,h. The local discrete

eigenvalue problem (5.40) delivers the matrix eigenvalue problem of the form λPx = Qx. Here Pkl =
(wk

ij,h, w
l
ij,h)ω∗

ij
, and noting that the local basis functions wk

ih,h and wl
ij,h are A-harmonic shows (on

integrating by parts) that computing one element of P requires O(H/h) operations. Hence O(4N2H/h)
operations are required to assemble P . The same estimate applies to the number of operations needed
to assemble Q.

(e) Solution of the eigenvalue problem requires O((2N)3) operations.

Summarizing we see that to obtain the approximation space spanned by 2N local shape functions given by
the spectral basis {ϕl

ij}2N
l=1 the cost is dominated by the number of operations required to construct the finite

dimensional discrete subspace spanned by {wl
ij,h}. This cost is O(2Nq(H/h)2) operations using the iterative

approach for finding each wl
ij,h and O((2NH/h)3) operations using Gaussian elimination. Assuming that

q = N we need O(2N2(H/h)2) respectively O(8N3H3/h3) operations for determining {ϕl
ij}2N

l=1.
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3. Construction of the MS-GFEM stiffness matrix and the right hand side,
(a) Construction of the MS-GFEM stiffness matrix. The MS-GFEM stiffness matrix is a block diagonal

matrix associated with the 9 point stencil. Here each block is an m×m matrix. The construction of the
block matrices is carried out locally and can be done in parallel. Here each stencil requires O(m2(H/h)2)
operations to assemble and we have (κ/H)2 stencils.

(b) Construction of the right hand side. For problems driven by body forces one has a prescribed right hand
side function f . For this case we compute (κ/H)2 particular solutions wij . Here we need O(H/h)2) oper-
ations to compute each local particular solution wij . To compute all local particular solutions associated
with a right hand side we need O(κH/h)2) operations.

4. Solution of the MS-GFEM system. For problems with multiple right hand sides we can invert the matrix
using elimination to recover the discrete solution operator. This requires O((κ/H)3m3) operations. The
solution procedure is parallelizable but requires communication between cores. Alternatively for single right
hand sides one can proceed using iterative methods.

We now address the computational complexity for the MS-GFEM and estimate the machine time required
for computation. To begin we consider implementation first on a single processor and then on a parallel machine
with p processors. Here we ignore other issues such as the cost of fetches to disk when using a single processor.

1. Single processor implementation. Carrying out steps 1 through 3 requires O(N2H2/h2) operations for each
of the (κ/H) 2 subdomains ωij for a total of O(κ2N2/h2) operations. If we apply elimination to construct
the local subspaces then O(N3H3/h3) operations are required over each subdomain and we have a total of
O(κ2N3H/h3) operations. Thus to to carry out steps 1 through 3 on a single processor requires O(κ2N2/h2)
resp O(κ2N3H/h3) operations. Step 4 requires O(m3κ3/H3) operations. It follows that single processor
implementation of MS-GFEM requires

O(κ2N2/h2) + O(κ3m3/H3) and (6.49)
O(κ2N3H/h3) + O(m3κ3/H3) (6.50)

operations respectively. Fixing h,N,m in (6.49) and choosing H so that both terms are of the same order
we have H ∼ O(κ1/3mh2/3/N2/3) and the total number of operations is O(κ2N2/h2). Similarly fixing h in
(6.50) and choosing H so that both terms are of the same order gives resp H = m3/4κ1/4h3/4/N3/4and the
total number of operations is O(N9/4m1/4κ9/4/h9/4).
Equation (6.49) shows that the local approximation spaces together with the inversion of the GFEM stiffness
matrix delivers the complete inverse operator for the discrete problem with the same number O(N2κ2/h2)
of operations.

2. Now we consider a parallel implementation with p processors and provide an estimate for the time necessary
to perform the computation. Here the work is measured in floating point operations per second F and the
total time is F × Operations. Here the time to execute steps one through three drops by a factor of 1

p .

Step four using a direct solver within a parallel implementation will roughly require FO(κ3
m3/H3)/p +

D(lg p)m(κ/H) + E(mκ/H)2p−1/2 s. Here D ∼ 10−6 and E ∼ 10−9 and the last two terms relate to the
latency inherent in the direct solver.

We emphasize that the implementation of MS-GFEM delivers the discrete solution operator using the same
order of operations as the number of fibers inside the computational domain. This implementation is optimal in
that the number of operations for solution is of the same order as the input data for the problem. It is important
to point out that the MS-GFEM matrix is of order m2κ2/H2, where m = lnd+1( 1

τ ) where τ is the prescribed
tolerance for the approximation error hence the memory required to store the MS-GFEM inverse matrix can be
controlled and can be of order far less than the number of fibers contained within the computational domain.

We close this section with a discussion on local memory allocation and problem size. Here we execute steps
1 through 3 of the MS-GFEM computation over a single patch ω∗

ij on one processor. Standard processors and
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associated cash memory can handle problems with (H/h)2 ≤ 106 degrees of freedom. For this scenario the time
for the local computation will be on the order of one second. Now suppose that h = τ2 then we can choose
H = 103τ2 and for τ = 10−2 we have H ∼ 10−1. Setting κ = 1 we have p = 102 processors and the size of the
MS-GFEM inverse matrix is seen to be on the order of 105. Assuming that the number of fibers is proportional
to 1

h2 we have 108 fibers in the computational domain. Thus the MS-GFEM inverse matrix is three orders of
magnitude smaller than the number of fibers inside the computational domain.

7. Optimal local approximation spaces

In this section we introduce and develop optimal local approximation spaces for use in the multi-scale scheme.
These spaces are distinguished by their exponential approximation properties. Given the solution u0 to the global
problem and a prescribed tolerance τ we seek to find a local approximation on the patch ωj . In this section we
show that is is possible to find a local approximation w from the optimal local space Ψj of dimension (ln τ−1)d+1,
d = 2, 3 for which the error satisfies

‖u0 − w‖E(ωj) ≤ τ. (7.51)

In what follows we will establish the optimal local approximation properties in the general context of hetero-
geneous media for two and three dimensional elasticity problems characterized by measurable elasticity tensors
A(x) satisfying the coercivity and boundedness conditions (2.3). We will also develop approximation properties
for local domains that border the boundary of Ω. Here we will establish exponential approximation results when
Ω has reentrant corners and for general Lipschitz domains. We begin by identifying optimal local approxima-
tion spaces for interior domains. To fix ideas we will assume that the patch ω is a cube of a given side length
surrounded by a larger cube ω∗. We will distinguish two cases depending on if the set ω, lies within the interior
of Ω or if it intersects the boundary, i.e., ω∩∂Ω �= ∅. It will be shown that the overall approach to constructing
optimal local approximation spaces for these two cases is the same. We consider concentric cubes ω ⊂ ω∗ with
side lengths given by σ and σ∗ = (1 + ρ)σ respectively. In order to introduce the ideas we suppose first that ω
lies in the interior of Ω so that ω ⊂ ω∗ ⊂ Ω.

We shall utilize ω∗ to construct a finite dimensional approximation space over ω. For any open subset S
of the computational domain Ω we introduce the space of functions HA(S; Rd) defined to be the functions in
H1(S; Rd) that are A-harmonic on S, i.e., v ∈ H1(S; Rd) and

(v, ϕ)E(S) =
∫

S

Ae(v) : e(ϕ) dx, ∀ϕ ∈ C∞
0

(
S; Rd

)
. (7.52)

Here HA(ω; Rd) and HA(ω∗; Rd) contain local information on the heterogeneities and will be used in the con-
struction of the optimal local basis. Let R = {a+b∧x; a and b, in R

d} be the linear space of rigid motions. We
introduce the quotient ofHA(ω∗; Rd)/R with respect to R denoted by HA(ω∗; Rd)/R. It is clear that the solution
u lies in this space. We also introduce the subspace H0

A
(ω∗; Rd) given by elements of HA(ω∗; Rd) perpendicular

to R with respect to the L2(ω∗; Rd) inner product. Here we recall that HA(ω∗; Rd)/R equipped with the energy
inner product is isometric to H0

A
(ω∗; Rd). The closure of smooth functions with compact support in the energy

norm is denoted by H1
0 (ω∗; Rd) and for future reference we introduce the decomposition of H1(ω∗; Rd) given by

H1(ω∗; Rd) = H0
A
(ω∗; Rd) ⊕H1

0 (ω∗; Rd) ⊕R.

Here H0
A
(ω∗; Rd) and H1

0 (ω∗; Rd) are orthogonal with respect to the energy inner product on ω∗.
We choose to approximate elements in the space of functions HA(ω∗; Rd)/R restricted to ω. Let T :

HA(ω∗; Rd)/R → HA(ω; Rd)/R be the restriction operator such that T (u)(x) = u(x) for all x ∈ ω and
u ∈ HA(ω∗; Rd)/R. The operator T is compact, this follows immediately from an application of the the
Caccioppoli inequality Lemma 7.6 together with the Rellich Kondrachov embedding theorem on ω∗ see [7].
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Now we approximate by “n” dimensional subspaces S(n) ⊂ HA(ω; Rd)/R. The accuracy of a particular increas-
ing sequence {S(n)}∞n=1 of local approximation spaces is measured by

d(S(n), ω) = sup
u∈HA(ω∗;Rd)/R

inf
χ∈S(n)

‖T u− χ‖E(ω)

‖u‖E(ω∗)
· (7.53)

A sequence of approximation spaces Ŝ(n) is said to be optimal if it has an accuracy d(Ŝ(n), ω) that satisfies
d(Ŝ(n), ω) ≤ d(S(n), ω), n = 1, 2, . . ., when compared to any other sequence of approximation spaces S(n). The
problem of finding the family of optimal local approximation spaces is formulated as follows. Let

dn(ω, ω∗) = inf
S(n)

sup
u∈HA(ω∗;Rd)/R

inf
χ∈S(n)

‖T u − χ‖E(ω)

‖u‖E(ω∗)
· (7.54)

Then the optimal family of approximation spaces {Ψn(ω)}∞n=1 satisfy

dn(ω, ω∗) = sup
u∈HA(ω∗;Rd)/R

inf
χ∈Ψn(ω)

‖T u− χ‖E(ω)

‖u‖E(ω∗)
· (7.55)

The quantity dn(ω, ω∗) is known as the Kolomogorov n-width of the compact operator T , see [45]. The optimal
local approximation space Ψn(ω) for GFEM follows from general considerations. We introduce the adjoint
operator T ∗ : HA(ω; Rd)/R → HA(ω∗; Rd)/R and the operator T ∗T is a compact, self adjoint, non-negative
operator mapping HA(ω∗; Rd)/R into itself. We denote the eigenfunctions and eigenvalues of the problem

T ∗T u = λu (7.56)

by {ϕi} and {λi} and the optimal subspace Ψn is given by the following theorem.

Theorem 7.1. The optimal approximation space is given by Ψn(ω) = span{ψ1, . . . , ψn}, where ψi = T ϕi and
dn(ω, ω∗) =

√
λn+1.

For the case considered here the definitions of T and T ∗ show that the optimal subspace and eigenvalues are
given by the following explicit eigenvalue problem.

Theorem 7.2. The optimal approximation space is given by Ψn(ω) = span{ψ1, . . . , ψn} where ψi = T ϕi and
ϕi and λi are the first n eigenfunctions and eigenvalues that satisfy

(ϕi, δ)E(ω) = λi(ϕi, δ)E(ω∗), ∀δ ∈ HA(ω∗; Rd)/R. (7.57)

The next theorem provides an upper bound on the rate of convergence for the optimal local approximation.

Theorem 7.3. Exponential convergence for interior approximations.
For ε > 0 there is an Nε > 0 such that for all n > Nε

dn(ω, ω∗) ≤ e−n( 1
1+d

−ε)
· (7.58)

Theorem 7.3 (proven below) shows that the asymptotic convergence rate associated with the optimal ap-
proximation space is nearly exponential for the general class of L∞(Ω) coefficients satisfying the coercivity and
boundedness conditions (2.3).

We now present optimal local approximation spaces for domains bordering the boundary of Ω. These results
hold for domains Ω of general shape including bounded Lipschitz regions. The essential assumption is that the
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Rellich Kondrachov embedding theorem holds in Ω. To fix ideas we consider the L shaped domain Ω with a
reentrant corner and introduce optimal local approximation spaces for domains that intersect the boundary
∂Ω. To illustrate the method consider concentric L shaped subdomains ω ⊂ ω∗ of Ω containing the reentrant
corner. See Figure 3. The arguments presented here naturally apply to other choices of ω and ω∗ that touch
the boundary. The outer domain is denoted by ω∗ and the concentric inner domain is denoted by ω. The side
lengths of ω ⊂ ω∗ ⊂ σ are given by σ and σ∗ = (1 + ρ)σ respectively.

Given a function u ∈ HA(Ω; Rd), d = 2, 3, the goal is to provide a approximation to u in ω. To this end we
form a local particular solution up given by the A-harmonic function that satisfies Ae(up)n = g on ∂ω∗ ∩ ∂Ω
and up = 0 on ∂ω∗ ∩ Ω. Writing u = up + u0 we see that Ae(u0)n = 0 on ∂ω∗ ∩ ∂Ω and u0 = u on
∂ω∗ ∩Ω. The objective of this section is to find the optimal family of local approximation spaces that give the
best approximation to u0 = u − up in the energy norm over the set ω. We introduce the space of functions
HA,0(ω∗; Rd) given by all functions v ∈ H1(ω∗,Rd) that are A-harmonic on ω∗ and for which ∂νv ≡ Ae(v)n = 0
on ∂ω∗ ∩ ∂Ω.The analogous space of functions defined on ω is denoted HA,0(ω; Rd). Since we approximate
functions with respect to the energy norm we introduce the quotient space of HA,0(ω∗; Rd) to the subspace of
rigid translations R denoted by HA,0(ω∗; Rd)/R. Now we introduce T : HA,0(ω∗; Rd)/R → HA,0(ω; Rd)/R given
by the restriction operator defined by T (u)(x) = u(x) for all x ∈ ω and u ∈ HA,0(ω∗; Rd)/R. The operator T is
compact. As before this follows immediately from an application of a suitable Caccioppoli inequality (Lem. 7.6)
together with the Rellich Kondrachov embedding theorem on ω∗. Let S(n) be any finite dimensional subspace
of HA,0(ω; Rd)/R and the problem of finding the family of optimal local approximation spaces is formulated in
terms of the n-width of T . Let

dn(ω, ω∗) = inf
S(n)

sup
u∈HA,0(ω∗;Rd)/R

inf
χ∈S(n)

‖T u− χ‖E(ω)

‖u‖E(ω∗∩Ω)
· (7.59)

Proceeding as before we introduce the adjoint operator T ∗ : HA(ω; Rd)/R → HA(ω∗)/R and the operator T ∗T
is a compact operator mapping HA,0(ω∗)/R into itself. The optimal approximating spaces are described in the
following theorem.

Theorem 7.4. The optimal approximation space is given by Ψn(ω) = span{ψ1, . . . , ψn} where ψi = T ϕi and
ϕi ∈ HA,0(ω∗; Rd)/R and λi are the first n eigenfunctions and eigenvalues that satisfy

(ϕi, δ)E(ω) = λi(ϕi, δ)E(ω∗∩Ω), ∀δ ∈ HA,0(ω∗; Rd)/R, (7.60)

and dn(ω, ω∗) =
√
λn+1.

The next theorem provides an upper bound on the rate of convergence for the optimal local boundary approx-
imation.

Theorem 7.5 (Exponential convergence at the boundary).
For ε > 0 there is an Nε > 0 such that for all n > Nε

dn(ω, ω∗) ≤ e−n( 1
d+1−ε)

. (7.61)

Theorem 7.5 shows that the asymptotic convergence rate associated with the optimal boundary approxima-
tion space is nearly exponential for the general class of L∞(ω∗) coefficients A(x) satisfying the coercivity and
boundedness conditions (2.3).

We provide a proof of exponential decay for interior subdomains noting that the proof for boundary domains
proceeds along similar lines. The construction of the local approximation space is done iteratively. We introduce
the the first n eigenfunctions vi ∈ H1(ω∗; Rd), orthogonal to R, in the L2(ω∗; Rd) inner product, for the the
eigenvalue problem

(vi,w)E(ω∗) = λi

∫
ω∗

vi · w dx, ∀ w ∈ H1
(
ω∗; Rd

)
,
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i = 1, . . . , n. The subspace spanned by these functions is denoted by Sn(ω∗). We introduce the span of A

harmonic functions given by

Wn(ω∗) = span{wi ∈ HA(ω∗; Rd) : wi = vi, on ∂ω∗, i = 1, . . . n}. (7.62)

The orthogonal projection from H1(ω∗; Rd) onto H0
A(ω∗; Rd) is denoted by PA. and one readily checks that

Wn(ω∗) = PASn(ω∗).
We define the family of approximation spaces Fn(ω, ω∗) given by the restriction of the elements of Wn(ω∗) to

ω. In what follows we first show that Fn(ω, ω∗) is a family of local approximation spaces with a rate of conver-
gence on the order of n−1/d, d = 2, 3. To show this we introduce a suitable version of the Caccioppoli inequality
that bounds functions in the energy norm over any measurable subset O ⊂ ω∗ for which dist(∂O, ∂ω∗) > δ > 0
in terms of the L2 norm over ω∗.

Lemma 7.6 (Caccioppoli inequality).
Let u be A-harmonic in ω∗ and belong to L2(ω∗; Rd) ∩H1

loc(ω
∗; Rd). Then

‖ u ‖E(O)≤ (2(β)1/2/δ) ‖ u ‖L2(ω∗;Rd) . (7.63)

where β is defined in (2.3).

The proof of the Lemma follows that given in [7].
Next we introduce the approximation theorem associated with the space Wn(ω∗) given by

Lemma 7.7. Let u ∈ H0
A(ω∗; Rd) then there exists a vu ∈Wn(ω∗) such that

‖u− vu‖L2(ω∗;Rd) = inf
v∈Wn(ω∗)

‖ u − v ‖L2(ω∗;Rd)≤ Cnσ
∗θnα

−1/2 ‖ u ‖E(ω∗) d = 2, 3, (7.64)

where σ∗ is the side length of the cube ω∗, α is given by (2.3) Cn = n−1/d(1 + o(1)), d = 2, 3. For d = 2,
θ2 =

√
2/(3π) and for d = 3, θ3 = [(1 + 4

√
2)/(6π2)]1/3.

Proof. The lemma follows immediately from an upper bound on the quotient

T = sup
u∈∈H0

A
(ω∗;Rd)

inf
w∈Wn(ω∗)

‖u− w‖L2(ω∗;Rd)

‖u‖E(ω∗)
· (7.65)

Fix u ∈ H0
A
(ω∗; Rd) and denote the projection of u onto Wn(ω∗) with respect to the energy norm ‖ · ‖E(ω∗) by

PEu. Choosing w = PEu and noting that ‖(I − PE)u‖E(ω∗) ≤ ‖u‖E(ω∗) gives the upper bound

T ≤ sup
u∈H0

A(ω∗;Rd)

‖(I − PE)u‖L2(ω∗;R2)

‖(I − PE)u‖E(ω∗)
= sup

u∈H0
A
(ω∗;Rd)⊥ Wn(ω∗)

‖u‖L2(ω∗;R2)

‖u‖E(ω∗)
· (7.66)

Since Wn(ω∗) = PASn(ω∗) it follows that

{u ∈ H0
A
(ω∗; Rd) ⊥ PASn(ω∗)} = {u ∈ H0

A(ω∗; Rd) ⊥ Sn(ω∗)},
{u ∈ H0

A(ω∗; Rd) ⊥ Sn(ω∗)} ⊂ {u ∈ H1(ω∗; Rd)2 ⊥L2 (Sn(ω∗) ⊕R)}, (7.67)

where ⊥L2 in the second line of (7.67) denotes orthogonality with respect to the L2(ω∗; Rd) inner product.
Hence

T ≤ sup
u∈H0

A
(ω∗;Rd)⊥Sn(ω∗)

‖u‖L2(ω∗;Rd)

‖u‖E(ω∗)
≤ sup

u∈H1(ω∗;Rd)2⊥L2 (Sn(ω∗)⊕R)

‖u‖L2(ω∗)

‖u‖E(ω∗)
=

1
√
μn+1

, (7.68)
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where μn+1 is the largest eigenvalue associated with Sn+1(ω∗). One has the elementary lower bound μn+1 ≥
ανn+1 where νn+1 is the largest corresponding eigenvalue for

∫
ω∗ e(vn+1) : e(w) dx = νn+1

∫
ω∗ vn+1 · w dx,

∀w ∈ H1(ω∗; Rd). Here we can appeal to the generalization of Weyl’s theorem for elastic problems [17] and
νn+1 = 4π

8(σ∗)2/3 (n+ 1)(1 + o(1)), for d = 2 and νn+1 = [6π2/(1 + 4
√

2)(σ∗)3/]1/3(n+ 1)2/3(1 + o(1)) for d = 3.
The required upper bound on T now follows and the theorem is proved. �

Now we apply Lemma 7.6 together with Lemma 7.7 to obtain the following convergence rate associated with
the family of approximation spaces Fn(ω, ω∗) given by

Theorem 7.8. Let u ∈ HA(ω∗; Rd)/R then there exists an approximation vu ∈ Fn(ω, ω∗) for which

‖ u − vu ‖E(ω) = inf
v∈Fn(ω,ω∗)

‖ u− v ‖E(ω) ≤ I(ω, ω∗)Cn ‖ u ‖E(ω∗) (7.69)

where

I(ω, ω∗) = 4 θd
1 + ρ

ρ
(β/α)1/2 and Cn = n−1/d(1 + o(1)), d = 2, 3. (7.70)

Next we proceed iteratively to construct a family of local approximation spaces with a rate of convergence that
is nearly exponential. For any pair of two concentric cubes Q ⊂ Q∗ we define Fn(Q,Q∗) to be the space given
by the restriction of Wn(Q∗) on Q. We suppose that ω∗ is of side length σ∗. Let N > 1 be an integer and we
suppose that ω is of side length σ and σ∗ = σ(1 + ρ). Choose ωj , j = 1, 2, . . . , N to be the nested family of
concentric cubes with side length σ(1 + ρ(N + 1 − j)/N) for which ω = ωN+1 ⊂ ωN ⊂ ωN−1 ⊂ · · · ⊂ ω1 = ω∗.
We introduce the local spaces, Fn(ω, ωN), Fn(ω, ωN−1), . . . ,Fn(ω, ω1). Put m = N × n and we define the
approximation space given by

T (m,ω, ω∗) = Fn(ω, ω1) ⊕ · · · ⊕ Fn(ω, ωN). (7.71)

Theorem 7.9. Let u ∈ HA(ω∗)/R and N be an integer such that 1 ≤ N ≤ nγ, with 0 < γ < 1/d. Then there
exists zu ∈ T (m,ω, ω∗) such that

‖ u − zu ‖E(ω)≤ ςN ‖ u ‖E(ω∗) (7.72)

and ς = 4 θd
1+ρ

ρ N(β/α)1/2Cn, d = 2, 3.

Theorem 7.9 and the associated exponential decay given by Theorem 7.3 now follow from identical arguments
to those presented in [7]. The proof of Theorem 7.5 (exponential convergence for boundary domains) proceeds
along the same lines as the proof of Theorem 7.3 given above. Here one applies the elastic analog of Lemma 3.4
of [7], together with the version of the Caccioppoli inequality for boundary domains developed in [8] and the
asymptotic decay result of [17].

8. Summary and perspective

Recent developments in aerospace and infrastructure are driving the need for new numerical methods for the
recovery of local fields inside of large systems composed of heterogeneous structures. Several different approaches
have been developed to address these problems as well as for complex multiscale problems in geology and
biology. Even though it is possible to directly apply FEM methods to these problems the primary challenge
facing a direct approach is that the linear system will be extremely large typically with degrees of freedom
on the order 109 and higher. This requires methods which are well suited to massively parallel computation.
For heterogeneous media with high contrast and millions of interfaces between component materials the use of
multigrid methods is problematic because of the high contrast and non-uniform meshes etc. The use of iterative
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methods require suitable preconditioners adapted to the problem at hand. Gaussian elimination methods based
on H-matrices [14] are not well parallelizable for three dimensional problems. There are also issues with the
control of accuracy when using nonuniform meshes and higher order elements.

The implementation of the MS-GFEM method proposed here delivers the discrete solution operator using
the same order of operations as the number of fibers inside the computational domain. This implementation is
optimal in that the number of operations for solution is of the same order as the input data for the problem.
The size of the MS-GFEM matrix used to represent the discrete inverse operator is controlled by the scale of
the coarse grid and the convergence rate of the spectral basis and can be of order far less than the number of
fibers. This strategy is general and can be applied to the solution of very large FE systems associated with the
discrete solution of elliptic PDE.

The multiscale spectral GFEM proposed here can be viewed as a type of homogenization method with
buffers (oversampling) i.e., with overlapping nonconforming elements glued together through a partition of
unity. However there are other approaches to overlapping nonconforming elements such as the mortar method
where the “overlap” is restricted to the boundaries of the “coarse” elements [1]. Here questions of convergence
are delicate and solving the system of equations for the mortar method may be expensive.

For the implementation proposed here it is seen that the cash memory available to core processors places
an upper limit on the size of the linear system used to construct the local approximation space. For currently
available processors this limit is on the order 106 degrees of freedom. The size of the local domain ω∗ also
influences the global computation. Here the size of ω∗ influences the number of shape functions required for a
given accuracy and hence the size m of the blocks in the matrix of the MS-GFEM and the operations required in
the direct solve is O(m3H−3). Fortunately the condition number for the global solve appears weakly ldependent
on m and is O(H−2) so that an iterative method with an inexpensive preconditioner could still be very effective.

We point out that in view of the estimates given in previous sections it is more or less clear that the approach
using only a uniform mesh and the a priori convergence O(h1/2) will be expensive for obtaining accuracy within
the prescribed tolerance τ. For the the circular fibers treated here we know that the solution and the local
the eigenfunctions are piecewise analytic. For this case it is possible to utilize this and use “wiggly” domains
ω∗ to obtain an O(h) a priori convergence rate see, Remark 5.3. In the absence of a higher regularity theory
for heterogeneous media one very likely needs to develop a-posteriori error indicators and estimators. The
Hypothesis 4.1 on the constants appearing in the Besov space regularity inequality (4.34) is motivated by the
analogous but rigorous estimates for the optimal basis for harmonic functions on the disk. The Hypothesis 5.1 is
related to the question of separation of successive eigenvalues for elliptic eigenvalue problems [11]. The specific
dependence of the separation between successive eigenvalues is delicate and remains an open question for future
investigation.

The MS-GFEM proposed here has the advantage that the accuracy of the method is governed by the accuracy
of the local shape functions and the dimension of the approximation space all of which are localized to a patch ω∗.
Hence we can adaptively choose the dimension of local approximation spaces and meshes inside each of the local
domains ω∗. Here we can use the Caccioppoli inequality to estimate the energy norm of the solution in ω∗ and
utilize this information within an error estimator. The MS-GFEM is very flexible and we can choose local
domains ω∗ of different sizes depending on the location within the computational domain Ω. For example they
can be of larger size in the middle of the domain Ω and can be smaller in size closer to the boundary ∂Ω.
Additionally the construction of conforming meshes which coincide with the boundaries of the fibers is possible
although not inexpensive. See e.g. the meshes used in [3]. For fibers with circular cross section the GFEM/XFEM
method together with SGFEM using the uniform mesh and enrichment (see e.g. [5, 55]) has high potential for
use in building local bases inside each ω∗.

We conclude noting that we have addressed the implementation for a two dimensional problem to fix ideas.
The MS-GFEM applies without modification to higher dimensional problems see, Section 7 where local spectral
bases with exponential convergence are developed for general L∞ coefficients in two and three dimensions. This
type of approach is also not only restricted to elliptic equations.
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[6] I. Babuška, G. Caloz and J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough
coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981.
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