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Abstract A methodology is presented for investigating the dynamics of heterogeneous me-
dia using the nonlocal continuum model given by the peridynamic formulation. The ap-
proach presented here provides the ability to model the macroscopic dynamics while at the
same time resolving the dynamics at the length scales of the microstructure. Central to the
methodology is a novel two-scale evolution equation. The rescaled solution of this equation
is shown to provide a strong approximation to the actual deformation inside the peridy-
namic material. The two scale evolution can be split into a microscopic component tracking
the dynamics at the length scale of the heterogeneities and a macroscopic component track-
ing the volume averaged (homogenized) dynamics. The interplay between the microscopic
and macroscopic dynamics is given by a coupled system of evolution equations. The equa-
tions show that the forces generated by the homogenized deformation inside the medium are
related to the homogenized deformation through a history dependent constitutive relation.

Keywords Peridynamics · Nonlocal forces · Elasticity · Multiscale · Heterogeneous
materials · Dynamics

Mathematics Subject Classification (2000) 73

1 Introduction

The peridynamic formulation introduced in Silling [18] is a non-local continuum theory for
deformable bodies. Material particles interact through a pairwise force field that acts within
a prescribed horizon. Interactions depend only on the difference in the displacement of ma-
terial points and spatial derivatives in the displacement are avoided. This feature makes it
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an attractive model for the autonomous evolution of discontinuities in the displacement for
problems that involve cracks, interfaces, and other defects, see [2, 3, 10, 19–21]. Recent in-
vestigations aimed toward developing the numerical implementation, and application areas
of the peridynamic model include [6, 23, 25–27]. More mathematically related investiga-
tions address issues related to the function space setting of peridynamics [7, 8] and the link
between the linearized peridynamic formulation and the operators appearing in the Navier
system of linear elasticity in the limit of vanishing non-locality [8, 22]. In this context the
convergence of the solutions of the peridynamic equations to the solutions of the Navier
system is demonstrated in [7]. In other related work the development of a non-local vec-
tor calculus with applications to non-local boundary value problems has been carried out
in [11]. Recent work on the multi-scale applications of peridynamics have shown how the
peridynamic equations formulated at mezo-scales can be recovered by a suitable upscaling
of atomistic formulations, see [16].

In this paper new tools are developed for the analysis of heterogeneous peridynamic
media involving two distinct length scales over which different types of peridynamic forces
interact. The setting treated here involves a long range peridynamic force law perturbed
in space by an oscillating short range peridynamic force. The oscillating short range force
represents the presence of heterogeneities. It is also assumed that there is a sharp density
variation associated with the heterogeneities. In this treatment we carry out the analysis in
the small deformation setting. For this case the reference and deformed configurations are
taken to be the same and both long and short range forces are given by linearizations of the
peridynamic bond stretch model introduced in [18].

The relative length scale over which the short range forces interact is denoted by ε and
points inside the domain containing the heterogeneous material are specified by x. Here
we will suppose the heterogeneities are periodically dispersed on the length scale ε = 1

n

for some choice of n = 1,2, . . . . The deformation inside the medium is both a function
of space and time t and is written uε(x, t). The multi-scale analysis of the peridynamic
formulation proceeds using the concept of two-scale convergence, see [14] and [1]. The two-
scale convergence originally introduced in the context of partial differential equations turns
out to provide a natural setting for identifying both the coarse scale and fine scale dynamics
inside peridynamic composites. The theory and application of the two-scale convergence
is taken up in section three of this paper where a novel two-scale peridynamic equation is
derived. The two-scale formulation is described by introducing a rescaled or microscopic
variable y = x/ε. The solution of the two-scale dynamics is a deformation u(x, y, t) that
depends on both variables x and y.

The rescaled solution u(x, x/ε, t) is shown to provide a strong approximation to the
actual deformation uε(x, t) inside the peridynamic material. This is shown in Sect. 3.3 where
an evolution law for the error eε(x, t) = uε(x, t) − u(x, x/ε, t) is developed. It is shown
that eε(x, t) vanishes in the Lp norm, with respect to the spatial variables, when the length
scale of the oscillation tends to zero for all p in the interval 1 ≤ p ≤ ∞. The advantage
of using the two-scale dynamics as a computational model is that it has the potential to
lower computational costs associated with the explicit peridynamic modeling of millions of
heterogeneities. This issue is discussed in Sect. 3.3.

It is important for the modeling to recover the dynamics that can be measured by strain
gages or other macroscopic measuring devices. Typical measured quantities involve aver-
ages of the deformation uε(x, t) taken over a prescribed region V with volume denoted
by |V |. To this end we denote the unit period cell for the heterogeneities by Y and project
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Fig. 1 Fiber-reinforced
composite

out the fluctuations by averaging over y and write

uH (x, t) =
∫

Y

u(x, y, t)dy. (1.1)

In section four it is shown that

lim
ε→0

1

|V |
∫

V

uε(x, t) dx = 1

|V |
∫

V

uH (x, t) dx. (1.2)

In this way we see that the average deformation is characterized by uH (x, t) when the scale
ε of the microstructure is small. We split the deformation into microscopic and macroscopic
parts and write u(x, y, t) = uH (x, t)+r(x, y, t). The interplay between the microscopic and
macroscopic dynamics is given by a coupled system of evolution equations for uH and r .
The equations show that the forces generated inside the medium are related to the homog-
enized deformation through a history dependent constitutive relation. The explicit form of
the constitutive relation is presented in section four, see (4.18), where a homogenized evo-
lution equation for the coarse scale dynamics written exclusively in terms of uH is given,
see (4.17). The physical origin of the history dependence is due to the density difference be-
tween the two materials. When both materials have the same density the history dependence
disappears. This is easily seen from (4.18). The history dependence seen here is consistent
with the origin of memory effects due to oscillatory coefficients in front of the time deriva-
tive as observed in [17] and [24].

1.1 Peridynamic Formulation of Continuum Mechanics in Heterogeneous Media

We consider elastic deformations inside a body described by the bounded domain Ω . In the
peridynamic theory, the time evolution of the displacement vector field u, in a homogeneous
body of constant density ρ̂ is given by the partial integro-differential equation

ρ̂ ∂2
t u(x, t) =

∫
Hγ (x)∩Ω

f (u(x̂, t) − u(x, t), x̂ − x, x) dx̂ + b(u, x, t),

for (x, t) ∈ Ω × (0, T ), (1.3)

where Hγ (x) is a neighborhood of x of diameter 2γ , b is a prescribed loading force density
field, and Ω is a bounded set in R

3. Here f denotes the pairwise force field whose value
is the force vector (per unit volume squared) that the particle at x̂ exerts on the particle at
x. For a homogeneous medium f is of the form f (u(x̂, t) − u(x, t), x̂ − x), i.e., it depends
only on the relative position of the two particles. We will often refer to f as a bond force.
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Fig. 2 Deformation of a bond
within the peridynamic horizon

Only points x̂ inside Hγ (x) interact with x. In this formulation we prescribe traction free
boundary conditions, i.e., particles inside Ω do not interact with particles outside the body,
see [12]. This boundary condition is enforced by taking the domain of integration to be given
by the intersection of the horizon Hγ (x) and the body Ω . The dynamic formulation (1.3)
is completed by prescribing initial conditions for u(x,0) and ∂tu(x,0). We conclude the
formulation noting that nonlocal Dirichlet boundary conditions may be imposed on u with
the boundary data being defined on a subset of Ω of nonzero volume, see [4, 11].

For the purposes of discussion it will be convenient to set

ξ = x̂ − x,

which represents the relative position of these two particles in the reference configuration,
and

η = u(x̂, t) − u(x, t),

which represents their relative displacement (see Fig. 2). In this treatment, all elastic defor-
mations are assumed small and the reference and deformed configurations are taken to be
the same.

We now introduce the heterogeneous peridynamic material. One can think of it as a
material with long range peridynamic forces acting over a neighborhood of diameter 2γ

perturbed by an oscillating density fluctuation and oscillatory short range bond force acting
over a much smaller neighborhood of diameter 2εδ. Both the long and short range pairwise
elastic forces will be given by the linearized version of the bond-stretch model proposed
in [21]. The long range force is given by

flong(η, ξ) =
{

λ
ξ⊗ξ

|ξ |3 η, |ξ | ≤ γ,

0, otherwise.

Here ξ ⊗ ξ is a rank one matrix with elements (ξ ⊗ ξ)ij = ξiξj and γ is the prescribed
peridynamic horizon and λ is a positive constant.

In this paper we assume that oscillations in the density and short range bond force are
periodic. Here the oscillations are characterized by rescalings of a unit periodic peridynamic
bond force and density. To describe these we introduce the unit period cube Y ⊂ R

3 for
the microstructure. The local coordinates inside Y are denoted by y with the origin at the
center of the unit cube. The unit cube is composed of two or more peridynamic materials
with different densities. To fix ideas one can consider reinforced composites made up of
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an inclusion phase such as a particle or fiber and a second host phase that surrounds the
particle or fiber. A fiber reinforced material is portrayed in Fig. 4. The presence of material
heterogeneity is reflected by the appearance of peridynamic forces acting within the length
scale of the period. Let χf denote the indicator function of the set occupied by the inclusion
material and χm denote the indicator function of the set occupied by the host or matrix
material. Here χf is given by

χf(y) =
{

1, y is in the inclusion phase,

0, otherwise,

and χm is given by

χm(y) = 1 − χf(y).

We extend the functions χf and χm to R
3 by periodicity. For future reference, we denote by θf

and θm the volume fractions of the included material and the matrix material, respectively.
Here θf = ∫

Y
χf(y)dy and θm = 1 − θf. The density of the matrix material inside the unit

period cell is given by the unperturbed density ρm = ρ̂ and that of the inclusion is given by
0 < ρf = ρ̂+
ρ where 
ρ can be a positive or negative constant. The density characterizing
the heterogeneous medium is

ρ(y) = χf(y)ρf + χm(y)ρm. (1.4)

The short-range pairwise force is characterized by a bond strength αδ associated with a
horizon δ > 0. The peridynamic horizon δ is chosen to be smaller than the spacing separating
the inclusions. In addition the inclusions are assumed to be sufficiently smooth so that the
points y and ŷ are separated by at most one interface when |y − ŷ| < δ. For any two points
y and ŷ in R

3 αδ is given by

αδ(y, ŷ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cf, if y and ŷ are in the same inclusion and |y − ŷ| < δ,

Cm, if y and ŷ are in the matrix phase and |y − ŷ| < δ,

Ci, if y and ŷ are separated by an interface and |y − ŷ| < δ,

0, if |y − ŷ| ≥ δ.

The material parameters Cf and Cm are intrinsic to each phase and can be determined
through experiments. Bonds connecting particles in the different materials are character-
ized by Ci, which can be chosen such that Cf > Ci > Cm > 0, see [21]. Mathematically we
express the bond strength as

αδ(y, ŷ) = χδ(y − ŷ)α(y, ŷ), (1.5)

where χδ(z) = 1 for |z| < δ and χδ(z) = 0 for |z| ≥ δ and α is given by

α(y, ŷ) = Cf χf(y)χf(ŷ) + Cm χm(y)χm(ŷ) + Ci
(
χf(y)χm(ŷ) + χm(y)χf(ŷ)

)
. (1.6)

The short-range peridynamic force defined on Ω is given by

f ε
short(η, ξ, x) = 1

ε2
αεδ

(
x

ε
,
x + ξ

ε

)
ξ ⊗ ξ

|ξ |3 η. (1.7)
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Fig. 3 Long-range bonds
(horizon γ ) and short-range
bonds (horizon εδ)

For future reference we see from (1.5) and (1.6) that αεδ(
x
ε
, x̂

ε
) is given by

αεδ

(
x

ε
,
x̂

ε

)

= χεδ(x − x̂)(Cf χε
f (x)χε

f (x̂) + Cmχε
m(x)χε

m(x̂)

+ Ci(χ
ε
f (x)χε

m(x̂) + χε
m(x)χε

f (x̂))), (1.8)

where χε
f (x) := χf(

x
ε
) and χε

m(x) := χm( x
ε
). The oscillating density ρε for the heterogeneous

medium is given by ρε(x) = ρ( x
ε
).

The elastic displacement inside the heterogeneous body Ω is denoted by uε(x, t) and the
peridynamic equation of motion for the heterogeneous medium is given by

ρε(x)∂2
t uε(x, t) =

∫
Hγ (x)∩Ω

flong(u
ε(x̂, t) − uε(x, t), ξ) dx̂

+
∫

Hεδ(x)∩Ω

f ε
short((u

ε(x̂, t) − uε(x, t)), ξ, x) dx̂

+ bε(x, t), for x in Ω. (1.9)

The peridynamic equation is supplemented with initial conditions

uε(x,0) = uε
0(x), (1.10)

∂tu
ε(x,0) = vε

0(x). (1.11)

Here the body force bε(x, t) and initial conditions uε
0(x), vε

0(x) can depend upon ε. When
these functions are bounded in Lp(Ω)3 for p ≥ 1 it follows from the theory of semigroups
that there is a classic solution uε(x, t) belonging to C2([0, T ]; Lp(Ω)3). This is discussed
in the following section, see Remark 2.

In what follows we will develop strong approximations for solutions uε when the pre-
scribed body forces and initial conditions are continuous at the coarse length scale but pos-
sess discontinuous oscillations over fine length scales. For this choice we look for a solution
uε(x, t) continuous in time but possibly discontinuous in the spacial variables and belong-
ing to the Lebesgue space Lp(Ω)3 for 1 ≤ p < ∞. In this paper we show that we can find
solutions uε(x, t) and strong approximations of the form u(x, x/ε, t) that both belong to
C2([0, T ];Lp(Ω)3), for a wide class of initial conditions and body forces. In order to de-
scribe this class of initial conditions and body forces we consider the space L

p
per(Y ;C(Ω)3)

of functions ψ(x, y) measurable with respect to y, Lp-integrable on Y and Y -periodic in
y, with values in the Banach space C(Ω)3 of continuous vector fields on Ω . Every element
ψ(x, y) of this space is a Caratheodory function and hence ψ(x, x

ε
) is measurable on Ω
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Fig. 4 (a) Composite cube Y .
(b) Cross-section of Y along the
fiber direction

and belongs to Lp(Ω). This kind of function space is well known in the context of two-
scale convergence see, [1], and [13]. In what follows we will suppose b(x, y, t) belongs
to C([0, T ]; L

p
per(Y ;C(Ω)3) and both u0(x, y) and v0(x, y) belong to L

p
per(Y ;C(Ω)3).

For this choice the initial conditions and body forces are given by uε(x,0) = u0(x, x
ε
),

∂tu
ε(x,0) = v0(x, x

ε
), and bε(x, t) = b(x, x

ε
, t). The construction of a strong approximation

for this class of data is given in Theorem 12 of Sect. 3.3.
It is important at this stage to point out that it is precisely the ε−2 scaling of the bond force

together with the scaling εδ of the horizon that ultimately delivers the macroscopic equations
for uH given by (4.17). In this context we expect other types of macroscopic equations to
arise for different scalings of the bond force strength. Recent work for homogeneous media
show that the classical equations of linear elasticity arise for bond force scaling on the order
of ε−4 and horizons with scaling ε, see [8, 22], and [7].

When the initial conditions and body force are continuous functions and the density
ρε and bond forces characterized by α( x

ε
, x̂

ε
) are also continuous then the solution uε is

continuous in space and belongs to C2([0, T ]; C(Ω)3); this is discussed in the next section.
In forthcoming work we will focus on the development of strong approximations for

initial conditions that are discontinuous with respect to coarse length scales. This will be
carried out for heterogeneous peridynamic media characterized by oscillatory but continu-
ous densities and bond forces. More generally one could contemplate strong approximations
for more general combinations of bond forces and initial data.

2 Peridynamic Formulation for Heterogeneous Media: A Well Posed Problem

In this section, we make use of the semigroup theory of operators to show the existence and
uniqueness of solutions to (1.9)–(1.11). For v ∈ Lp(Ω)3, with 1 ≤ p < ∞, let

Aε
L,1v(x) = ρ−1

ε (x)

∫
Hγ (x)∩Ω

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 v(x̂) dx̂, (2.1)

Aε
L,2v(x) = ρ−1

ε (x)

∫
Hγ (x)∩Ω

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂ v(x), (2.2)

Aε
S,1v(x) = ρ−1

ε (x)

∫
Hεδ(x)∩Ω

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 v(x̂) dx̂, (2.3)

Aε
S,2v(x) = ρ−1

ε (x)

∫
Hεδ(x)∩Ω

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂ v(x). (2.4)
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Also we set

Aε
L = Aε

L,1 − Aε
L,2, (2.5)

Aε
S = Aε

S,1 − Aε
S,2, (2.6)

Aε = Aε
L + Aε

S. (2.7)

Then by making the identifications uε(t) = uε(·, t) and bε(t) = b(·, t), we can write (1.9)–
(1.11) as an operator equation in Lp(Ω)3

⎧⎨
⎩

üε(t) = Aεuε(t) + ρ−1
ε bε(t), t ∈ [0, T ],

uε(0) = uε
0,

u̇ε(0) = vε
0,

(2.8)

or equivalently, as an inhomogeneous Abstract Cauchy Problem in Lp(Ω)3 × Lp(Ω)3

{
U̇ ε(t) = A

εUε(t) + Bε(t), t ∈ [0, T ],
Uε(0) = Uε

0 ,
(2.9)

where

Uε(t) =
(

uε(t)

u̇ε(t)

)
, Uε

0 =
(

uε
0

vε
0

)
, Bε(t) =

(
0

ρ−1
ε bε(t)

)
, and

A
ε =

(
0 I

Aε 0

)
.

Here I denotes the identity map in Lp(Ω)3.

Proposition 1 Let 1 ≤ p < ∞ and assume that b ∈ C([0, T ]; L
p
per(Y ;C(Ω)3)) and U0 ∈

L
p
per(Y ;C(Ω)3) × L

p
per(Y ;C(Ω)3). Then

(a) The operators Aε and A
ε are linear and bounded on Lp(Ω)3 and Lp(Ω)3 × Lp(Ω)3,

respectively. Moreover, the bounds are uniform in ε.
(b) Equation (2.9) has a unique classical solution Uε in C1([0, T ]; Lp(Ω)3 × Lp(Ω)3)

which is given by

Uε(t) = etAε

Uε
0 +

∫ t

0
e(t−τ)Aε

Bε(τ ) dτ, t ∈ [0, T ], (2.10)

where

etAε =
∞∑

n=0

tn

n! (A
ε)n. (2.11)

Moreover, (2.8) has a unique classical solution uε ∈ C2([0, T ]; Lp(Ω)3) which is given
by

uε(t) = cosh
(
t
√

Aε
)
uε

0 + √
Aε

−1
sinh

(
t
√

Aε
)
vε

0

+ √
Aε

−1
∫ t

0
sinh

(
(t − τ)

√
Aε

)
bε(τ ) dτ (2.12a)
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with the notation

cosh
(
t
√

Aε
) :=

∞∑
n=0

t2n

(2n)! (Aε)n, (2.12b)

√
Aε

−1
sinh

(
t
√

Aε
) :=

∞∑
n=0

t2n+1

(2n + 1)! (A
ε)n. (2.12c)

(c) The sequences (uε)ε>0, (u̇ε)ε>0, and (üε)ε>0 are bounded in L∞([0, T ]; Lp(Ω)3).

Remark 2 The hypothesis of Proposition 1 can be relaxed by assuming that the sequences
of initial conditions (uε

0), (v
ε
0), are bounded in Lp(Ω)3 and (bε(·, t)) is uniformly bounded

in Lp(Ω)3 for t ∈ [0, T ]. This is proved following the same steps given in the proof of
Proposition 1 presented below.

Proof Part (a). It is clear that the operators Aε
S,1, Aε

S,2, Aε
L,1, and Aε

L,2 are linear. So we begin
the proof by showing that Aε

S,1 and Aε
S,2 are uniformly bounded sequences of operators on

Lp(Ω)3 for 1 ≤ p < ∞. We introduce the indicator function χΩ(x) taking the value one for
x inside Ω and zero for x outside Ω and let v denote a generic vector field belonging to
Lp(Ω)3. Then by the change of variables x̂ = x + εz in (2.3) we obtain

Aε
S,1v(x) = ρ−1

ε

∫
Hδ(0)

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 v(x + εz) dz. (2.13)

Applying Minkowski’s inequality gives

‖Aε
S,1v(x)‖Lp(Ω)3

≤
∫

Hδ(0)

(∫
Ω

χΩ(x + εz)ρ−1

(
x

ε

)

×
∣∣∣∣α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 v(x + εz)

∣∣∣∣
p

dx

)1/p

dz. (2.14)

Let α = maxy,y′∈Y ρ−1(y)α(y, y ′) and we see that

‖Aε
S,1v(x)‖Lp(Ω)3 ≤ α

∫
Hδ(0)

1

|z|
(∫

Ω

χΩ(x + εz)|v(x + εz)|p dx

)1/p

dz

≤ MS‖v‖Lp(Ω)3 , (2.15)

where MS is independent of ε and given by

MS = α

(∫
Hδ(0)

1

|z| dz

)
= α

2πδ2

3
, (2.16)

which shows that the operators Aε
S,1 are uniformly bounded with respect to ε. Similarly, Aε

S,2
can be written as

Aε
S,2v(x) =

∫
Hδ(0)

χ�(x + εz)ρ−1

(
x

ε

)
α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 dz v(x). (2.17)
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Thus

|Aε
S,2v(x)| ≤ MS |v(x)|,

from which the boundedness of Aε
S,2 immediately follows. Combining these results shows

that Aε
S , which is given by Aε

S,1 − Aε
S,2, is a sequence of uniformly bounded operators

on Lp(Ω)3.
Next we show that the linear operators Aε

L = Aε
L,1 − Aε

L,2 are a sequence of uniformly
bounded operators on Lp(Ω)3. Changing variables x̂ = x + ξ and applying Minkowski’s
inequality gives

‖Aε
L,1v‖Lp(Ω)3 ≤

∫
Hγ (0)

(∫
Ω

χΩ(x + ξ)ρ−1

(
x

ε

)∣∣∣∣λξ ⊗ ξ

|ξ |3 v(x + ξ)

∣∣∣∣
p

dx

)1/p

dξ

≤ ML‖v ‖Lp(Ω)3 (2.18)

where ML is given by

ML = max
y∈Y

{ρ−1(y)} × λ
2πγ 2

3
, (2.19)

and it follows that the operator Aε
L,1 is bounded in Lp(Ω)3. The boundedness of Aε

L,2,
which is given by (2.2), follows immediately from its definition. Therefore Aε

L is uniformly
bounded on Lp(Ω)3 with respect to ε.

Since Aε = Aε
L + Aε

S , we conclude that

‖Aεv‖Lp(Ω)3 ≤ M ‖v‖Lp(Ω)3 , (2.20)

for a positive constant M which is independent of ε. The operator A
ε is clearly linear, thus it

remains to show that this operator is uniformly bounded on Lp(Ω)3 × Lp(Ω)3. To see this,
we let (v,w) ∈ Lp(Ω)3 × Lp(Ω)3. The norm in this Banach space is given by

‖(v,w)‖Lp(Ω)3×Lp(Ω)3 = ‖v‖Lp(Ω)3 + ‖w‖Lp(Ω)3 .

We note that

A
ε

(
v

w

)
=

(
0 I

Aε 0

)(
v

w

)
=

(
w

Aεv

)
.

Thus we obtain

‖A
ε(v,w)‖Lp(Ω)3×Lp(Ω)3 = ‖w‖Lp(Ω)3 + ‖Aεv‖Lp(Ω)3

≤ ‖w‖Lp(Ω)3 + ‖Aε‖‖v‖Lp(Ω)3 . (2.21)

From (2.21) it follows that

‖A
ε(v,w)‖Lp(Ω)3×Lp(Ω)3 ≤ M‖(v,w)‖Lp(Ω)3×Lp(Ω)3 , (2.22)

for some positive constant M completing the argument.
Part (b). We have seen from Part (a) that A

ε is a bounded linear operator on the Ba-
nach space Lp(Ω)3 × Lp(Ω)3. Also, since bε is in C([0, T ]; Lp(Ω)3), it follows that
Bε = (0, bε) is in C([0, T ]; Lp(Ω)3 × Lp(Ω)3). These facts together with the theory of
semigroups, see for example, [9, 15], show that:



Multiscale Dynamics of Heterogeneous Media in the Peridynamic 81

1. The operator A
ε generates a uniformly continuous semigroup {etAε }t≥0 on Lp(Ω)3 ×

Lp(Ω)3, where etAε
is given by (2.11).

2. The inhomogeneous Abstract Cauchy Problem (2.9) has a unique classical solution Uε ∈
C1([0, T ]; Lp(Ω)3 × Lp(Ω)3) which is given by (2.10).

It immediately follows from (2) that the second order inhomogeneous Abstract Cauchy
Problem (2.8) has a unique classical solution uε ∈ C2([0, T ]; Lp(Ω)3) and formula (2.12)
follows immediately from (2.11).

Part (c). We recall that

uε
0(x) := u0

(
x,

x

ε

)
,

vε
0(x) := v0

(
x,

x

ε

)

where u0(x, y), v0(x, y) are in L
p
per(Y ;C(Ω)3). We surround Ω by a cube of integer side

length L and extend u0(x, y) to the cube by setting u0(x, y) = 0 for x outside Ω and for
every y in Y . We note that the extended u0(x, x

ε
) is ε = 1

n
periodic in the second variable

and shift the cube so that it is commensurate with the periods. The period cells of side length
ε are denoted by εYi and the cube is given by their union

⋃
i εYi where the index i ranges

from 1 to L3n3. Since we have extended u0(x, y) so that it vanishes when x lies outside Ω

one can write

‖uε
0‖Lp(Ω)3 =

(∫
∪i εYi

∣∣∣∣u0

(
x,

x

ε

)∣∣∣∣
p

dx

)1/p

. (2.23)

Hence

‖uε
0‖Lp(Ω)3 ≤

(∫
∪i εYi

sup
x′∈Ω

∣∣∣∣u0

(
x ′,

x

ε

)∣∣∣∣
p

dx

)1/p

=
(

L3n3∑
i=1

∫
εYi

sup
x′∈Ω

∣∣∣∣u0

(
x ′,

x

ε

)∣∣∣∣
p

dx

)1/p

= L3/p‖u0‖L
p
per(Y ;C(Ω)3). (2.24)

Here the last inequality follows from the change of variables y = x
ε
. Thus uε

0 is uniformly
bounded in Lp(Ω)3. Similarly vε

0 is uniformly bounded which implies that Uε
0 is uniformly

bounded in Lp(Ω)3 × Lp(Ω)3. The same considerations show that for t ∈ [0, T ], that
bε(t) is uniformly bounded in Lp(Ω)3. Since bε(t) is continuous in t , it follows that bε

is uniformly bounded in C([0, T ]; Lp(Ω)3), which implies that Bε is uniformly bounded in
C([0, T ]; Lp(Ω)3 × Lp(Ω)3).

Next we note that

‖etAε‖ ≤ et‖A
ε‖

≤ etM, (2.25)

where in the last inequality we have used the fact that A
ε is uniformly bounded. Taking the

norm in both sides of (2.10) and by using (2.25), we obtain

‖Uε(t)‖Lp(Ω)3×Lp(Ω)3 ≤ M1e
tM +

∫ t

0
e(t−τ)MM2 dτ, (2.26)
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for some positive numbers M1, M2, and M . This implies that Uε is uniformly bounded in
L∞([0, T ]; Lp(Ω)3 × Lp(Ω)3). Therefore the sequences (uε)ε>0 and (u̇ε)ε>0 are bounded
in L∞([0, T ]; Lp(Ω)3). Finally, it follows from (2.8) that the sequence (üε)ε>0 is bounded
in L∞([0, T ]; Lp(Ω)3), completing the proof. �

It is easily seen that for continuous initial conditions and body forces that the peridy-
namic solution uε is also continuous in space provided that the bond forces and densities are
continuous. To fix ideas we “smooth out” the characteristic functions χf and χm by molli-
fication. Indeed given any infinitely differential function ζ with compact support on Ω we
fix β such that 0 < β < δ and form ζ β(x) = β−3ζ( x

β
). The mollified characteristic func-

tions are given by χ
β

f (x) = (ζ β ∗ χf)(x) and χ
β
m(x) = (ζ β ∗ χm)(x). The replacement of χf

and χm by their mollified counter parts in (1.4) and (1.6) delivers a short range bond force
f ε

short(η, ξ, x) and density ρε(x) that are continuous in x. For this case it is easy to see that
Aε

S,1, Aε
S,2, AL,1, and AL,2 are linear operators mapping C(Ω)3 into itself. A straight for-

ward application of Hölder’s inequality shows that Aε
S,1, Aε

S,2, AL,1, and AL,2 are bounded
and that the operator norms of Aε

S,1, Aε
S,2 are uniformly bounded with respect to ε. To fix

ideas we choose u0 and v0 in C(Ω) and for b in C1([0, T ];C(Ω)) and proceeding as before
we find that the solution uε of the peridynamic initial value problem exists is unique and
belongs to C2([0, T ];C(Ω)3).

3 Strong Approximation by Two-Scale Functions

The aim of this section is to build an approximation of uε(x, t) when the period ε of the
microstructure is small. In what follows we show how to systematically identify a function
u(x, y, t) that is oscillatory with respect to a new “fast” spatial variable y that when rescaled
y = x

ε
delivers a strong approximation to uε(x, t), i.e.,

lim
ε→0

∥∥∥∥uε(x, t) − u

(
x,

x

ε
, t

)∥∥∥∥
Lp(Ω)

= 0. (3.1)

It is shown that the desired function u(x, y, t) is the “two-scale” limit of the sequence
{uε(x, t)} for ε → 0. After periodically extending u(x, y, t) in the y variable we find that it
satisfies the two-scale peridynamic initial-value problem given in Theorem 11. In the sub-
sequent sections we apply this fact to show that u(x, x

ε
, t) provides a strong approximation

to uε(x, t) when ε is sufficiently small.

3.1 Two-Scale Convergence

To expedite the presentation we list the following useful function spaces

K = {ψ ∈ C∞
c (R3 × Y ), ψ(x, y) is Y -periodic in y},

J = {ψ ∈ C∞
c (R3 × Y × R

+), ψ(x, y, t) is Y -periodic in y},
Lp = {w ∈ C([0, T ]; Lp

per(Y ;C(Ω)3)},
Qp = {w ∈ C2([0, T ]; Lp

per(Y ;C(Ω)3)}
and introduce the definition of two-scale convergence. Let p and p′ be two real numbers
such that 1 ≤ p < ∞ and 1/p + 1/p′ = 1.
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Definition 3 (Two-scale convergence [1, 14]) A sequence (vε) of functions in Lp(�), is
said to two-scale converge to a limit v ∈ Lp(� × Y ) if, as ε → 0

∫
�

vε(x)ψ

(
x,

x

ε

)
dx →

∫
�×Y

v(x, y)ψ(x, y) dxdy (3.2)

for all ψ ∈ Lp′
(�; Cper(Y )). We will often use vε

2
⇀ v to denote that (vε) two-scale con-

verges to v.

If the sequence (vε) is bounded in Lp(�) then Lp′
(�; Cper(Y )) can be replaced by K in

Definition (3) (see [13]). For time-dependent problems one slightly modifies the above two-
scale convergence to allow for homogenization with a parameter, see [5]. Here the parameter
is denoted by t .

Definition 4 A bounded sequence (vε) of functions in Lp(� × (0, T )), is said to two-scale
converge to a limit v ∈ Lp(� × Y × (0, T )) if, as ε → 0

∫
�×(0,T )

vε(x, t)ψ

(
x,

x

ε
, t

)
dxdt →

∫
�×Y×(0,T )

v(x, y, t)ψ(x, y, t) dxdydt (3.3)

for all ψ ∈ J .

Definition 3 is motivated by the following compactness result of Nguetseng, see [14] and
Allaire [1].

Theorem 5 Let (vε) be a bounded sequence in Lp(�). Then there exists a subsequence and
a function v ∈ Lp(� × Y ) such that the subsequence two-scale converges to v.

A similar two-scale compactness holds for time dependent problems and is stated in the
following theorem.

Theorem 6 Let (vε) be a bounded sequence in Lp(� × (0, T ))3. Then there exists a sub-
sequence and a function v ∈ Lp(� × Y × (0, T ))3 such that the subsequence two-scale
converges to v.

The proof of compactness for the time dependent case is essentially the same as the proof
of Theorem 5. A slight variation of Theorem 6 can be found in [5]. For future reference we
recall the following well known results on two-scale convergence that can be found in [13].

Proposition 7 Let (vε) be a bounded sequence in Lp(�× (0, T ))3 that two-scale converges
to v ∈ Lp(� × Y × (0, T ))3. Then as ε → 0

vε →
∫

Y

v(x, y, t) dy weakly in Lp(� × (0, T ))3.

Proposition 8 If vε(x) converges to v(x) in Lp(�)3 then its two-scale limit is v.

Last we state two-scale convergence theorems for test functions.
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Proposition 9 If ψ(x, y) belongs to K or L
p
per(Y ;C(�)3) then ψ(x, x

ε
) two-scale converges

to ψ(x, y) and

lim
ε→0

∥∥∥∥ψ

(
x,

x

ε

)∥∥∥∥
p

Lp(�)

=
∫

�×Y

|ψ(x, y)|p dx dy. (3.4)

Moreover given any bounded sequence vε in Lp(�)3 two-scale converging to v then

lim
ε→0

∫
�

vε(x)ψ

(
x,

x

ε

)
dx =

∫
�×Y

v(x, y)ψ(x, y) dxdy (3.5)

for every test function ψ belonging to L
p
per(Y ;C(�)3).

Similarly if ψ(x, y, t) belongs to J or Lp then ψ(x, x
ε
, t) two-scale converges to

ψ(x, y, t) and

lim
ε→0

∥∥∥∥ψ

(
x,

x

ε
, t

)∥∥∥∥
p

Lp(�×(0,T ))3
=

∫
�×Y×(0,T )

|ψ(x, y, t)|p dx dy dt. (3.6)

Moreover given any bounded sequence vε in Lp(� × (0, T ))3 two-scale converging to v

then

lim
ε→0

∫
�×(0,T )

vε(x, t)ψ

(
x,

x

ε
, t

)
dxdt =

∫
�×Y×(0,T )

v(x, y, t)ψ(x, y, t) dxdydt (3.7)

for every test function ψ belonging to Lp .

3.2 The Two-Scale Limit Equation

In this section, we use two-scale convergence to identify the limit of the solution uε(x, t) of
(1.9)–(1.11) for initial data uε

0 = u0(x, x
ε
), v0 = v0(x, x

ε
) and body force bε(x, x

ε
, t) with u0

and v0 in L
p
per(Y ;C(�)3) and b ∈ Lp . For v ∈ Lp(�)3, with 3

2 < p < ∞, let

KL,1v(x) =
∫

Hγ (x)∩�

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 v(x̂) dx̂, (3.8)

KL,2v(x) =
∫

Hγ (x)∩�

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂ v(x), (3.9)

Kε
S,1v(x) =

∫
Hεδ(x)∩�

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 v(x̂) dx̂, (3.10)

Kε
S,2v(x) =

∫
Hεδ(x)∩�

1

ε2
α

(
x

ε
,
x̂

ε

)
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂ v(x). (3.11)

Set KL = KL,1 − KL,2 and Kε
S = Kε

S,1 − Kε
S,2 and the peridynamic equation (1.9) is written

ρ

(
x

ε

)
∂2

t uε(x, t) = (
KL + Kε

S

)
uε(x, t) + b

(
x,

x

ε
, t

)
. (3.12)

We start by noting that the loading force and initial data are in Lp and L
p
per(Y ;C(�)3)

respectively and from Proposition 9 satisfy the following

b

(
x,

x

ε
, t

)
2

⇀ b(x,y, t), (3.13a)
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u0

(
x,

x

ε

)
2

⇀ u0(x, y), (3.13b)

v0

(
x,

x

ε

)
2

⇀ v0(x, y). (3.13c)

We note that from Proposition 1(c) and Theorem 6 it follows that, up to some subsequences,

uε
2

⇀ u, u̇ε
2

⇀ u∗, and üε
2

⇀ u∗∗, where u, u∗, and u∗∗ are in Lp(� × Y × [0, T ])3. We shall
see later that u(x, y, t) is uniquely determined by an initial value problem. Therefore u is
independent of the subsequence, and the whole sequence (uε) two-scale converges to u.

We start by extending the function u(x, y, t) in the y variable from Y to R
3 as a Y -

periodic function. The next task is to identify the dynamics of the periodically extended
u(x, y, t). We multiply both sides of (3.12) by a test function ψ(x, x

ε
, t), where ψ(x, y, t) is

Y -periodic in y and is such that ψ ∈ C∞
c (R3 × Y × R)3, and integrate over � × R

+

∫
�×R+

∂2
t uε(x, t) · ψ

(
x,

x

ε
, t

)
ρ

(
x

ε

)
dxdt

=
∫

�×R+

(
(KL + Kε

S)u
ε(x, t) + b

(
x,

x

ε
, t

))
· ψ

(
x,

x

ε
, t

)
dxdt.

After integrating by parts twice, we obtain
∫

�×R+
uε(x, t) · ∂2

t ψ

(
x,

x

ε
, t

)
ρ

(
x

ε

)
dxdt −

∫
�

∂tu
ε(x,0) · ψ

(
x,

x

ε
,0

)
ρ

(
x

ε

)
dx

+
∫

�

uε(x,0) · ∂tψ

(
x,

x

ε
,0

)
ρ

(
x

ε

)
dx

=
∫

�×R+

(
(KL + Kε

S)u
ε(x, t) + b

(
x,

x

ε
, t

))
· ψ

(
x,

x

ε
, t

)
dxdt.

Passing to the ε → 0 limit we obtain
∫

�×Y×R+
u(x, y, t) · ∂2

t ψ(x, y, t)ρ(y) dxdydt

−
∫

�×Y

v0(x, y) · ψ(x, y,0)ρ(y) dxdy

+
∫

�×Y

u0(x, y) · ∂tψ(x, y,0)ρ(y) dxdy

= lim
ε→0

∫
�×R+

(KL + Kε
S)u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

+
∫

�×Y×R+
b(x, y, t) · ψ(x, y, t) dxdydt. (3.14)

We will use the following lemma to compute the limit on the right hand side of (3.14).

Lemma 1 Let w be in L
p
per(Y ; C(�)3) with 3

2 < p < ∞, and define

BLw(x, y) =
∫

Hγ (x)∩�

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3
(∫

Y

w(x̂, y ′) dy ′ − w(x,y)

)
dx̂,



86 B. Alali, R. Lipton

BSw(x, y) =
∫

Hδ(y)

α(y, ŷ)
(ŷ − y) ⊗ (ŷ − y)

|ŷ − y|3 (w(x, ŷ) − w(x,y)) dŷ.

Then as ε → 0,

(a) KLuε(x, t)
2

⇀ BLu(x, y, t). Moreover, the operator ρ−1BL is linear and bounded on
L

p
per(Y ; C(�)3).

(b) Kε
Su

ε(x, t)
2

⇀ BSu(x, y, t). Moreover, the operator ρ−1BS is linear and bounded on
L

p
per(Y ; C(�)3).

The proof of this lemma is provided at the end of this subsection.

Remark 10 Results similar to Lemma 1 can be proven for other function spaces as well.
The space L

p
per(Y ; C(�)3) in the statement of this lemma can, for example, be replaced

with the function space L
p
per(Y ; Lp(�)3) or by the function space Lp(�; Cper(Y )3), where

3
2 < p < ∞ in each of these spaces.

Application of Lemma 1 gives

lim
ε→0

∫
�×R+

(KL + Kε
S)u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

�×Y×R+
(BL + BS)u(x, y, t) · ψ(x, y, t) dxdydt.

Thus (3.14) becomes
∫

�×Y×R+
u(x, y, t) · ∂2

t ψ(x, y, t)ρ(y) dxdydt −
∫

�×Y

v0(x, y) · ψ(x, y,0)ρ(y) dxdy

+
∫

�×Y

u0(x, y) · ∂tψ(x, y,0)ρ(y) dxdy

=
∫

�×Y×R+

(
(BL + BS)u(x, y, t) + b(x, y, t)

) · ψ(x, y, t) dxdydt. (3.15)

We shall see from Lemma 2, provided before the end of this subsection, that u has two
classical partial derivatives with respect to t , for almost every t , and the initial conditions
supplementing (3.15) are given by

u(x, y,0) = u0(x, y), ∂tu(x, y,0) = v0(x, y). (3.16)

Thus by integrating by parts twice, (3.15) becomes
∫

�×Y×R+
ρ(y)∂2

t u(x, y, t) · ψ(x, y, t) dxdydt

=
∫

�×Y×R+

(
(BL + BS)u(x, y, t) + b(x, y, t)

) · ψ(x, y, t) dxdydt. (3.17)

Since this is true for any function ψ ∈ C∞
c (R3 × Y × R)3 for which ψ(x, y, t) is Y -periodic

in y, we obtain that for almost every x, y, and t

∂2
t u(x, y, t) = ρ−1(y)Bu(x, y, t) + ρ−1b(x, y, t), (3.18)
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where B = BL + BS . It follows from Lemma 1 that ρ−1B is a bounded linear operator on
L

p
per(Y ; C(�)3), with 3

2 < p < ∞. Therefore the initial value problem given by (3.18) and
(3.16), is interpreted as a second-order inhomogeneous abstract Cauchy problem defined
on L

p
per(Y ; C(�)3), with body force in Lp , 3

2 < p < ∞. From the theory of semigroups
[9, 15] it follows that this problem has a unique solution u(x, y, t) ∈ Qp, 3

2 < p < ∞.
The following summarizes the results of this subsection.

Theorem 11 Let (uε) be the sequence of solutions of (1.9)–(1.11) with initial data uε
0 =

u0(x, x
ε
), v0 = v0(x, x

ε
) and body force bε(x, x

ε
, t) with u0 and v0 in L

p
per(Y ;C(�)3) and

b ∈ Lp . Then uε
2

⇀ u and the periodic extension of u(x, y, t) in the y variable from Y to R
3

also denoted by u belongs to Qp , with 3
2 < p < ∞, and is the unique solution of

ρ(y)∂2
t u(x, y, t)

=
∫

Hγ (x)∩�

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3
(∫

Y

u(x̂, y ′, t) dy ′ − u(x, y, t)

)
dx̂

+
∫

Hδ(y)

α(y, ŷ)
(ŷ − y) ⊗ (ŷ − y)

|ŷ − y|3
(
u(x, ŷ, t) − u(x, y, t)

)
dŷ

+ b(x, y, t), (3.19)

supplemented with initial conditions

u(x, y,0) = u0(x, y), (3.20)

∂tu(x, y,0) = v0(x, y). (3.21)

We conclude this section by showing that u is twice differentiable with respect to time
and proving Lemma 1.

Lemma 2 Let t ∈ [0, T ] and define

g(x, y, t) =
∫ t

0

∫ τ

0
u∗∗(x, y, l) dldτ + tu∗(x, y,0) + u(x, y,0). (3.22)

Then g is in Lp(� × Y × (0, T ))3, twice differentiable with respect to t almost everywhere,
and satisfies

(a) For almost every x, y, and t , g(x, y, t) = u(x, y, t), ∂tg(x, y, t) = u∗(x, y, t), and
∂2

t g(x, y, t) = u∗∗(x, y, t).
(b) For almost every x and y

g(x, y,0) = u(x, y,0) = u0(x, y),

∂tg(x, y,0) = u∗(x, y,0) = v0(x, y).

Proof Part (a). Let ψ1(x, y) be in C∞
c (�×Y )3 and Y -periodic in y, and let φ be in C∞

c (R+).
Then by using integration by parts, we see that

∫
�×R+

∂tu
ε(x, t) · ψ1

(
x,

x

ε

)
φ(t) dxdt = −

∫
�×R+

uε(x, t) · ψ1

(
x,

x

ε

)
φ̇(t) dxdt.
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Sending ε to 0 and using the fact that, up to a subsequence, ∂tu
ε

2
⇀ u∗, we obtain

∫
�×Y×R+

u∗(x, y, t) · ψ1(x, y)φ(t) dxdydt = −
∫

�×Y×R+
u(x, y, t) · ψ1(x, y)φ̇(t) dxdydt.

Since this holds for every ψ1 we conclude that

∫
R+

u∗(x, y, t)φ(t) dt = −
∫

R+
u(x, y, t)φ̇(t) dt, (3.23)

for almost every x and y and for every φ ∈ C∞
c (R+). Similarly, by using the fact that, up to

a subsequence, ∂2
t uε

2
⇀ u∗∗, we see that

∫
R+

u∗∗(x, y, t)φ(t) dt =
∫

R+
u(x, y, t)φ̈(t) dt, (3.24)

for almost every x and y and for every φ ∈ C∞
c (R+). We note that from (3.22) it is easy to

see that g is twice differentiable in t almost everywhere and satisfies

∂tg(x, y, t) =
∫ t

0
u∗∗(x, y, τ ) dτ + u∗(x, y,0), (3.25)

∂2
t g(x, y, t) = u∗∗(x, y, t). (3.26)

We will use these facts together with (3.23) and (3.24) to show that ∂tg = u∗ almost every-
where and g = u almost everywhere.

For φ ∈ C∞
c (R+), we integrate by parts using (3.26) and (3.24) to find that

∫
R+

∂tg(x, y, t)φ̇(t) dt =
∫

R+
u∗(x, y, t)φ̇(t) dt.

Thus we obtain ∫
R+

(
∂tg(x, y, t) − u∗(x, y, t)

)
φ̇(t) dt = 0, (3.27)

for every φ ∈ C∞
c (R+). Since ∂tg(x, y,0) = u∗(x, y,0), we conclude from (3.27) that

∂tg(x, y, t) = u∗(x, y, t) almost everywhere. Finally it easily follows from (3.23) that

∫
R+

(
g(x, y, t) − u(x, y, t)

)
φ̇(t) dt = 0, (3.28)

for every φ ∈ C∞
c (R+). Since g(x, y,0) = u(x, y,0), we conclude from (3.28) that

g(x, y, t) = u(x, y, t) almost everywhere, completing the proof of Part (a).
Part (b). Let ψ(x, y, t) be in C∞

c (� × Y × R)3 and Y -periodic in y. Then on integrating
by parts, we see that

∫
�×R+

∂tu
ε(x, t) · ψ

(
x,

x

ε
, t

)
dxdt = −

∫
�×R+

uε(x, t) · ∂tψ

(
x,

x

ε
, t

)
dxdt

−
∫

�

uε(x,0) · ψ
(

x,
x

ε
,0

)
dx.
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Sending ε to 0, we obtain

∫
�×Y×R+

u∗(x, y, t) · ψ(x, y, t) dxdydt = −
∫

�×Y×R+
u(x, y, t) · ∂tψ(x, y, t) dxdydt

−
∫

�×Y

u0(x, y) · ψ(x, y,0) dxdy. (3.29)

On the other hand, from Part (a), we see that

∫
�×Y×R+

u∗(x, y, t) · ψ(x, y, t) dxdydt = −
∫

�×Y×R+
u(x, y, t) · ∂tψ(x, y, t) dxdydt

−
∫

�×Y

u(x, y,0) · ψ(x, y,0) dxdy. (3.30)

From (3.29) and (3.30) we obtain that

∫
�×Y

(
u0(x, y) − u(x, y,0)

) · ψ(x, y,0) dxdy = 0,

for every ψ . Therefore

u(x, y,0) = u0(x, y),

almost everywhere. Similarly we can show that

∂tu(x, y,0) = v0(x, y),

almost everywhere, completing the proof of Part (b). �

Proof of Lemma 1 Part (a). We compute the two-scale limits of KL,1u
ε and KL,2u

ε to show
that as ε → 0,

KLuε(x, t)
2

⇀ BLu(x, y, t). (3.31)

Let ψ ∈ C∞
c (R3 × Y )3 such that ψ(x, y) is Y -periodic in y, and φ ∈ C∞

c (R+). Then from
the definition of KL,1, (3.8), we see that

∫
�×R+

KL,1u
ε(x, t) · ψ

(
x,

x

ε

)
φ(t) dxdt

=
∫

�×R+

∫
Hγ (x)∩�

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 uε(x̂, t) dx̂ · ψ
(

x,
x

ε

)
φ(t) dxdt. (3.32)

Since uε(x, t)
2

⇀ u(x,y, t), we obtain using Proposition 7 that, as ε → 0,

uε →
∫

Y

u(x, y, t) dy weakly in Lp(� × (0, T ))3. (3.33)

It follows from (3.33) that, for fixed x,
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lim
ε→0

∫
R+

∫
Hγ (x)

χΩ(x̂)λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 uε(x̂, t)φ(t) dx̂dt

=
∫

R+

∫
Hγ (x)

χ�(x̂)λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3
(∫

Y

u(x̂, y ′, t) dy ′
)

φ(t) dx̂dt. (3.34)

Here χΩ is the characteristic function of Ω , taking value 1 for x̂ in Ω and zero outside.
Applying Hölder’s inequality for 1

p
+ 1

p′ = 1 gives

∣∣∣∣
∫

Hγ (x)

χΩ(x̂)λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 uε(x̂, t) dx̂

∣∣∣∣

≤ λ

(∫
Hδ(x)

χΩ(x̂)
1

|x̂ − x|p′ dx̂

)1/p′(∫
Hδ(x)

|uε(x̂, t)|p dx̂

)1/p

≤ λ

(∫
Hδ(x)

1

|x̂ − x|p′ dx̂

)1/p′

‖uε‖L∞([0,T ];Lp(Ω)3),

for almost every t ∈ [0, T ]. (3.35)

We note that the integral on the right hand side of the last inequality is finite for p′ < 3.
From Proposition 1, ‖uε‖L∞([0,T ];Lp(Ω)3) is bounded. Thus from (3.34), and (3.35) and by
using Lebesgue’s dominated convergence theorem, we conclude that the convergence of the
sequence of functions in (3.34) is not only point-wise in x convergence but also strong in
Lp(Ω)3, with 3

2 < p < ∞. Therefore from Proposition 8 and (3.34) it follows that the limit
of (3.32) as ε → 0 is given by

lim
ε→0

∫
Ω×R+

KL,1u
ε(x, t) · ψ

(
x,

x

ε

)
φ(t) dxdt

=
∫

Ω×R+×Y

BL,1u(x, y, t) · ψ(x, y)φ(t) dxdtdy, (3.36)

where

BL,1u(x, y, t) =
∫

Hγ (x)∩Ω

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3
(∫

Y

u(x̂, y ′, t) dy ′
)

dx̂ (3.37)

depends only on (x, t) and is constant in y. Next we evaluate the two-scale limit of KL,2u
ε .

We recall from (2.2) that

KL,2u
ε(x, t) =

∫
Hγ (x)∩Ω

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂uε(x, t), (3.38)

from which immediately follows that as ε → 0,

KL,2u
ε 2
⇀

∫
Hγ (x)∩Ω

λ
(x̂ − x) ⊗ (x̂ − x)

|x̂ − x|3 dx̂ u(x, y, t) ≡ BL,2u(x, y, t). (3.39)

The result (3.31) follows on combining (3.36) and (3.39) and writing BL = BL,1 − BL,2.
It is evident that ρ−1BL is a linear operator on the Banach space L

p
per(Y ; C(Ω)3). To show
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boundedness we show that ρ−1BL,1 and ρ−1BL,2 are bounded operators on L
p
per(Y ; C(Ω)3).

For w in L
p
per(Y ; C(Ω)3) we write x̂ = x + ξ and

‖ρ−1BL,1w‖L
p
per(Y ;C(Ω)3))

=
(∫

Y

(
ρ−1(y) sup

x∈Ω

∣∣∣∣
∫

Hγ (0)

χΩ(x + ξ)λ
ξ ⊗ ξ

|ξ |
∫

Y

w(x + ξ, y ′)dy ′dξ

∣∣∣∣
)p

dy

)1/p

≤
(∫

Y

(
ρ−1(y)

∫
Hγ (0)

λ

|ξ |
∫

Y

sup
x∈Ω

|χΩ(x + ξ)w(x + ξ, y ′)|dy ′dξ

)p

dy

)1/p

≤ λ

∫
Hγ (0)

|ξ |−1dξ

(∫
Y

∫
Y

(
ρ−1(y) sup

x̂∈Ω

|w(x̂, y ′)|dy

)p

dy ′
)1/p

≤ λ

∫
Hγ (0)

|ξ |−1dξ‖ρ−1‖Lp(Y )‖w‖L
p
per(Y ;C(Ω)3), (3.40)

where the second inequality follows from Minkowski’s inequality and it follows that
ρ−1BL,1 is bounded. It is evident from the definition of BL,2 that ρ−1BL,2 is a bounded
operator on L

p
per(Y ; C(Ω)3).

Part (b). Since Kε
S = Kε

S,1 − Kε
S,2, we will compute the two-scale limits of Kε

S,1u
ε and

Kε
S,2u

ε , to show that as ε → 0,

Kε
Su

ε(x, t)
2

⇀ BSu(x, y, t). (3.41)

Let ψ(x, y, t) = ψ2(x)ψ1(y)φ(t), where ψ2 ∈ C∞
c (R3), ψ1 ∈ C∞

per(Y )3, and φ ∈ C∞
c (R+).

Then by using (2.13), replacing v(x) with uε(x, t), we have

∫
Ω×R+

Kε
S,1u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Ω×R+

∫
Hδ(0)

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 uε(x + εz, t) dz

· ψ
(

x,
x

ε
, t

)
dxdt, (3.42)

where χΩ denotes the indicator function of Ω . Thus after a change in the order of integration
in the right hand side of (3.42), we see that

∫
Ω×R+

Kε
S,1u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Hδ(0)

1

|z|3
∫

Ω×R+
χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
uε(x + εz, t)

· zψ1

(
x

ε

)
· zψ2(x)φ(t) dxdtdz. (3.43)

Now we focus on evaluating the limit as ε → 0 of the inner integral in (3.43). By the change
of variables r = x + εz we obtain
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∫
Ω×R+

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
uε(x + εz, t) · zψ1

(
x

ε

)
· zψ2(x)φ(t) dxdt

=
∫

R3×R+
χΩ(r)χΩ(r − εz)α

(
r

ε
− z,

r

ε

)
uε(r, t) · zψ1

(
r

ε
− z

)

· zψ2(r − εz)φ(t) drdt

:= aε(z). (3.44)

We will show that for z ∈ Hδ(0),

lim
ε→0

aε(z) =
∫

Ω×Y×R+
α(y − z, y)u(r, y, t) · zψ1(y − z) · zψ2(r)φ(t) drdydt. (3.45)

To see this, we approximate χΩ by smooth functions ζn such that as n → ∞, ζn → χΩ in
L

p′
loc(R

3), with 1/p + 1/p′ = 1. Then by adding and subtracting ζn(r − εz) χΩ(r − εz) in
(3.44), we see that

aε(z) = a
n,ε
1 (z) + a

n,ε
2 (z), (3.46)

where,

a
n,ε
1 (z) :=

∫
R3×R+

χΩ(r)
(
χΩ(r − εz) − ζn(r − εz)

)

× α

(
r

ε
− z,

r

ε

)
uε(r, t) · zψ1

(
r

ε
− z

)
· zψ2(r − εz)φ(t) drdt, (3.47)

a
n,ε
2 (z) :=

∫
R3×R+

χΩ(r)ζn(r − εz)

× α

(
r

ε
− z,

r

ε

)
uε(r, t) · zψ1

(
r

ε
− z

)
· z ψ2(r − εz)φ(t) drdt. (3.48)

From Proposition 1,

sup
ε>0

‖uε‖L∞([0,T ];Lp(Ω)3) ≤ ∞. (3.49)

So from (3.47) and on application of Hölder’s inequality, we see for some constants C1 and
C2 that

|an,ε
1 (z)| ≤ C1

(∫
R3

∣∣χΩ(r − εz) − ζn(r − εz)
∣∣p′

dr

)1/p′

× ‖uε‖L∞
loc(R+;Lp(Ω)3), (3.50)

|an,ε
2 (z)| ≤ C2‖uε‖L∞

loc(R+;Lp(Ω)3) (3.51)

so there is a constant C such that |aε(z)| < C for ε > 0. On the other hand, the second factor
on the right hand side of (3.50) goes to zero uniformly in ε as n → ∞ and we conclude that
for all ε > 0 and z ∈ Hδ(0),

lim
n→∞a

n,ε
1 (z) = 0. (3.52)
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Now for n fixed we see that as ε → 0, ζn(r − εz)ψ2(r − εz) → ζn(r)ψ2(r) uniformly.
Therefore, we see from (3.48) that

lim
ε→0

a
n,ε
2 (z)

= lim
ε→0

∫
R3×R+

χΩ(r)ζn(r)α

(
r

ε
− z,

r

ε

)
uε(r, t) · zψ1

(
r

ε
− z

)
· zψ2(r)φ(t) drdt

=
∫

Ω×Y×R+
ζn(r)α(y − z, y)u(r, y, t) · zψ1(y − z) · zψ2(r)φ(t) drdydt, (3.53)

where in the last step the fact that (uε)ε>0 two-scale converges to u(r, y, t) was used. By
taking the limit as n → ∞ in (3.53), we obtain

lim
n→∞ lim

ε→0
a

n,ε
2 (z)

=
∫

Ω×Y×R+
α(y − z, y)u(r, y, t) · zψ1(y − z) · zψ2(r)φ(t) drdydt. (3.54)

Equation (3.45) now follows from (3.52) and (3.54) since

lim
ε→0

aε(z) = lim
n→∞ lim

ε→0
(a

n,ε
1 (z) + a

n,ε
2 (z)).

From (3.43) and (3.45), and by using Lebesgue’s dominated convergence theorem ap-
plied to the sequence (aε(z))ε>0, we obtain

lim
ε→0

∫
Ω×R+

Kε
S,1u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Hδ(0)

1

|z|3
∫

Ω×Y×R+
α(y − z, y)u(r, y, t) · zψ1(y − z) · zψ2(r)φ(t) drdydtdz

=
∫

Ω×R+

∫
Hδ(0)

1

|z|3
∫

Y

α(y − z, y)u(r, y, t) · zψ1(y − z) · z dydz ψ2(r)φ(t)drdt,

(3.55)

where we have changed the order of integration in the last step. After shifting the domain of
integration in the inner integral of the right hand side of (3.55), we obtain

∫
Y

α(y − z, y)u(r, y, t) · zψ1(y − z) · z dy

=
∫

Y−z

α(y, y + z)u(r, y + z, t) · zψ1(y) · z dy

=
∫

Y

α(y, y + z)u(r, y + z, t) · zψ1(y) · z y, (3.56)

where in the last step the fact that the integrand is Y -periodic in y was used. Substituting
(3.56) in (3.55), then by changing the order of integration we obtain
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lim
ε→0

∫
Ω×R+

Kε
S,1u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Ω×R+

∫
Y

∫
Hδ(0)

α(y, y + z)
z ⊗ z

|z|3 u(r, y + z, t)dz · ψ1(y)dyψ2(r)φ(t) drdt

=
∫

Ω×Y×R+
BS,1u(r, y, t) · ψ(r, y, t) drdydt, (3.57)

where

BS,1u(x, y, t) =
∫

Hδ(y)

α(y, ŷ)
(ŷ − y) ⊗ (ŷ − y)

|ŷ − y|3 u(x, ŷ, t)dŷ (3.58)

and Kε
S,1u

ε
2

⇀ BS,1u(x, y, t).
Next we evaluate the two-scale limit of Kε

S,2u
ε . Let ψ be a test function in J . Then by

using (2.17), replacing v(x) with uε(x, t), we obtain
∫

Ω×R+
Kε

S,2u
ε(x, t) · ψ

(
x,

x

ε
, t

)
dxdt

=
∫

Ω×R+

∫
Hδ(0)

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 dzuε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt.

(3.59)

The right hand side of (3.59), after changing the order of integration, is equal to
∫

Hδ(0)

qε(z)dz, (3.60)

where qε(z) is given by

qε(z) = 1

|z|3
∫

Ω×R+
χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
uε(x, t) · zψ

(
x,

x

ε
, t

)
· z dxdt. (3.61)

For future reference note that from Proposition 1, supε>0 ‖uε‖L∞([0,T ];Lp(Ω)3) < ∞ hence
there is a constant C such that the sequence qε(z) is bounded above by

|qε(z)| < C|z|−1, for ε > 0. (3.62)

As before we approximate χΩ by a sequence of smooth functions ζn such that ζn → χΩ in
L

p′
loc(R

3) and write

qε
n(z) = 1

|z|3
∫

Ω×R+
ζn(x + εz)α

(
x

ε
,
x

ε
+ z

)
uε(x, t) · zψ

(
x,

x

ε
, t

)
· z dxdt. (3.63)

Next using the fact that (uε)ε>0 two-scale converges to u(x, y, t), we see that for z ∈
Hδ(0),

lim
ε→0

qε(z) = lim
n→∞ lim

ε→0
qε

n(z)

= 1

|z|3
∫

Ω×Y×R+
α(y, y + z)u(x, y, t) · zψ(x, y, t) · z dxdydt. (3.64)
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From (3.59), (3.60) and (3.64), and by using Lebesgue’s dominated convergence theo-
rem, we obtain

lim
ε→0

∫
Ω×R+

Kε
S,2u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Hδ(0)

1

|z|3
∫

Ω×Y×R+
α(y, y + z)u(x, y, t) · zψ(x, y, t) · z dxdydtdz. (3.65)

By changing the order of integration and then using the change of variables ŷ = y + z, we
conclude that

lim
ε→0

∫
Ω×R+

Kε
S,2u

ε(x, t) · ψ
(

x,
x

ε
, t

)
dxdt

=
∫

Ω×Y×R+
BS,2u(x, y, t) · ψ(x, y, t) dxdydt, (3.66)

where

BS,2u(x, y, t) =
∫

Hδ(y)

α(y, ŷ)
(ŷ − y) ⊗ (ŷ − y)

|ŷ − y|3 dŷu(x, y, t), (3.67)

and we conclude that Kε
S,2u

ε(x, t)
2

⇀ BS,2u(x, y, t). Equation (3.41) follows on writing
BS = BS,1 − BS,2.

The operator ρ−1BS is a bounded operator on L
p
per(Y ;C(Ω)3). This follows from bounds

on ρ−1BS,1 and ρ−1BS,2. Given any w in L
p
per(Y ;C(Ω)3) an application of Minkowski’s in-

equality to ‖ρ−1BS,1w(x,y)‖L
p
per(Y ;C(Ω)3) shows that ρ−1BS,1 is bounded. The boundedness

of ρ−1BS,2 easily follows from its definition. �

3.3 Strong Approximation of Local Fields in Heterogeneous Peridynamic Media

In this section it is shown that a rescaling in the y variable of solution of the two-scale
problem delivers a strong approximation to the solution uε(x, t) of the form u(x, y, t). This
is stated in the following theorem.

Theorem 12 Let u(x, y, t) be the solution of the two-scale problem given in Theorem 11
then

lim
ε→0

∥∥∥∥uε(x, t) − u

(
x,

x

ε
, t

)∥∥∥∥
Lp(Ω)3

= 0, (3.68)

for every t in [0, T ] and 3
2 < p < ∞.

From the perspective of computational mechanics the numerical effort necessary to dis-
cretize and solve for u(x, y, t) becomes much less expensive than direct numerical simula-
tion for uε(x, t) when the length scale of the microstructure ε is sufficiently small relative to
the computational domain. In view of Theorem 12 the numerical computation of u(x, y, t)

and the subsequent rescaling y = x
ε

provides a viable multiscale numerical methodology.
This topic is pursued in a forthcoming paper.
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Proof We start by writing the dynamics for the rescaled function u(x, x
ε
, t). Making the

substitution y = x
ε

in (3.19) delivers the following initial value problem for u(x, x
ε
, t):

∂2
t u

(
x,

x

ε
, t

)
= ρ−1

(
x

ε

)∫
Hγ (0)

χΩ(x + ξ)λ
ξ ⊗ ξ

|ξ |3

×
(∫

Y

u(x + ξ, y ′, t) dy ′ − u

(
x,

x

ε
, t

))
dξ

+ ρ−1

(
x

ε

)∫
Hδ(0)

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3

×
(

u

(
x,

x

ε
+ z, t

)
− u

(
x,

x

ε
, t

))
dz

+ ρ−1

(
x

ε

)
b

(
x,

x

ε
, t

)
, (3.69)

with u(x, x
ε
,0) = u0(x, x

ε
) and ∂tu(x, x

ε
,0) = v0(x, x

ε
).

We subtract (3.69) from (2.8) to arrive at the differential equation for the difference
eε(x, t) = uε(x, t) − u(x, x

ε
, t) given by

∂2
t eε(x, t) = Aε

Se
ε(x, t) + Aε

Leε(x, t) + dε(x, t) (3.70)

with the homogeneous initial conditions eε(x,0) = 0 and ∂te
ε(x, t) = 0. Here the forcing

term dε(x, t) is of the form dε(x, t) = ρ−1( x
ε
)(dε

S,1 + dε
S,2 + dε

L) where

dε
S,1 =

∫
Hδ(0)

χΩ(x + εz)α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3

×
(

u

(
x + εz,

x

ε
+ z, t

)
− u

(
x,

x

ε
+ z, t

))
dz,

dε
S,2 = −

∫
Hδ(0)

(1 − χΩ(x + εz))α

(
x

ε
,
x

ε
+ z

)
z ⊗ z

|z|3 (3.71)

×
(

u

(
x,

x

ε
+ z, t

)
− u

(
x,

x

ε
+ z, t

))
dz,

dε
L =

∫
Hγ (0)

χΩ(x + ξ)λ
ξ ⊗ ξ

|ξ |3
(

u

(
x + ξ,

x + ξ

ε
, t

)
−

∫
Y

u(x + ξ, y ′, t) dy ′
)

dξ.

The forcing term dε(x, t) is regular and vanishes as ε → 0, this is stated in the following
theorem.

Theorem 13 The forcing term dε(x, t) belongs to C([0, T ];Lp(Ω)3) and the sequence
(dε)ε is uniformly bounded for 0 ≤ t ≤ T where

sup
ε>0

sup
t∈[0,T ]

‖dε(x, t)‖Lp(Ω)3 < ∞, for
3

2
< p < ∞, (3.72)

lim
ε→0

‖dε(x, t)‖Lp(Ω)3 = 0, for all t ∈ [0, T ] and
3

2
< p < ∞. (3.73)
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We provide the proof of Theorem 13 at the end of this section. Since Aε is a bounded
linear operator on Lp(Ω)3 it follows from Theorem 13 and Proposition 1 that the solution
eε(x, t) is explicitly given by

eε(x, t) =
∫ t

0

∞∑
n=0

(t − τ)2n+1

(2n + 1)! (Aε)ndε(x, τ ) dτ. (3.74)

Thus

‖eε(·, t)‖Lp(Ω)3 ≤
∫ t

0

∞∑
n=0

(t − τ)2n+1

(2n + 1)! ‖(Aε)n‖ ‖dε(·, τ )‖Lp(Ω)3 dτ

≤
∫ t

0

1√
M

sinh
(√

M(t − τ)
)‖dε(·, τ )‖Ls(Ω)3 dτ (3.75)

where in the second inequality we have used the fact that Aε is bounded above by a posi-
tive constant M > 0 independent of ε. In view of Theorem 13 we can apply the Lebesgue
dominated convergence theorem to the right most inequality of (3.75) to conclude that
limε→0 ‖eε(·, t)‖Lp(Ω)3 = 0 and Theorem 12 is proved. �

We conclude this section by proving Theorem 13. The theorem is proved by showing that
each component of dε given by ρ−1

ε dε
S,1, ρ−1

ε dε
S,2, ρ−1

ε dε
S,3 belong to C([0, T ];Lp(Ω)3) and

satisfy (3.72) and (3.73). We begin by showing that ρ−1
ε dε

S,1 satisfies (3.72) and (3.73) and
that ρ−1

ε dε
S,1 belongs to C([0, T ];Lp(Ω)3). In what follows we use the basic estimate stated

in the following lemma.

Lemma 3 For any subset S of Ω and v(x, y, t) in C([0, T ];Lp
per(Y ;C(Ω)3)) there exists a

fixed integer independent of ε denoted by L > 0 for which

(∫
S

∣∣∣∣v
(

x,
x

ε
, t

)∣∣∣∣
p

dx

)1/p

≤
(∫

S

sup
x′∈Ω

∣∣∣∣v
(

x ′,
x

ε
, t)

∣∣∣∣
p

dx

)1/p

≤ L3/p‖v‖L
p
per(Y ;C(Ω)3)

≤ L3/p‖v‖C([0,T ];Lp
per(Y ;C(Ω)3)). (3.76)

Proof The proof is identical to the arguments used in the estimate (2.24). �

We begin by showing that ρ−1
ε dε

S,1 satisfies (3.72) and (3.73) and that ρ−1
ε dε

S,1 belongs to
C([0, T ];Lp(Ω)3). Let α = maxy,y′∈Y ρ−1(y)α(y, y ′) and estimate

‖ρ−1
ε dε

S,1‖Lp(Ω) ≤
(∫

Ω

(∫
Hδ(0)

χΩ(x + εz)
α

|z|

×
∣∣∣∣u

(
x + εz,

x

ε
, t

)
− u

(
x,

x

ε
, t

)∣∣∣∣dz

)p

dx

)1/p

≤
∫

Hδ(0)

α

|z|
(∫

Ω

χΩ(x + εz)
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×
∣∣∣∣u

(
x + εz,

x

ε
, t

)
− u

(
x,

x

ε
, t

)∣∣∣∣
p

dx

)1/p

dz

≤
∫

Hδ(0)

α

|z|
(∫

Ω

sup
x′∈Ω

{
χΩ(x ′ + εz)

×
∣∣∣∣u

(
x ′ + εz,

x

ε
, t

)
− u

(
x ′,

x

ε
, t

)∣∣∣∣
}p

dx

)1/p

dz

≤ L3/p

∫
Hδ(0)

α

|z|fε(z, t) dz, (3.77)

where fε(z, t) is given by

fε(z, t) =
∥∥∥∥χΩ(x ′ + εz)

(
u

(
x ′ + εz,

x

ε
, t

)
− u

(
x ′,

x

ε
, t

))∥∥∥∥
L

p
per(Y ;C(Ω)3)

. (3.78)

Here the second inequality in (3.77) follows from the Minkowski inequality and the last
inequality in (3.77) follows from Lemma 3. Next we show that limε→0 |fε(z, t)| = 0. To see
this write

gε(y, z, t) = sup
x∈Ω

{
χΩ(x + εz)|u(x + εz, y, t) − u(x, y, t)|} (3.79)

and note that

– gε → 0 for almost every y ∈ Y , t ∈ [0, T ], and z ∈ Hδ(0),
– 0 ≤ gε(y, z, t) ≤ 2 supx∈Ω |u(x, y, t)|,
and limε→0 |fε(z, t)| = 0 follows from the Lebesgue dominated convergence theorem since
u belongs to L

p
per(Y ;C(Ω)3) for every t ∈ [0, T ]. Observe next that

sup
ε>0

|fε(z, t)| ≤ 2‖u‖L
p
per(Y ;C(Ω)3) ≤ 2‖u‖C([0,T ];Lp

per(Y ;C(Ω)3)). (3.80)

Hence we apply the Lebesgue dominated convergence theorem again to find that

lim
ε→0

‖ρ−1
ε dε

S,1‖Lp(Ω) = 0 (3.81)

and application of (3.80) to the last line of (3.77) gives

sup
t∈[0,T ]

sup
ε>0

‖ρ−1
ε dε

S,1‖Lp(Ω) < ∞. (3.82)

Given 0 ≤ t < t ′ ≤ T we apply Minkowski’s inequality together with Lemma 3 to obtain
the estimate

‖ρ−1
ε dε

S,1(t) − ρ−1
ε dε

S,1(t
′)‖Lp(Ω)

≤ 2α

(∫
Hδ(0)

|z|−1 dz

)
‖u(t) − u(t ′)‖L

p
per(Y ;C(Ω)3). (3.83)

Since u belongs to C2([0, T ];Lp
per(Y ;C(Ω)3)) the estimate (3.83) implies that dε

S,1(t) be-
longs to C([0, T ];Lp

per(Y ;C(Ω)3)).



Multiscale Dynamics of Heterogeneous Media in the Peridynamic 99

Now we discuss the boundedness, continuity and convergence of ρ−1dε
S,2. The overall

approach to demonstrating these properties for ρ−1dε
S,2 is the same as before. Here we point

out that the mechanism that drives ρ−1dε
S,2 to zero with ε is the point wise convergence 1 −

χΩ(x + εz) → 0 for every x ∈ Ω . The norm bounds and continuity properties of u(x, y, t)

are then used as before to establish the continuity properties, boundedness and convergence
of the sequence (ρ−1dε

S,2)ε .
The overall approach to demonstrating properties for the sequence (ρ−1dε

L)ε is also the
same, however there are some distinctions that arise in the proof of convergence. In what fol-
lows we outline the proof of convergence pointing out that the continuity proof and bounds
are established as before. We begin noting that u belongs to Qp with 3

2 < p < ∞ hence
from Proposition 9

u

(
x,

x

ε
, t

)
2

⇀ u(x,y, t), (3.84)

and from Proposition 7 it follows that for any test function ψ(x) ∈ Lp′
(Ω) with 1

p′ + 1
p

= 1
that

∫
Ω

ψ(x)u

(
x,

x

ε
, t

)
dx →

∫
Ω

ψ(x)

∫
Y

u(x, y, t) dy dx, as ε → 0. (3.85)

We write

‖ρ−1
ε dε

L‖Lp(Ω) =
(∫

Ω

|hε(x)|p dx

)1/p

, (3.86)

where

hε(x) =
∫

Hγ (0)

χΩ(x + ξ)λ
ξ ⊗ ξ

|ξ |3
(

u

(
x + ξ,

x + ξ

ε
, t

)

−
∫

Y

u(x + ξ, y ′, t) dy ′
)

dξ. (3.87)

We apply (3.85) noting that ψ(ξ) = χΩ(x + ξ)
ξ⊗ξ

|ξ |3 belongs to Lp′
for p′ < 3 to find that

lim
ε→0

hε(x) = 0. (3.88)

Application of Hölder’s inequality to the right hand side of (3.87) for p′ < 3 gives the
upper bound

|hε(x)| ≤ λ

(∫
Hγ (0)

|ξ |−p′
dξ

)1/p′(∫
Hγ (0)

χΩ(x + ξ)

∣∣∣∣u
(

x + ξ,
x + ξ

ε
, t

)∣∣∣∣
p

dξ

)1/p

+
(∫

Hγ (0)

|ξ |−p′
dξ

)1/p′

×
(∫

Hγ (0)

χΩ(x + ξ)

∣∣∣∣
∫

Y

u(x + ξ, y ′, t)dy ′
∣∣∣∣
p

dξ

)1/p

. (3.89)
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Applying Lemma 3.75 to the first term on the right hand side of (3.89), Minkowski’s in-
equality to the second term followed with Hölders inequality delivers the inequality

|hε(x)| ≤ C‖h‖L
p
per(Y ;C(Ω)3), (3.90)

where C is a positive constant independent of ε. From (3.88) and (3.90) it now follows from
the Lebesgue bounded convergence theorem that

lim
ε→0

‖ρ−1
ε dε

L‖Lp(Ω) = 0. (3.91)

The continuity and boundedness properties for ρ−1
ε dε

L follow along lines similar to the pre-
vious arguments.

4 Homogenized Peridynamics

The strong approximation u(x, x
ε
, t) admits a natural decomposition into a continuous

macroscopic component and a possibly discontinuous fluctuating component. The macro-
scopic component uH (x, t) is obtained by projecting out the spatial fluctuations and the
corrector r(x, x

ε
, t) containing the possibly discontinuous fluctuations is given by the re-

mainder, i.e.,

u

(
x,

x

ε
, t

)
= uH (x, t) + r

(
x,

x

ε
, t

)
, (4.1)

where

uH (x, t) = 〈u〉 ≡
∫

Y

u(x, y, t) dy (4.2)

and

r

(
x,

x

ε
, t

)
= u

(
x,

x

ε
, t

)
− uH (x, t). (4.3)

The weak convergence expressed by Proposition 7 gives

lim
ε→0

1

|V |
∫

V

uε(x, t) dx = lim
ε→0

1

|V |
∫

V

u

(
x,

x

ε
, t

)
dx

= 1

|V |
∫

V

uH (x, t) dx, (4.4)

and

lim
ε→0

1

|V |
∫

V

r

(
x,

x

ε
, t

)
dx = 0. (4.5)

It is evident from (4.4) that the macroscopic component uH tracks the average or upscaled
behavior of the actual field uε . Conversely the macroscopic or “averaged” observations of
the actual deformation uε will track the dynamics of uH . Thus it is of compelling interest to
obtain an explicit evolution equation for uH in order to qualitatively account for observations
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made at macroscopic length scales. In what follows we show that averaging the two-scale
peridynamic equations over the y variable delivers a coupled system for the macroscopic and
microscopic components uH (x, t) and r(x, y, t). This coupling is seen to impart a history
dependence on the evolution of uH . We express this memory effect explicitly by eliminating
r and recovering an integro-differential equation in both space and time for uH .

In what follows we set uH (t) = uH (·, t) and r(t) = r(·, t) and we denote spatial averages
of fields v(x, y, t) taken over the y variable by 〈v〉(t) ≡ ∫

Y
v(x, y, t) dy. Let the constant

3 × 3 matrix K be defined by

K = λ

∫
Hγ (0)

ξ ⊗ ξ

|ξ |3 dξ (4.6)

and the coupled dynamics for the evolution of uH (t) and r(t) is given by the following
theorem.

Theorem 14

üH (t) = 〈ρ−1〉KLuH(t) + 〈ρ−1BSr〉(t) − K〈ρ−1r〉(t) + 〈ρ−1b〉(t), (4.7)

r̈(t) = (
ρ−1 − 〈ρ−1〉)KLuH (t) + (

ρ−1BSr(t) − 〈ρ−1BSr〉(t)
)

− K
(
ρ−1r(t) − 〈ρ1r〉(t)) + (

ρ−1b(t) − 〈ρ−1b〉(t)), (4.8)

with initial conditions uH (0) = 〈u0〉, u̇H (0) = 〈v0〉, r(0) = u0 − 〈u0〉, and ṙ(0) = v0 − 〈v0〉.

Proof We write u(x, y, t) = uH (x, t) + r(x, y, t) and substitute this into the two-scale peri-
dynamic equation (3.19). Next multiply both sides of (3.19) by ρ−1 and then take the average
both sides of (3.19) with respect to the y variable. The equation for uH given by (4.7) follows
noting that 〈r〉(t) = 0 and

〈r̈〉(t) = ∂2
t 〈r〉 = 0, (4.9)

where the operations of differentiation and integration commute since u ∈ C2([0, T ];
L

p
per(Y ;C(Ω)3)). The equation (4.8) follows on substitution of (4.7) in (3.19). �

Now we obtain an evolution equation for uH by eliminating r from the system given by
(4.7) and (4.8). Let

Cr(t) = ρ−1BSr(t) − 〈ρ−1BSr〉(t) − K
(
ρ−1r(t) − 〈ρ−1r〉(t)), (4.10)

and (4.8) becomes

r̈(t) = Cr(t) + (
ρ−1 − 〈ρ−1〉)KLuH (t) + ρ−1b(t) − 〈ρ−1b〉(t). (4.11)

Since (4.11) is linear we set r = v + w where

v̈(t) = Cv(t) + (
ρ−1 − 〈ρ−1〉)KLuH (t), (4.12)

with initial conditions v(0) = 0, v̇(0) = 0 and

ẅ(t) = Cw(t) + ρ−1b(t) − 〈ρ−1b〉(t), (4.13)
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with initial conditions w(0) = û0 = u0 − 〈u0〉 and ẇ(0) = v̂0 = v0 − 〈v0〉.
Proceeding as before one finds that C is a linear operator on L

p
per(Y ;C(Ω)3) and v(t) and

w(t) are given by

v(t) = (√
C
)−1

∫ t

0
sinh

(
(t − τ)

√
C
)(

ρ−1 − 〈ρ−1〉)KLuH (τ) dτ, (4.14)

w(t) = cosh t
√

Cû0 + (√
C
)−1

sinh t
√

Cv̂0

+ (√
C
)−1

∫ t

0
sinh

(
(t − τ)

√
C
)(

ρ−1b(τ) − 〈ρ−1b〉(τ )
)
dτ. (4.15)

Let

K = 〈ρ−1BSr〉(t) − K〈ρ−1b〉(t), (4.16)

then substitution of r = v + w in (4.7) gives the homogenized integro-differential equation
for uH (t) given by the following theorem.

Theorem 15 The homogenized deformation uH (t) is the solution of the integro-differential
equation in space and time given by

〈ρ−1〉−1üH (t) = KLuH(t) + 〈ρ−1〉−1 K
(√

C
)−1

×
∫ t

0
sinh

(
(t − τ)

√
C
)(

ρ−1 − 〈ρ−1〉)KLuH (τ) dτ

+ 〈ρ−1〉−1
(

Kw(t) + 〈ρ−1b〉(t)), (4.17)

with the initial conditions uH (0) = 〈u0〉 and u̇H (0) = 〈v0〉. The force generated by the ho-
mogenized deformation f H (t) = f H (·, t) is given by the history dependent constitutive law

f H (t) = KLuH (t) + 〈ρ−1〉−1 K
(√

C
)−1

×
∫ t

0
sinh

(
(t − τ)

√
C
)(

ρ−1 − 〈ρ−1〉)KLuH (τ) dτ. (4.18)

This equation shows that the evolution law for the homogenized deformation uH is history
dependent.
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