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Abstract A methodology is presented for investigating the dynamics of heterogeneous me-
dia using the nonlocal continuum model given by the peridynamic formulation. The ap-
proach presented here provides the ability to model the macroscopic dynamics while at the
same time resolving the dynamics at the length scales of the microstructure. Central to the
methodology is a novel two-scale evolution equation. The rescaled solution of this equation
is shown to provide a strong approximation to the actual deformation inside the peridy-
namic material. The two scale evolution can be split into a microscopic component tracking
the dynamics at the length scale of the heterogeneities and a macroscopic component track-
ing the volume averaged (homogenized) dynamics. The interplay between the microscopic
and macroscopic dynamics is given by a coupled system of evolution equations. The equa-
tions show that the forces generated by the homogenized deformation inside the medium are
related to the homogenized deformation through a history dependent constitutive relation.
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1 Introduction

The peridynamic formulation introduced in Silling [18] is a non-local continuum theory for
deformable bodies. Material particles interact through a pairwise force field that acts within
a prescribed horizon. Interactions depend only on the difference in the displacement of ma-
terial points and spatial derivatives in the displacement are avoided. This feature makes it
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an attractive model for the autonomous evolution of discontinuities in the displacement for
problems that involve cracks, interfaces, and other defects, see [2, 3, 10, 19-21]. Recent in-
vestigations aimed toward developing the numerical implementation, and application areas
of the peridynamic model include [6, 23, 25-27]. More mathematically related investiga-
tions address issues related to the function space setting of peridynamics [7, 8] and the link
between the linearized peridynamic formulation and the operators appearing in the Navier
system of linear elasticity in the limit of vanishing non-locality [8, 22]. In this context the
convergence of the solutions of the peridynamic equations to the solutions of the Navier
system is demonstrated in [7]. In other related work the development of a non-local vec-
tor calculus with applications to non-local boundary value problems has been carried out
in [11]. Recent work on the multi-scale applications of peridynamics have shown how the
peridynamic equations formulated at mezo-scales can be recovered by a suitable upscaling
of atomistic formulations, see [16].

In this paper new tools are developed for the analysis of heterogeneous peridynamic
media involving two distinct length scales over which different types of peridynamic forces
interact. The setting treated here involves a long range peridynamic force law perturbed
in space by an oscillating short range peridynamic force. The oscillating short range force
represents the presence of heterogeneities. It is also assumed that there is a sharp density
variation associated with the heterogeneities. In this treatment we carry out the analysis in
the small deformation setting. For this case the reference and deformed configurations are
taken to be the same and both long and short range forces are given by linearizations of the
peridynamic bond stretch model introduced in [18].

The relative length scale over which the short range forces interact is denoted by ¢ and
points inside the domain containing the heterogeneous material are specified by x. Here
we will suppose the heterogeneities are periodically dispersed on the length scale ¢ = %
for some choice of n = 1,2, .... The deformation inside the medium is both a function
of space and time ¢ and is written u®(x, t). The multi-scale analysis of the peridynamic
formulation proceeds using the concept of two-scale convergence, see [14] and [1]. The two-
scale convergence originally introduced in the context of partial differential equations turns
out to provide a natural setting for identifying both the coarse scale and fine scale dynamics
inside peridynamic composites. The theory and application of the two-scale convergence
is taken up in section three of this paper where a novel two-scale peridynamic equation is
derived. The two-scale formulation is described by introducing a rescaled or microscopic
variable y = x/¢. The solution of the two-scale dynamics is a deformation u(x, y, t) that
depends on both variables x and y.

The rescaled solution u(x, x/¢,t) is shown to provide a strong approximation to the
actual deformation u® (x, t) inside the peridynamic material. This is shown in Sect. 3.3 where
an evolution law for the error e (x,t) = u®(x,t) — u(x,x/¢e, t) is developed. It is shown
that e®(x, t) vanishes in the L? norm, with respect to the spatial variables, when the length
scale of the oscillation tends to zero for all p in the interval 1 < p < co. The advantage
of using the two-scale dynamics as a computational model is that it has the potential to
lower computational costs associated with the explicit peridynamic modeling of millions of
heterogeneities. This issue is discussed in Sect. 3.3.

It is important for the modeling to recover the dynamics that can be measured by strain
gages or other macroscopic measuring devices. Typical measured quantities involve aver-
ages of the deformation u°(x,t) taken over a prescribed region V with volume denoted
by |V]. To this end we denote the unit period cell for the heterogeneities by Y and project
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Fig. 1 Fiber-reinforced €
composite

out the fluctuations by averaging over y and write

uH(x,t)zfu(x,y,t)dy. (1.1)
Y
In section four it is shown that
Co 1 1 "
Iim— | u®(x,)dx=— [ u"(x,t)dx. (1.2)
=0 |V Jy ViJv

In this way we see that the average deformation is characterized by u* (x, t) when the scale
& of the microstructure is small. We split the deformation into microscopic and macroscopic
parts and write u(x, y, t) =u® (x, t) +r(x, y, t). The interplay between the microscopic and
macroscopic dynamics is given by a coupled system of evolution equations for u and r.
The equations show that the forces generated inside the medium are related to the homog-
enized deformation through a history dependent constitutive relation. The explicit form of
the constitutive relation is presented in section four, see (4.18), where a homogenized evo-
lution equation for the coarse scale dynamics written exclusively in terms of u# is given,
see (4.17). The physical origin of the history dependence is due to the density difference be-
tween the two materials. When both materials have the same density the history dependence
disappears. This is easily seen from (4.18). The history dependence seen here is consistent
with the origin of memory effects due to oscillatory coefficients in front of the time deriva-
tive as observed in [17] and [24].

1.1 Peridynamic Formulation of Continuum Mechanics in Heterogeneous Media
We consider elastic deformations inside a body described by the bounded domain £2. In the

peridynamic theory, the time evolution of the displacement vector field u, in a homogeneous
body of constant density 0 is given by the partial integro-differential equation

pojux, 1) = / Fu@,0) —ulx, 1), —x,x)dx +b(u, x,1),
Hy (x)N$2
for (x,1) € 2 x (0, 7), (1.3)

where H, (x) is a neighborhood of x of diameter 2y, b is a prescribed loading force density
field, and £2 is a bounded set in R?. Here f denotes the pairwise force field whose value
is the force vector (per unit volume squared) that the particle at x exerts on the particle at
x. For a homogeneous medium f is of the form f(u(x,t) — u(x,t), X — x), i.e., it depends
only on the relative position of the two particles. We will often refer to f as a bond force.
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Fig. 2 Deformation of a bond
within the peridynamic horizon

E,t)

8

1

N

Only points x inside H,, (x) interact with x. In this formulation we prescribe traction free
boundary conditions, i.e., particles inside §2 do not interact with particles outside the body,
see [12]. This boundary condition is enforced by taking the domain of integration to be given
by the intersection of the horizon H, (x) and the body §2. The dynamic formulation (1.3)
is completed by prescribing initial conditions for u(x, 0) and o;u(x, 0). We conclude the
formulation noting that nonlocal Dirichlet boundary conditions may be imposed on u with
the boundary data being defined on a subset of £2 of nonzero volume, see [4, 11].
For the purposes of discussion it will be convenient to set

E=%—ux,

which represents the relative position of these two particles in the reference configuration,
and

n=u(x,1) —u(x,1t),

which represents their relative displacement (see Fig. 2). In this treatment, all elastic defor-
mations are assumed small and the reference and deformed configurations are taken to be
the same.

We now introduce the heterogeneous peridynamic material. One can think of it as a
material with long range peridynamic forces acting over a neighborhood of diameter 2y
perturbed by an oscillating density fluctuation and oscillatory short range bond force acting
over a much smaller neighborhood of diameter 2¢§. Both the long and short range pairwise
elastic forces will be given by the linearized version of the bond-stretch model proposed
in [21]. The long range force is given by

ERE
Fong (1. 6) = {A%n, £l <y,

0, otherwise.

Here £ ® & is a rank one matrix with elements (§ ® §);; = &:&; and y is the prescribed
peridynamic horizon and X is a positive constant.

In this paper we assume that oscillations in the density and short range bond force are
periodic. Here the oscillations are characterized by rescalings of a unit periodic peridynamic
bond force and density. To describe these we introduce the unit period cube ¥ C R? for
the microstructure. The local coordinates inside Y are denoted by y with the origin at the
center of the unit cube. The unit cube is composed of two or more peridynamic materials
with different densities. To fix ideas one can consider reinforced composites made up of
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an inclusion phase such as a particle or fiber and a second host phase that surrounds the
particle or fiber. A fiber reinforced material is portrayed in Fig. 4. The presence of material
heterogeneity is reflected by the appearance of peridynamic forces acting within the length
scale of the period. Let s denote the indicator function of the set occupied by the inclusion
material and x,, denote the indicator function of the set occupied by the host or matrix
material. Here x; is given by

1, y isin the inclusion phase,

xt(y) = {

0, otherwise,
and xp, is given by

xm(Y) =1— x:(y).

We extend the functions x; and x,, to R? by periodicity. For future reference, we denote by 6;
and 6, the volume fractions of the included material and the matrix material, respectively.
Here 6; = fy xf(¥)dy and 8, = 1 — 6. The density of the matrix material inside the unit
period cell is given by the unperturbed density p,, = 0 and that of the inclusion is given by
0 < pr = p+ Ap where Ap can be a positive or negative constant. The density characterizing
the heterogeneous medium is

P (¥) = xt(¥) ot + Xm(Y) Prn- (1.4

The short-range pairwise force is characterized by a bond strength «;s associated with a
horizon § > 0. The peridynamic horizon § is chosen to be smaller than the spacing separating
the inclusions. In addition the inclusions are assumed to be sufficiently smooth so that the
points y and y are separated by at most one interface when |y — y| < §. For any two points
y and y in R? a; is given by

Cg, if y and y are in the same inclusion and |y — | < §,
o.5) Cn, if y and y are in the matrix phase and |y — y| < §,
as(y,y) = . A . A
B Y C;, if y and y are separated by an interface and |y — y| < 6,
0, ifly—Jl=3.
The material parameters Cy and C,, are intrinsic to each phase and can be determined
through experiments. Bonds connecting particles in the different materials are character-
ized by Cj, which can be chosen such that C; > C; > Cy, > 0, see [21]. Mathematically we
express the bond strength as

as(y, ) = xs(y = Pa(y, ), (1.5)

where y;5(z) =1 for |z| < 8 and xs5(z) =0 for |z] > § and « is given by

a(y, $) = Cr xs(Mx¢() + Cm XM xm (D) + Ci(Xe (N xm D) + xm M xe(3)). (1.6

The short-range peridynamic force defined on §2 is given by

x x+$>r§®§ 17

1
horn (€. X) = S« . )
ghgn(n S ) 82 85(8 c |§|3 n
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Fig. 3 Long-range bonds
(horizon y) and short-range
bonds (horizon &6)

2ed

For future reference we see from (1.5) and (1.6) that a5 (3, %) is given by

= Xes (X — X)(Cr X7 () xf (&) 4 Cru )y () X X)
+ Cilx7 () X (X) + xm (X)X (X)), (1.8)

where x{ (x) := x¢(%) and x;; (x) := xm(%). The oscillating density p. for the heterogeneous
medium is given by p.(x) = p(3).

The elastic displacement inside the heterogeneous body £2 is denoted by u*(x, t) and the
peridynamic equation of motion for the heterogeneous medium is given by

P (X)87u’ (x, 1) =/ Siong W (X, 1) —u®(x,1),§)dx

Hy ()N
+/ Jahore (@ (&, 1) —u’(x,1)),§, x)dX
Hes (N2
+b%(x,1), forxin £2. (1.9)
The peridynamic equation is supplemented with initial conditions

u®(x,0) = ug(x), (1.10)
d,uf (x,0) = v (x). (1.11)

Here the body force 5°(x, t) and initial conditions ug(x), vg(x) can depend upon . When
these functions are bounded in L?(£2)? for p > 1 it follows from the theory of semigroups
that there is a classic solution u®(x, t) belonging to C2([0, T]; L?(£2)*). This is discussed
in the following section, see Remark 2.

In what follows we will develop strong approximations for solutions #® when the pre-
scribed body forces and initial conditions are continuous at the coarse length scale but pos-
sess discontinuous oscillations over fine length scales. For this choice we look for a solution
u®(x,t) continuous in time but possibly discontinuous in the spacial variables and belong-
ing to the Lebesgue space L”(£2)3 for 1 < p < oo. In this paper we show that we can find
solutions u°(x,t) and strong approximations of the form u(x, x /e, t) that both belong to
C%([0, T]; L?(£2)%), for a wide class of initial conditions and body forces. In order to de-
scribe this class of initial conditions and body forces we consider the space L{,’er(Y; c(2)?
of functions ¥ (x, y) measurable with respect to y, L”-integrable on Y and Y -periodic in
y, with values in the Banach space C(£2)? of continuous vector fields on §2. Every element
¥ (x,y) of this space is a Caratheodory function and hence ¥ (x, f) is measurable on £2
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Fig. 4 (a) Composite cube Y.
(b) Cross-section of Y along the
fiber direction

(a) (b)

and belongs to L”(£2). This kind of function space is well known in the context of two-
scale convergence see, [1], and [13]. In what follows we will suppose b(x, y,t) belongs
to C([0,T]; Lbt(Y; C(£22)*) and both ug(x,y) and vy(x,y) belong to Li(Y; C(£2)*).
For this choice the initial conditions and body forces are given by u®(x,0) = uo(x, ),
o,u’(x,0) = vo(x, f), and b®(x,t) = b(x, f, t). The construction of a strong approximation
for this class of data is given in Theorem 12 of Sect. 3.3.

It is important at this stage to point out that it is precisely the £ =2 scaling of the bond force
together with the scaling 8 of the horizon that ultimately delivers the macroscopic equations
for uf! given by (4.17). In this context we expect other types of macroscopic equations to
arise for different scalings of the bond force strength. Recent work for homogeneous media
show that the classical equations of linear elasticity arise for bond force scaling on the order
of e~* and horizons with scaling ¢, see [8, 22], and [7].

When the initial conditions and body force are continuous functions and the density
p® and bond forces characterized by a(z, f) are also continuous then the solution u® is
continuous in space and belongs to C%([0, T']; C(£2)%); this is discussed in the next section.

In forthcoming work we will focus on the development of strong approximations for
initial conditions that are discontinuous with respect to coarse length scales. This will be
carried out for heterogeneous peridynamic media characterized by oscillatory but continu-
ous densities and bond forces. More generally one could contemplate strong approximations
for more general combinations of bond forces and initial data.

2 Peridynamic Formulation for Heterogeneous Media: A Well Posed Problem

In this section, we make use of the semigroup theory of operators to show the existence and
uniqueness of solutions to (1.9)-(1.11). For v € L?(£2)*, with 1 < p < 00, let

A()?—x)®()?—X)

Af w(x) = p; ' (x) —— v(X)dzX, @.1)
Hy, (x)N$2 X — x|
A% 000 = 7 () Pt L bk Y S 22)
' Hy ()N |* — x|
. _ 1 x XA\E—-0)QF—x) . .
A5 v(x) = p, 1(x)/ —2a<—, —>A—3 v(%)dx, (2.3)
Hes(x)n2 € & &€ |x — x|

x §>—(’“ TNBE-Y) o 24)

1
A% ,v(x) =,071(X)/ —Ot< , -
52 ¢ He5(x)NS2 &2 & |* —x]3
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Also we set
A} =A% — AEL,Z, 2.5)
A5 = A‘;1 — Ass’z, (2.6)
Af = A + A5 2.7

Then by making the identifications u®(¢) = u®(-,t) and b°(¢t) = b(-, t), we can write (1.9)—
(1.11) as an operator equation in L”(£2)3

iE(t) = A%uf(t) + p7 b5 (t), t€l0,T],
i(0) = v,

or equivalently, as an inhomogeneous Abstract Cauchy Problem in L?(£2)3 x L?(£2)?

{Uf(t):Afo(r)JrBf(r), te[0,T], 2.9

US(0) = Ug.

where

Us(’):<;§g;)’ U§:<Z§>, Bs(’):(p—lgs(t)>’ and

0 1
e __
o (01

Here I denotes the identity map in L?(£2)3.

Proposition 1 Let 1 < p < 0o and assume that b € C([0, T]; Lhe:(Y; C(22)*)) and U, €
L3 (Y; C(£2)%) x Lhee(Y; C(2)%). Then

(a) The operators A® and A® are linear and bounded on LP(2) and L?(2)* x L?(2)3,
respectively. Moreover, the bounds are uniform in €.

(b) Equation (2.9) has a unique classical solution U® in C'([0, T]; L?(2)? x LP(£2)%)
which is given by

t
U"f(r):e’A“U5+/ "M BE(r)dr, 1€[0,T], (2.10)
0
where
tAf = ﬂ e\n
e _Z;n!(A) . 2.11)

Moreover, (2.8) has a unique classical solution u® € C*([0, T1; L?(£2)%) which is given
by

u (1) = cosh (1v/A)uf, + VA®  sinh (17/A7) 5

+ \/F*'/ sinh ((t — 1)V/A?)b* (1) dt (2.12a)
0
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with the notation

oo

(2.12b)

_ o $2n+1
VA# smht A°) -=Z(2 +1)' (A®)". (2.12¢)

n=\

(c) The sequences (u)g=q, (11°)s=0, and (ii®)¢o are bounded in L*([0, T]; L?(£2)%).

Remark 2 The hypothesis of Proposition 1 can be relaxed by assuming that the sequences
of initial conditions (u), (vg), are bounded in LP(£2) and (b°(-, 1)) is uniformly bounded
in L?(£2)* for t € [0, T]. This is proved following the same steps given in the proof of
Proposition 1 presented below.

Proof Part (a). Itis clear that the operators A% |, A ,, A} |, and A7 , are linear. So we begin
the proof by showing that AS, and A§, are umformly bounded sequences of operators on
L?(£2)3 for 1 < p < 0o. We introduce the indicator function y, (x) taking the value one for
x inside £2 and zero for x outside §2 and let v denote a generic vector field belonging to
LP?(£2)3. Then by the change of variables £ = x + £z in (2.3) we obtain

_ 20z
Ai,]v(x)=10E 1/ Xg(x-i-sz)a(— -+ ) 3 v(x +e2)dz. (2.13)
H; (0) € |z
Applying Minkowski’s inequality gives

||A€s,1v(x)||m(.o)3

5/ </ x:z(x+ez)p_'(£>
Hs(0) \J 2 &

X X Z®z
a(—,—+z> v(x +¢€2)
e &

X
lz)?

p 1/p
) dz. (2.14)

Let @ = max, ey p~'(»a(y, y") and we see that

1 1/p
IAS v Lr ()3 501/ (/ XQ(X+8Z)|U(x+SZ)|”dx) dz
H; (0) |z]
< MslvllLr(eys (2.15)

where Mg is independent of ¢ and given by

1 2782
MS:E(/ —dz)za o (2.16)
Hy©) 121 3

which shows that the operators Af | are uniformly bounded with respect to ¢. Similarly, A§ ,
can be written as

Aézvm:/ xQ<x+sz)p—1<5>a<f f+) 9% gvm. @I
’ Hs(0) & & € |z
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Thus
|AS ()] < Ms [v(x)],

from which the boundedness of Af, immediately follows. Combining these results shows
that AS, which is given by A5, — A% ,, is a sequence of uniformly bounded operators
on LP(£2)3.

Next we show that the linear operators A7 = A} | — Aj , are a sequence of uniformly
bounded operators on L”(£2)3. Changing variables £ = x + & and applying Minkowski’s
inequality gives

_(x E®E 4 1/p
1AL (vllprop < / (/ xex+8&p 1(-)‘)» - v(x +§) dx) de

H,0) \J2 € €]

SMpllvllerep (2.18)

where M/ is given by

2 2

M; =max{p71(y)} X A il d , (2.19)

yey 3

and it follows that the operator A§ | is bounded in L”(£2)*. The boundedness of A ,,
which is given by (2.2), follows immediately from its definition. Therefore Af is uniformly
bounded on L”(£2)? with respect to &.

Since A® = A7 + A%, we conclude that

1A VI p 23 < M 1IVILp2)3 (2.20)
for a positive constant M which is independent of €. The operator A? is clearly linear, thus it
remains to show that this operator is uniformly bounded on L?(£2)? x L?(£2)3. To see this,

we let (v, w) € LP(£2)? x L?(£2)3. The norm in this Banach space is given by

(v, w)||Lﬁ((z)3pr(:2)3 = ||U||L1’(.(2)3 + ||w||Lp(:2)3~

w(u)=Ge o) (e)= ()

IA® (v, w)||LI’(Q)3><LP(Q)3 = ||w||LP(.Q)3 + ||A8U||Lr)(:2)3

< lwllzr@p + 1A VI L) 2.21)

‘We note that

Thus we obtain

From (2.21) it follows that
lA® (v, WlLr@pxrr} < M@, WlLr@pxr@)? (2.22)

for some positive constant M completing the argument.

Part (b). We have seen from Part (a) that A® is a bounded linear operator on the Ba-
nach space L?(£2)% x L?(£2)3. Also, since b° is in C([0, T1; LP(£2)%), it follows that
B® = (0,b%) is in C([0, T]; L?(£2)> x LP(£2)). These facts together with the theory of
semigroups, see for example, [9, 15], show that:
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1. The operator A® generates a uniformly continuous semigroup {e'*"},-o on L”(£2)? x
LP(£2)%, where ¢ is given by (2.11).

2. The inhomogeneous Abstract Cauchy Problem (2.9) has a unique classical solution U¢ €
C'([0, T]; LP(£2)? x L?(£2)*) which is given by (2.10).

It immediately follows from (2) that the second order inhomogeneous Abstract Cauchy
Problem (2.8) has a unique classical solution u® € C*([0, T]; L”(£2)?) and formula (2.12)
follows immediately from (2.11).
. X
uy(x) :=ug <x, —),
&

Part (c). We recall that
vG(x) == vo(x, f)
£

where uo(x, y), vo(x, y) are in L{)’e,(Y; C(£2)%). We surround £2 by a cube of integer side
length L and extend u((x, y) to the cube by setting uy(x, y) = 0 for x outside £2 and for
every y in Y. We note that the extended ug(x, 3) is ¢ = % periodic in the second variable
and shift the cube so that it is commensurate with the periods. The period cells of side length
¢ are denoted by ¢Y; and the cube is given by their union (_J, ¢¥; where the index i ranges
from 1 to L3n3. Since we have extended u(x, y) so that it vanishes when x lies outside £2

one can write
X
||M8||L1’(9)3 = </ Mo(x, —>
U;eY; &

x\|? 1/p
<f sup |ug <x’, —) dx)
UjeY; x'ef2 &
1323 » 1/p
, X
Z/ sup u0<x s —> dx
eY; x'e2 &

i=1
—73/p , —
=L ||ll0||LlI) (VO (2.24)

e

14 1/p
dx) . (2.23)

Hence

IA

||uf)||Lr’(:2)3

Here the last inequality follows from the change of variables y = . Thus uj is uniformly
bounded in L?(£2)3. Similarly v; is uniformly bounded which implies that U is uniformly
bounded in L?(£2)3 x L?(£2)3. The same considerations show that for ¢ € [0, T'], that
b (¢) is uniformly bounded in L”(£2)3. Since b°(¢) is continuous in ¢, it follows that b°
is uniformly bounded in C ([0, T]; L?(£2)?), which implies that B® is uniformly bounded in
C([0,T]; LP(£2)* x LP(£2)%).

Next we note that

e < e 141
M (2.25)

<e

where in the last inequality we have used the fact that A® is uniformly bounded. Taking the
norm in both sides of (2.10) and by using (2.25), we obtain

t
N0l r @y xrry < Mie™ +/ MM, dr, (2.26)
0
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for some positive numbers M;, M,, and M. This implies that U® is uniformly bounded in
L®([0,T]; LP(£2)? x L?(£2)3). Therefore the sequences (#°)y~¢ and (it*)s- are bounded
in L>([0, T1; LP(£2)%). Finally, it follows from (2.8) that the sequence (ii®),~¢ is bounded
in L>([0, T]; L”(£2)?), completing the proof. O

It is easily seen that for continuous initial conditions and body forces that the peridy-
namic solution u° is also continuous in space provided that the bond forces and densities are
continuous. To fix ideas we “smooth out” the characteristic functions y; and x,, by molli-
fication. Indeed given any infinitely differential function ¢ with compact support on §2 we
fix B such that 0 < 8 < 8 and form ¢#(x) = ,3‘3§(§). The mollified characteristic func-

tions are given by x/ (x) = (¢# * xp)(x) and x5 (x) = (¢ % xm)(x). The replacement of x;
and xn, by their mollified counter parts in (1.4) and (1.6) delivers a short range bond force
oo, &, x) and density p°(x) that are continuous in x. For this case it is easy to see that
A% s A5, AL, and Aj , are linear operators mapping C (£2)? into itself. A straight for-
ward application of Holder’s inequality shows that A% |, AS,, Az 1, and Ay ; are bounded
and that the operator norms of A% |, AS, are uniformly bounded with respect to e. To fix
ideas we choose 1 and v in C(£2) and for b in C'([0, T]; C(£2)) and proceeding as before
we find that the solution u¢ of the peridynamic initial value problem exists is unique and
belongs to C2([0, T1; C(£2)3).

3 Strong Approximation by Two-Scale Functions

The aim of this section is to build an approximation of u®(x,¢) when the period ¢ of the
microstructure is small. In what follows we show how to systematically identify a function
u(x,y,t) thatis oscillatory with respect to a new “fast” spatial variable y that when rescaled
y = % delivers a strong approximation to u®(x, t), i.e.,

. X
u®(x,t) —ulx,—,t
£

It is shown that the desired function u(x, y,t) is the “two-scale” limit of the sequence
{u®(x, 1)} for e — 0. After periodically extending u(x, y, ) in the y variable we find that it
satisfies the two-scale peridynamic initial-value problem given in Theorem 11. In the sub-
sequent sections we apply this fact to show that u(x, %, t) provides a strong approximation
to u®(x, t) when ¢ is sufficiently small. l

lim

e—0

=0. 3.1)

LP(£2)

3.1 Two-Scale Convergence

To expedite the presentation we list the following useful function spaces

K={y e C;’O(}R3 x Y), ¥(x,y)is Y-periodic in y},

J ={¢¥ e CPR x Y xR"), ¥(x,y,t) is Y-periodic in y},
L, ={weC(0,T]; L (Y; C(2)")},
Q, ={we C*([0,T]; LL(Y; C(2)))}

per

and introduce the definition of two-scale convergence. Let p and p’ be two real numbers
suchthat 1 <p <ooand 1/p+1/p' =1.
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Definition 3 (Two-scale convergence [1, 14]) A sequence (v®) of functions in L?(2), is
said to two-scale converge to a limit v € LP(Q2 x Y) if,as ¢ - 0

/ vs(x)1p<x, i) dx — / v(x, V)¢ (x,y)dxdy (3.2)
Q & QxY

for all Y € L”'(Q; Cper(Y)). We will often use v* A v to denote that (v®) two-scale con-
verges to v.

If the sequence (v®) is bounded in L7 (£2) then L”/(Q; Cper(Y)) can be replaced by K in
Definition (3) (see [13]). For time-dependent problems one slightly modifies the above two-
scale convergence to allow for homogenization with a parameter, see [5]. Here the parameter

is denoted by 7.

Definition 4 A bounded sequence (v®) of functions in L7 (2 x (0, T)), is said to two-scale
converge to alimitve LP(Q2 x Y x (0, 7)) if,as e — 0

/ v (x, t)t/f(x, i, t) dxdt — v(x,y,H¥(x,y,t)dxdydt (3.3)
Qx(0,T) & QxYx(0,T)
forall y € J.

Definition 3 is motivated by the following compactness result of Nguetseng, see [14] and
Allaire [1].

Theorem 5 Let (v°) be a bounded sequence in LP (). Then there exists a subsequence and
a function v € LP (2 x Y) such that the subsequence two-scale converges to v.

A similar two-scale compactness holds for time dependent problems and is stated in the
following theorem.

Theorem 6 Let (v°) be a bounded sequence in LP (2 x (0, T))>. Then there exists a sub-
sequence and a function v € LP(Q x Y x (0, T))? such that the subsequence two-scale
converges to v.

The proof of compactness for the time dependent case is essentially the same as the proof
of Theorem 5. A slight variation of Theorem 6 can be found in [5]. For future reference we

recall the following well known results on two-scale convergence that can be found in [13].

Proposition 7 Let (v°) be a bounded sequence in LP (2 x (0, T))? that two-scale converges
toveLP(QxY x(0,T))3 Thenas e — 0

V¥ — / v(x,y,0)dy weakly in LP(2 x (0, T))>.
Y
Proposition 8 If v®(x) converges to v(x) in LP(2)? then its two-scale limit is v.
Last we state two-scale convergence theorems for test functions.
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Proposition 9 Iy (x, y) belongs to K or L{;e,(Y : C()%) then ¥ (x, <) two-scale converges

to ¥ (x,y) and
X
1p’<x’ _>
&

Moreover given any bounded sequence v¢ in L ()3 two-scale converging to v then

p
lim
e—0

=f W (x. 1P dx dy. (3.4)
QxY

LP(2)

X

lim US(X)I//<X, —) dx :/ v(x, Y)Y (x, y)dxdy (3.5)
QxY

e—=0 Jo &

for every test function Y belonging to Lb(Y; c(Q)>).
Similarly if ¥(x,y,t) belongs to J or L, then ¥ (x,%,t) two-scale converges to

Y(x,y,t) and
¥ P
lim w<x, -, t) :/ [V (x,y, )P dxdyd:t. 3.6)
e=0 € Lr@x©.1)3  Jexyx©.1)

Moreover given any bounded sequence v¢ in LP(Q x (0, T))? two-scale converging to v
then

lim v (x, t)l//()(, f, t) dxdt = / v(x,y, ¥ (x,y,t)dxdydt 3.7
Qx(0,T) & QxYx(0,T)

e—0

for every test function r belonging to L.

3.2 The Two-Scale Limit Equation

In this section, we use two-scale convergence to identify the limit of the solution u°(x, #) of
(1.9)=(1.11) for initial data ug = uo(x, %), vo = vo(x, 7) and body force b°(x, %, ) with ug

and vg in Lpe(Y; C(Q)%) and b € L,,. For v € LP(Q)?, with % < p <00, let

KL1v() :/ WEZHDOED) s, (3.8)
Hy (x)NQ [x — x|
Kp2v(x) :/ WEZDBED ooy, (3.9)
Hy ()NQ X — x|
1 - > r —
K& () =/ —2a(f, f)% v(R)dR, (3.10)
’ Hes(x)NQ € e & |X — x|

’

& &

ngv(x)=/ ia(x f)Wdﬁ v(x). G.11)
' Hes ()N g2 X —x3

Set K = Kp1 — Kp2 and K§ = K§ | — K , and the peridynamic equation (1.9) is written
i 2 & _ £\, {

ol = |ofu(x,0) = (KL + K§)u' (x, ) + b x, =1 ). (3.12)
e e

We start by noting that the loading force and initial data are in £, and Lger(Y; c()?
respectively and from Proposition 9 satisfy the following

b(x, f, t) A b(x,y,t), (3.13a)
&
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uo(x, f) 2 ugx, y), (3.13b)
&

x\ 2
v0<x, g) — vo(x,y). (3.13¢)

We note that from Proposition 1(c) and Theorem 6 it follows that, up to some subsequences,

u 2 u, ut 2 u*, and ii® A w**, where u, u*, and u™* are in L?(Q x Y x [0, T])3. We shall
see later that u(x, y, t) is uniquely determined by an initial value problem. Therefore u is
independent of the subsequence, and the whole sequence (1°) two-scale converges to u.
We start by extending the function u(x, y,t) in the y variable from ¥ to R? as a Y-
periodic function. The next task is to identify the dynamics of the periodically extended
u(x,y,t). We multiply both sides of (3.12) by a test function v (x, ’E—‘, t), where ¥ (x, y, t) is
Y-periodic in y and is such that ¢ € C° (R? x Y x R)?, and integrate over Q x R*

f atzus(x,t)-1/f<x,£,t>p<£>dxdl
QxR+ & &
:/ ((KL+K§)u$(x,t)+b<x,£,t>)-1/1(x,£,t>dxdt.
QxR+ £ £

After integrating by parts twice, we obtain

/ us(x,t)~8,21ﬂ<x,f,t)p<£>dxdt—f8,u€(x,0)-1//<x,£,0>p(£>dx
QxR+ 1 & Q & £
+/uS(x,O).a,¢<x,f,o>p<f)dx
Q & &
X X
:/ ((KL +K§)u£(x,t)+b<x, —,t)) ~1ﬁ<x, —,t) dxdt.
QxR+ & &

Passing to the ¢ — 0 limit we obtain

[ utnauty0p0) dadyds
QxY xRt
—/Q vo(x, y) - ¥ (x,y,0)p(y)dxdy
xY

+/ uo(x, y) - 0¥ (x. 3, 0)p(y) dxdy
QxY

— lim (KL+K§)u8(x,t)~1//<x, f,t) dxdt
>0 Jaxr+ €
—I—/ b(x,y,t) - ¥(x,y,t)dxdydt. (3.14)
QxY xR+

We will use the following lemma to compute the limit on the right hand side of (3.14).

Lemma 1l Let w be in Lf)’er(Y; C(§)3) with % < p < 00, and define

BLw(x,y)=/ AW(/ w()?,y’)dy/—w(x,y)) dx,
Y

Hy (x)NQ X —x|3
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N i i
Bt = [ a2 TS i) — i ) ds.
Hs(y) [y — ¥l

Then as ¢ — 0,

2
(a) Kru®(x, 1) = Bru(x, y, ). Moreover, the operator p~' By is linear and bounded on
Liar(Y; C(2)?).

2
(b) Kgu®(x,1) =~ Bsu(x,y, ). Moreover, the operator o' By is linear and bounded on
Li(Y; C@).

The proof of this lemma is provided at the end of this subsection.
Remark 10 Results similar to Lemma 1 can be proven for other function spaces as well.
The space L{;er(Y : C(2)?) in the statement of this lemma can, for example, be replaced

with the function space Lger(Y ; LP(R2)%) or by the function space L (£2; Cper(Y)3), where

2 < p < o0 in each of these spaces.

Application of Lemma 1 gives

lim Ky + KSut (x,1) - <x, . t) dxdt
>0 Jaxr+ €

:/ (B + Bs)u(x,y,t)-¥(x,y,t)dxdydt.
QxY xRt
Thus (3.14) becomes

/ﬂ Ru(x,y,t)-a,zlﬁ(x,y,t)p(y)dxdydt—/ vo(x, y) - ¥ (x,y,0)p(y)dxdy
xY xRt

QxY

+/;2 uo(xsy)atl/,(xvyvo)p(y)d'Xdy
xY

=/ ((BL + Bo)u(x,y,t) +b(x,y, t)) -y (x,y,t)dxdydt. (3.15)
QxY xR+

We shall see from Lemma 2, provided before the end of this subsection, that u has two
classical partial derivatives with respect to ¢, for almost every ¢, and the initial conditions
supplementing (3.15) are given by

u(x!yvo):u()(x’y)s atu(xvyao):v()(xvy)- (316)

Thus by integrating by parts twice, (3.15) becomes
/ p(Mdu(x,y,t) - y(x,y, t)dxdydt
QxY xRt

=/ ((BL + Bo)u(x,y,t) +b(x,y, t)) -y (x,y,t)dxdydt. (3.17)
QxY xR+

Since this is true for any function ¢ € C2° (R? x ¥ x R)? for which ¥ (x, y, 1) is Y-periodic
in y, we obtain that for almost every x, y, and ¢

ux,y, t)=p ' (y)Bu(x,y, 1)+ p 'b(x, y,1), (3.18)
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where B = B + By. It follows from Lemma 1 that p~! B is a bounded linear operator on
Ll’,’er(Y; (o (5)3), with % < p < 0. Therefore the initial value problem given by (3.18) and
(3.16), is interpreted as a second-order inhomogeneous abstract Cauchy problem defined
on Lj(Y; C(Q)%), with body force in £, % < p < oo. From the theory of semigroups
[9, 15] it follows that this problem has a unique solution u(x, y, t) € Q,,, % < p < oo.

The following summarizes the results of this subsection.

Theorem 11 Let (u°) be the sequence of solutions of (1.9)—(1.11) with initial dgta ug =
uo(x, ), vo = vo(x, 1) and body force b®(x, %, t) with ug and vy in L{)’er(Y; C(Q)%) and

» 5
2

be L,. Then u® — u and the periodic extension of u(x, y,t) in the y variable from Y to R3

also denoted by u belongs to Q,,, with % < p < 00, and is the unique solution of

oM u(x, y,1)

:/ )‘w</ u()?,y/,t)dy/—u(x,y,t)> dx
Hy (x)NQ |* — x| Y

L= ®F —y) . .
+/ a(y, ) ————5——(u(x, 3,0 —ulx,y,1)dy
Hy(y) [y — I
+b(x,y,1), 3.19)
supplemented with initial conditions
u(x,y,0) =up(x, y), (3.20)
du(x,y,0) =vo(x,y). (3.21)

We conclude this section by showing that u is twice differentiable with respect to time
and proving Lemma 1.

Lemma 2 Let t € [0, T] and define

t T
g(x,y,t):/ / u™(x,y,Ddldt + tu*(x, y,0) + u(x, y, 0). (3.22)
0 Jo

Then g isin LP(Q x Y x (0, T))?, twice differentiable with respect to t almost everywhere,
and satisfies

(a) For almost every x,y, and t, g(x,y,t) = u(x,y,t), d,g(x,y,t) =u*(x,y,t), and
a7 (x,y, 1) =u*(x, y,1).
(b) For almost every x and y

g(x?yﬁo):u(xvy»o):Mo(xvy)a
al‘g(xvyso):u*(xsy70):v0(xay)-

Proof Part (a). Let ¥ (x, y) bein C2°(£2 x Y)? and Y -periodic in y, and let ¢ be in CP(RY).
Then by using integration by parts, we see that

/ a,uf(x,z).%(x,f)¢(r)dxdt=—/ ue(x,t)~1//1(x,£)<i3(t)dxdt.
QxR+ & QxR+ &
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2
Sending ¢ to 0 and using the fact that, up to a subsequence, d,u® — u*, we obtain

/ M*(x,yvt)Wl(xs)’)(ﬁ(f)dXdydt:_/ M(xa)’J)‘/fl(x7)7)¢(t)dx‘1ydt
QxY xRt

QxY xR+

Since this holds for every ¥; we conclude that
f W,y NP0 dt = — f u(x,y, @) d, (3.23)
R+ R+

for almost every x and y and for every ¢ € C2°(R*). Similarly, by using the fact that, up to

2
a subsequence, E),zu‘9 — u™*, we see that

/u**(x,y,t)d)(t)dt:/ u(x, y, ¢ dt, (3.24)
R+ R+

for almost every x and y and for every ¢ € C2°(R*). We note that from (3.22) it is easy to
see that g is twice differentiable in # almost everywhere and satisfies

t
0 g(x,y, 1) =/ u™(x,y, v)dr +u*(x,y,0), (3.25)
0
32g(x,y,1) = u™(x,y,1). (3.26)
We will use these facts together with (3.23) and (3.24) to show that d,g = u* almost every-

where and g = u almost everywhere.
For ¢ € C°(R™), we integrate by parts using (3.26) and (3.24) to find that

/ dg(x,y, HP(t)dt = / w*(x,y, () dt.

Rt R+

Thus we obtain
/ (dg(x,y, 1) —u*(x,y,0)t)dt =0, (3.27)
R+

for every ¢ € C°(R"). Since 9,g(x,y,0) = u*(x, y,0), we conclude from (3.27) that
0,g(x,y,t) =u*(x,y,t) almost everywhere. Finally it easily follows from (3.23) that

/R+ (gCx,y, 1) —u(x,y,0))p(t)dt =0, (3.28)

for every ¢ € C®(R"). Since g(x,y,0) = u(x,y,0), we conclude from (3.28) that
g(x,y,t)=u(x,y,t) almost everywhere, completing the proof of Part (a).

Part (b). Let ¢ (x, y,7) bein CZ°(2 x ¥ X R)? and Y -periodic in y. Then on integrating
by parts, we see that

/ Blug(x,t)-w<x,£,t> dxdt:—/ ug(x,t)-3[1//<x,i,t>dxdt
QxR+ & QxR+ &

—/ u®(x,0) - lﬁ(x, f,O) dx.
Q &
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Sending ¢ to 0, we obtain
/ u*(x,y,t)-¥(x,y, t)dxdydt = —/ u(x,y,t)- ¥ (x,y, t)ydxdydt
QxY xR+ QxY xRt
- / uo(x,y) - ¥(x,y,0)dxdy. (3.29)
QxY
On the other hand, from Part (a), we see that
/ u(x,y, 1) - ¥(x,y, t)dxdydt = —/ u(x,y,t)- 0y (x,y, t)dxdydt
QxY xR+ QxY xRt
— / u(x,y,0)-v¥(x,y,0)dxdy. (3.30)
QxY
From (3.29) and (3.30) we obtain that
/ (uo(x,y)—u(x,y,O))~1p(x,y,0)dxdy=0,
QxY

for every y. Therefore

u(x,y,0) =uo(x,y),

almost everywhere. Similarly we can show that

3:“(%)’70) = UO(-x» y)v

almost everywhere, completing the proof of Part (b). O

Proof of Lemma 1 Part (a). We compute the two-scale limits of K ju® and K »u® to show
that as ¢ — 0,

Kou® (x, 1) =~ BLu(x, y, 1). (3.31)

Let ¥ € C2®°(R® x Y)? such that ¥ (x, y) is Y-periodic in y, and ¢ € C>°(R*). Then from
the definition of K; i, (3.8), we see that

/ Kpqu®(x,t)- tp<x —)db(t)dxdt
QxR+ &

/ / (x—X)®(X x) 8()27t)d)2.w<x’ f)gﬁ(;)dxdt. (3.32)
QxR+ Hy(x)ﬂfl |x—x|3 ¢

Since u®(x, t) 2 u(x,y,t), we obtain using Proposition 7 that, as ¢ — 0,
u® — / u(x,y,t)dy weakly in L?(Q2 x (0, T)). (3.33)
Y
It follows from (3.33) that, for fixed x,
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lim/ / m@nw (R, 1) (1) dRdt
R+ J Hy, (x) X — x|

e—0 |

=// m(i)xwgu(i,y’,r)dy/>¢(r)d£dr. (3.34)
Rt JH, (x) |)C—)C|3 Y

Here xg; is the characteristic function of §2, taking value 1 for X in £2 and zero outside.

Applying Hoélder’s inequality for % + pl, =1 gives

/ Xa(f)lw ut(x,1)dx
Hy (x) | — x|

1 1/p 1/p
SA( [ retr—— ,d£> ( / |u8@,r>|ﬂd}e)
Hy(x) |x — x|? Hs(x)

1 1/[’/
<A / A—d)?> 4 1l oo o, 71; L (2)3)»
(Hg(x) £ — x|” e

for almost every ¢ € [0, T']. (3.35)

We note that the integral on the right hand side of the last inequality is finite for p’ < 3.
From Proposition 1, [|u®|| 0.7} Lr(2)3) is bounded. Thus from (3.34), and (3.35) and by
using Lebesgue’s dominated convergence theorem, we conclude that the convergence of the
sequence of functions in (3.34) is not only point-wise in x convergence but also strong in
LP(£2)3, with % < p < 00. Therefore from Proposition 8 and (3.34) it follows that the limit
of (3.32) as ¢ — 0 is given by

lim/ Kt (x,1) - 1//<x, f)¢(r)dxdt
xRt &

e—0
= / Bpu(x,y,t)-y¥(x,y)¢(t)dxdtdy, (3.36)
xRt xY

where

Bpju(x,y,t) 2/ AW</ u(x,y',t) dy/> dx (3.37)
Y

Hy (x)N2 X —x?

depends only on (x, #) and is constant in y. Next we evaluate the two-scale limit of K ,u®.
We recall from (2.2) that

Kpouf(x, 1) =/ ZETNOE=X) e ny. (3.38)

Hy (N2 X —x]?
from which immediately follows that as ¢ — 0,

k(£—X)®(£—X)

2
Kpou® — - 3
Hy (x)NS2 [* — x|

dx u(x,y,t)= B u(x,y,t). (3.39)

The result (3.31) follows on combining (3.36) and (3.39) and writing By, = Br1— Brpo.
It is evident that p~! B, is a linear operator on the Banach space Lf,’er(Y; C(£2)%). To show
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boundedness we show that p~ !By and p~! By , are bounded operators on L (Y; C(£2)%).
For w in Lhe:(Y; C(£2)*) we write £ =x + & and

—1
o™ BLawllpr, v caap)

)4 1/p
= (/ <p"(y) sup ) dy)
Y xXeNR
A P 1/p
< (/ <p"(y)/ — SUPIXQ(x+§)w(x+%‘,y/)|dy/d$) dy)
Y 0 &1 Jy xe2

P 1/p
skf |$|*1ds<f/(p*‘(y>sup|w<£,y’)|dy) dy’)
Hy (0) Yy Jy e

< )»/. & dglp~! e llwllze, v: c@)3)s (3.40)
H

y (0)

/ a4+ 0r 28 [ e, y)dyde
H, (0) 1€l Jy

where the second inequality follows from Minkowski’s inequality and it follows that
p~'B; 1 is bounded. It is evident from the definition of By , that p~'B; , is a bounded
operator on L} (Y; C(£22)%).

Part (b). Since K§ = K5, — K§,, we will compute the two-scale limits of K§,u® and
K;zug, to show that as ¢ — 0,

Kiut (x, 1) — Bsu(x, y, 1). (3.41)

Let ¢ (x, y, 1) = Y2(x)¥1 () (1), where ¢, € CE(RY), Y1 € Coo(Y)?, and ¢ € CZ(RY).
Then by using (2.13), replacing v(x) with u®(x, t), we have

/ K§1u8(x,t)~1p(x, f,t) dxdt
QxRt €

X X 72Qz
=/ / sz(x-i-é‘z)ol(—,—-i-z) 3 u®(x +ez,1)dz
QxR+ J Hs0) e € 45

'I/I()C, %t) dxdt, (3.42)

where x, denotes the indicator function of £2. Thus after a change in the order of integration
in the right hand side of (3.42), we see that

/ KgluS(x,t).w<x,f,r>dxdr
QxR+t &

1 X X &
=/ —3/ X_Q(x—i—az)ot(—,——l-z)u (x+ez, 1)
B0 1217 Joxr+ .
-z <§> <ZYn(x)p (1) dxdtdz. (3.43)

Now we focus on evaluating the limit as ¢ — 0 of the inner integral in (3.43). By the change
of variables r = x + £z we obtain
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/ Xo(x + ez)a<£, al +z>u£(x +ez,t) - 7Y (£> -2y (X)) (1) dxdt
2xRF e’ e e

=f Xe () xa(r —ez)a(f 2, f)m(r, t)wl(f —z)
R3xR+ € & €

-2y (r —ez)¢(t) drdt
=a’(2). (3.44)

We will show that for z € Hs(0),
lin(l)as(z) = / a(y —z, ur,y, 1) - z¥1(y — 2) - 292 (1)@ (1) drdydt. (3.45)
e 2xY xRt

To see this, we approximate x, by smooth functions ¢, such that as n — oo, {, = xgo in
L? (R*), with 1/p + 1/p’ = 1. Then by adding and subtracting &, (r — &z) xo(r — &z) in
(3.44), we see that

a®(z) =ai"*(2) + ay*(2), (3.46)

where,

'@ =[xt e g0 - e2)

& &

x oz(g —z, f)ﬂr, 12 (5 - z> 2 (r —e)p () drdr.  (347)

ay*(z) == fR% e (r)&,(r — £2)

&

r r r
« (x<g . g>u£(r, 02 (— - z) Ul — e drdr. (3.48)
From Proposition 1,

sug flu? | Lo o, 71; L0 (2)3) < 00- (3.49)
&>

So from (3.47) and on application of Ho6lder’s inequality, we see for some constants C; and
C, that

, 1/p
lai* ()| < Cy (/3|st(r —e2) — L (r —e2)|” dr)
RA

x |Ju’ ||Li’0°C(R+;LI"(Q)3)a (3.50)
lay* (2)| < C2||u€||Lﬁ$C(R+;LP(Q)3) (3.51)

so there is a constant C such that |a®(z)| < C for ¢ > 0. On the other hand, the second factor
on the right hand side of (3.50) goes to zero uniformly in ¢ as n — oo and we conclude that
for all ¢ > 0 and z € H;(0),

lim a}"*(z) =0. (3.52)
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Now for n fixed we see that as ¢ — 0, ¢, (r — e2)¥o(r — €z) — &, (r)¥>(r) uniformly.
Therefore, we see from (3.48) that

limay* (z)
e—0

r

= lim f m(r);n(r)a(f _— 5>u5(n 029 (— - z) () (1) drdt
R3xR+ & &

e—0 &

:/ . L(Na(y —z, yulr, y, 1) -z (y — 2) - 2¢a(r)@ (1) drdydt, (3.53)
2xY xRt

where in the last step the fact that (#%)..o two-scale converges to u(r, y,t) was used. By
taking the limit as n — oo in (3.53), we obtain

lim lim a5y (2)

n—-o00g—0

:/ . aly =z, Y)ur, y, 1) -2yn(y —2) - 2yn(r)¢ () drdydt.  (3.54)
2xY xR
Equation (3.45) now follows from (3.52) and (3.54) since

lirr(l) a(z) = nlirglo lirr(l) (@} (z) +ay°(2)).

From (3.43) and (3.45), and by using Lebesgue’s dominated convergence theorem ap-
plied to the sequence (a®(z)).~0, we obtain

lim K;lus(x,l)-lﬂ<x,i,t)dxdt
=0 Joxrt €
1
-[ = a(y = 2, )l 3 1) - 2 (v = 2) - 292 (1) drdydrdz
H;s (0) 1zI° Joxyxr+

1
=f9 . / 0)@/a(y—z,y)u(ny,t)~z¢f1(y—Z)~zdyd21/fz(r)¢(t)drdt,
xR+ J Hg( Y

(3.55)

where we have changed the order of integration in the last step. After shifting the domain of
integration in the inner integral of the right hand side of (3.55), we obtain

/a(y—z,y)u(r,y,t)-zwl(y—z)-zdy
Y
=/ a(y,y+u@,y+z,t)-zy1(y) - zdy
Y-z
=/tx(y,y+z)u(r,y+z,t)-zwl(y)-zy, (3.56)
Y

where in the last step the fact that the integrand is Y-periodic in y was used. Substituting
(3.56) in (3.55), then by changing the order of integration we obtain

@ Springer



94 B. Alali, R. Lipton

lim K& (x,1) - w(x, a t) dxdt
e—0 QxR+ ’ &
7202
:/ // a(y,y+2)——zulr,y+z,0)dz- Y1 (y)dyy(r)¢(1) drdt
2xR*+ Jy JHs0) |z]
:/ Bsu(r,y,t) -y (r,y,t)drdydt, (3.57)
2xY xRt

where

Bsqlu(xyy,t)=/ a(y, LN =)

FIE u(x,y,t)dy (3.58)
Hs(y) -

2
and Kgu® —~ Bgu(x, y,1).

Next we evaluate the two-scale limit of K§,u®. Let ¢ be a test function in J. Then by
using (2.17), replacing v(x) with u®(x, t), we obtain

/ K§_2u€(x,t)~1//<x, f,t) dxdt
2xR* €

:/ / )(n(z()c—i-zsz)w(f,f—i-z)z®3Z dzug(x,t)-w<x,f,t)dxdt.
2 xR+ J Hs(0) &£ &€ |z I3

(3.59)

The right hand side of (3.59), after changing the order of integration, is equal to

/ q°(2)dz, (3.60)
Hs(0)
where ¢°(z) is given by

1 X X X
q°(x) = —3/ XQ(X—i-az)a(—, - +z>us(x,t)~zw<x, —,z) -zdxdt. (3.61)
1zI° Jaxr+ £ € e

For future reference note that from Proposition 1, sup,_ o ||t |l oo (0. 77, Lr ()3 < 0© hence
there is a constant C such that the sequence ¢°(z) is bounded above by

lg°(2)| < Clz|™!, fore > 0. (3.62)
As before we approximate x by a sequence of smooth functions ¢, such that ¢, — xg in

L” (R%) and write

1 X X X
q;(2) = —/ cn(x+ez)oz<—, — +z)u9(x,t)~zw<x, —,z) .zdxdt. (3.63)
|Z|3 QxR+ e € g

Next using the fact that (u®)..( two-scale converges to u(x, y,t), we see that for z €
H;(0),

lim¢°®(z) = lim limg; (z)
e—0 n—00g—0
1

=F N a(y,y+2u(x,y,t) -z (x,y,t)-zdxdydt. (3.64)
2xY xR
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From (3.59), (3.60) and (3.64), and by using Lebesgue’s dominated convergence theo-
rem, we obtain

lim/ K;zua(x,t)-l/f(x,f,t> dxdt
=0 ot €

1
:/ — a(y,y+ulx,y,t)-z¥(x,y,t)-zdxdydtdz. (3.65)
a0 1217 Joxyxrt

By changing the order of integration and then using the change of variables =y + z, we
conclude that

lim K;zus(x,t)-llf<x,i,t) dxdt
=0 Joxrt 7 €
= / Bsou(x,y,t)-¥(x,y,t)dxdydt, (3.66)
2xY xRt

where

LO=RF -y
Bs,zu(x,y,z)zf a(y, o222
Hs(y) |y =yl

dyu(x,y,1), (3.67)

2 : i
and we conclude that K§,2u€(x, t) = Bgou(x,y,t). Equation (3.41) follows on writing
Bs = Bs1 — Bs,». .

The operator p~! By is a bounded operator on Lgei Y: C(£2)%). This follows from bounds
on p~!Bg and p~! Bg,. Given any w in L} (Y; C(£2)*) an application of Minkowski’s in-
equality to || o' Bs jw(x, y) Iz, v:c@) shows that p~!'Bg | is bounded. The boundedness
of p~! By, easily follows from its definition. ]

3.3 Strong Approximation of Local Fields in Heterogeneous Peridynamic Media

In this section it is shown that a rescaling in the y variable of solution of the two-scale
problem delivers a strong approximation to the solution u°(x, ¢) of the form u(x, y, t). This
is stated in the following theorem.

Theorem 12 Let u(x, y,t) be the solution of the two-scale problem given in Theorem 11

then
. x
u®(x,t) —ulx,—,t
0 £

lim
E—>

=0, (3.68)

LP(2)3

oreverytin[0,T]and 2 < p < 0.
fe ry 5<P

From the perspective of computational mechanics the numerical effort necessary to dis-
cretize and solve for u(x, y, t) becomes much less expensive than direct numerical simula-
tion for u® (x, t) when the length scale of the microstructure ¢ is sufficiently small relative to
the computational domain. In view of Theorem 12 the numerical computation of u(x, y, t)
and the subsequent rescaling y = 7 provides a viable multiscale numerical methodology.
This topic is pursued in a forthcoming paper.
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Proof We start by writing the dynamics for the rescaled function u(x, %, r). Making the
substitution y = = in (3.19) delivers the following initial value problem for u(x, 2, 1):

8,2u<x, i,t) :p*‘<f>/ xol+ 6285
& & Hy (0) |S|
X (/ u(x—i—é‘,y/,t)dy/—u(x, f,t))dé

Y &
X X X 7®z
+p (—)/ Xg(x+sz)a<—,—+z)—3
& H; (0) & & |z|
X (u(x,f—f-z,t)—u(x,i,t))dz
& &
! <f>b<x, : t), (3.69)
& &

with u(x, 2, 0) = uo(x, 3) and du(x, T,0) = vo(x, %
We subtract (3.69) from (2.8) to arrive at the dlfferential equation for the difference
ef(x,t) =u(x,t) —u(x, %,1) given by

8368 (x, 1) = A%e®(x, 1) + A e (x, 1) +d*(x,1) (3.70)

with the homogeneous initial conditions e®(x,0) = 0 and d,e¢®(x,t) = 0. Here the forcing
term d°(x, t) is of the form d®(x,t) = ,o‘l();‘)(dg1 +d5, + dj) where

X X Z®z
ds | :/ XQ(X+8z)a(—,—+z>—3
Hs(0) € € |z]
X X
><(u<x+8z,—+z,t)—u<x,—+z,t>>dz,
& &

®z
d§z=—/ (1—X:2(X+€Z))Ol(— i >Z = 3.71)
’ H; (0) € 4

X X
X (u<x —+z,t> —u<x, —+z,t>>dz,
I I

d;:/ Xg(x+s)x‘§®f( ( +&, i t) /u(x+s,y’,t)dy’>dé.
Hy (0) |5| Y

The forcing term d®(x, t) is regular and vanishes as € — 0, this is stated in the following
theorem.

Theorem 13 The forcing term d°(x,t) belongs to C([0, T1; LP(£2)%) and the sequence
(d®)¢ is uniformly bounded for 0 <t < T where

3
sup sup [|d°(x, )|l pgp3 <00, for - < p < oo, (3.72)
e>01€[0,T] 2
3
lir% IId® (x, Dllrep =0, forallt €[0,T]and 3 < p < o0. (3.73)
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We provide the proof of Theorem 13 at the end of this section. Since A® is a bounded
linear operator on L”(£2)? it follows from Theorem 13 and Proposition 1 that the solution
e®(x, 1) is explicitly given by

e (x t)—/tiL)an(Ag)”d’?(x 1) dt (3.74)
o & @t D! ’ ' '

Thus

([ _ .C)2n+l

; 00
||€£("f)||L1>(.Q)3 5/0 ;WH(ASY'” ||d8('sf)||Lp(9)3 dt

5/0 \/%sinh(m(t—t))llds(-,r)llL.cm)sdr (3.75)

where in the second inequality we have used the fact that A® is bounded above by a posi-
tive constant M > 0 independent of €. In view of Theorem 13 we can apply the Lebesgue
dominated convergence theorem to the right most inequality of (3.75) to conclude that
lim, o |[®(-, )|l Lr(@)3 = 0 and Theorem 12 is proved. O

‘We conclude this section by proving Theorem 13. The theorem is proved by showing that
each component of d° given by p;'ds |, p;'d5 5, p; ' d§ 5 belong to C([0, T]; LP(£2)?) and
satisfy (3.72) and (3.73). We begin by showing that p;ld;, satisfies (3.72) and (3.73) and
that o 1d§,1 belongs to C ([0, T'1; L (£2)%). In what follows we use the basic estimate stated
in the following lemma.

Lemma 3 For any subset S of 2 and v(x, y,t) in C([0, T]; Lger(Y; C(22))) there exists a
fixed integer independent of ¢ denoted by L > 0 for which
P 1/p
dx)

x 14 1/p o x
vl x, —,t dx < sup (v| x', —, 1)
s & Sx'eq &
<L IVlleqo,ri L2, v:c@y- (3.76)

3
< Lol g, e

Proof The proof is identical to the arguments used in the estimate (2.24). ]

We begin by showing that p.'d§ , satisfies (3.72) and (3.73) and that p_'d§ | belongs to
C([0, T]; LP(£2)*). Let @ = max, yey p~' (y)a(y, ') and estimate

_ o
o7 e < (/ (/ Yo +e0) =
2 \J Hs(0) |z|
b X
u(x+8z,—,t>—u(x,—,t)
& €
o
5/ —(/ Xo(x +€2)
H; (0) |z] Q

X

P 1/p
dz) dx>
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x 4 1/p
u(x + ez, —,t) — u(x, ,t> dx) dz
£
a /
= " sup § xe (X" +¢&z)
H;s(0) 1zl \Je ven
P 1/p
X X
u(x'-i—sz, —,t) —u(x/, —,t) } dx) dz
I3 £

< / % @z, 3.77)
H;s (0) |z]

X

™ | =

X

where f.(z,t) is given by

, , X , X
Xo(x +8z)<u<x —|—az,—,t> —u<x,—,t>)
£ £

Here the second inequality in (3.77) follows from the Minkowski inequality and the last
inequality in (3.77) follows from Lemma 3. Next we show that lim,_,¢ | f: (z, #)| = 0. To see
this write

fs(Z7t) = ‘

(3.78)

L (Y:C(2)%)

8 (v, z, 1) =sup{xo(x + e2)u(x + ez, y,1) —u(x, y, )|} (3.79)
xesf2

and note that

— g — O for almostevery y € Y, t € [0, T], and z € Hs(0),
- 0=<g:(y,z,1) <2sup, g lu(x,y,1)l,

and lim,_,¢ | fs(z,1)| = O_follows from the Lebesgue dominated convergence theorem since
u belongs to L{)'er(Y; C(£2)?) for every t € [0, T]. Observe next that

sup | fe(z. D1 = 2llull g, v.c@p) = 2ullcqo.rignric@dy- (3.80)

e>0

Hence we apply the Lebesgue dominated convergence theorem again to find that
lim || o' llr (@) =0 (3.81)
and application of (3.80) to the last line of (3.77) gives

sup sup|lp; 'ds | llLrie) < oo. (3.82)
tel0,T] e>0

Given 0 <t < t' < T we apply Minkowski’s inequality together with Lemma 3 to obtain
the estimate

||,0;1d§,](t) - P;ldé,l(f/)HLP(Q)

< 2&(/ |Z|7l dZ) [|u(t) — u(t/)”L{,’er(Y;C@P)' (3.83)
H;(0)

Since u belongs to C2([0, T1; Lger(Y; C(£2)%)) the estimate (3.83) implies that d;l(t) be-
longs to C([0, T1; Lh(Y; C(2)%)).
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Now we discuss the boundedness, continuity and convergence of p~'d§ ,. The overall
approach to demonstrating these properties for ,o’la,’fg_2 is the same as before. Here we point
out that the mechanism that drives p~'d§ , to zero with ¢ is the point wise convergence 1 —
Xe(x 4+ ez) — 0 for every x € £2. The norm bounds and continuity properties of u(x, y, t)
are then used as before to establish the continuity properties, boundedness and convergence
of the sequence (p~'d% ,),.

The overall approach to demonstrating properties for the sequence (p~'d%), is also the
same, however there are some distinctions that arise in the proof of convergence. In what fol-
lows we outline the proof of convergence pointing out that the continuity proof and bounds
are established as before. We begin noting that u belongs to Q, with % < p < oo hence
from Proposition 9

X 2
u<x,—,t) —u(x,y,t), (3.84)
£

and from Proposition 7 it follows that for any test function ¥ (x) € LY (£2) with i + % =1
that

/W(x)u(x,it)dx—)/ w(x)/u(x,y,t)dydx, as e — 0. (3.85)
2 € Q Y

We write

1/p
los ' d llLre) = </ |h£(x)|"dx> . (3.86)
2

where

e (x) =/ ot + ot 88 (u(x+s, ”‘?z)
Hy (0) 2

&1
_[u(x—i—“;‘,y’,t)dy/) d&. (3.87)
Y
We apply (3.85) noting that ¥ (&) = xo (x + £) % belongs to L” for p’ < 3 to find that
lim h, (x) =0. (3.88)

Application of Hélder’s inequality to the right hand side of (3.87) for p’ < 3 gives the
upper bound

1/p p 1/p
|he(x>|5x(/ |sr"’ds> (/ m(x+5)u<x+s,ﬂ,r) dé)
H,y, (0) Hy (0) €
, 1/p'

+(f g7 d%‘)

H,(0)

)4 1/p

X(/ x:z(x+$)‘/u(x+é,yﬂt)dy’ dé) : (3.89)

Hy (0) Y
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Applying Lemma 3.75 to the first term on the right hand side of (3.89), Minkowski’s in-
equality to the second term followed with Holders inequality delivers the inequality

lhe ()| < Clinli Lz

per

¥:C(E3)> (3.90)

where C is a positive constant independent of ¢. From (3.88) and (3.90) it now follows from
the Lebesgue bounded convergence theorem that

lim || o d} llr () =0. (3.91)

The continuity and boundedness properties for p,~ 'al6 follow along lines similar to the pre-
vious arguments.

4 Homogenized Peridynamics

The strong approximation u(x, %, ) admits a natural decomposition into a continuous
macroscopic component and a poss1bly discontinuous fluctuating component. The macro-
scopic component ufl(x,t) is obtained by projecting out the spatial fluctuations and the
corrector r(x, 7, ) containing the possibly discontinuous fluctuations is given by the re-

mainder, i.e.,
u(x,ﬁt):uH(x,t)—l—r(x,f,t), “4.1)
e £
where
uf (x, 1) = (u) E/ u(x, y, t)dy (4.2)
Y
and

r(x,f,t>:u(x,f,t>—uH(x,t). 4.3)
£ £

The weak convergence expressed by Proposition 7 gives

1
/u (x,t)dx=1lim— [ u x,i,t dx
F%0|V| £HO|V| v &
H
= — u'(x,t)dx, (4.4)

and

1
lim— [ r(x.2.¢)dx=o0. (4.5)
=0 V| Jy 3

It is evident from (4.4) that the macroscopic component u* tracks the average or upscaled
behavior of the actual field u®. Conversely the macroscopic or “averaged” observations of
the actual deformation u® will track the dynamics of . Thus it is of compelling interest to
obtain an explicit evolution equation for u*/ in order to qualitatively account for observations
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made at macroscopic length scales. In what follows we show that averaging the two-scale
peridynamic equations over the y variable delivers a coupled system for the macroscopic and
microscopic components u (x, ) and r(x, y, t). This coupling is seen to impart a history
dependence on the evolution of u*. We express this memory effect explicitly by eliminating
r and recovering an integro-differential equation in both space and time for u*.

In what follows we set u” (t) = u” (-, t) and r () = r (-, t) and we denote spatial averages
of fields v(x, y, t) taken over the y variable by (v)(t) = fy v(x,y,t)dy. Let the constant

3 x 3 matrix K be defined by
K= A/ § ®f dé& (4.6)
0 €]

and the coupled dynamics for the evolution of u(¢) and r(¢) is given by the following
theorem.

Theorem 14
i (t) = (p~"YKru™ () + (p7"Bsr)(t) — K (p~'r)(t) + (p~ ') (1), 4.7)
Pty =(p" = (o)) Kru () + (o' Bsr(t) — (p~' Bsr)(1))
—K(p7'r () = (p'r)®) + (o7 'b(t) — (p7"b) (1)), 4.8)

with initial conditions u™ (0) = (ug), " (0) = (vy), r(0) = ug — (o), and 7 (0) = vy — (vy).

Proof We write u(x, y,t) =u™ (x,t) +r(x, y, t) and substitute this into the two-scale peri-
dynamic equation (3.19). Next multiply both sides of (3.19) by p~! and then take the average
both sides of (3.19) with respect to the y variable. The equation for u” given by (4.7) follows
noting that (r)(¢) = 0 and

(7)) =97 (r) =0, (4.9)

where the _operations of differentiation and integration commute since u € C 2([0, T1;
Ll (Y, C(£22)?)). The equation (4.8) follows on substitution of (4.7) in (3.19). O

Now we obtain an evolution equation for u” by eliminating  from the system given by
(4.7) and (4.8). Let

Cr(t)y=p~'Bsr(t) — (p~'Bsr)(t) = K (p'r(t) = (p~'r)(®)), (4.10)
and (4.8) becomes
() =Crt)+ (o~ = (™)) K (1) + p~'b(0) — (07" D) (0). @.11)

Since (4.11) is linear we set r = v + w where
i) =Co() + (o' — (0 ") Ku (1), 4.12)
with initial conditions v(0) =0, v(0) = 0 and

W(t) =Cw(t) + p~'b(1) = (p~'b)(®), (4.13)
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with initial conditions w(0) = i1g = ug — {(ug) and w(0) = vy = vy — (vo).
Proceeding as before one finds that C is a linear operator on Lf,’e,(Y ; C(£2)%) and v(¢) and
w(t) are given by

v(n) = (VC)™ /t sinh ((r = 1)VC) (o™ = (p7")) Kru" (v) d7, (4.14)
0
w(t) = cosht~/Ciig + («/E)_l sinh £+/Ciy
+ (Vo)™ f sinh ((t — T)V/C) (p~'b(2) — (p~'b) (7)) d. 4.15)
0

Let
K= (p""Bsr)(t) — K(p~'b) (1), (4.16)

then substitution of r = v + w in (4.7) gives the homogenized integro-differential equation
for u (t) given by the following theorem.

Theorem 15 The homogenized deformation u®l (t) is the solution of the integro-differential
equation in space and time given by

(o™i (1) = Kpu' @) + (o) K (VE)
X /[sinh ((t - ‘L')\/(_Z)(p_l - (p_l))KLuH(t)dr
0

+ (™) (Kw@) + (p7'b) (1)), (4.17)

with the initial conditions u™ (0) = (ug) and 1" (0) = (vy). The force generated by the ho-
mogenized deformation ff(t) = fH (-, t) is given by the history dependent constitutive law

0 = K 1)+ (o) ' (VE)

X /tsinh((t —OVC) (p™' = (p ) Kru® (r) dx. (4.18)
0

This equation shows that the evolution law for the homogenized deformation u is history
dependent.
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