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NOVEL METAMATERIAL SURFACES FROM PERFECTLY
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Abstract. Motivated by the numerical experiments carried out in [S. C. Yurt, A. Elfrgani, M. I.
Fuks, K. Ilyenko, and E. Schamiloglu, IEEE Trans. Plasma Sci., 44 (2016), pp. 1280–1286], we apply
an asymptotic analysis to show that corrugated waveguides can be approximated by smooth cylindri-
cal waveguides with an effective metamaterial surface impedance. We show that this approximation
is in force when the period of the corrugations is subwavelength. Here the metamaterial delivers an
effective anisotropic surface impedance and imparts novel dispersive effects on signals traveling inside
the waveguide. These properties arise from the subwavelength resonances inside the corrugations.
For sufficiently deep corrugations, the metamaterial waveguide predicts backward wave propagation.
In this way we may understand backward wave propagation as a multiscale phenomenon resulting
from local resonances inside subwavelength geometry. Our approach is well suited to numerical com-
putation, and we provide a systematic investigation of the effect of corrugation geometry on wave
dispersion, group velocity, and power flow.
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1. Introduction. We examine wave propagation inside periodically corrugated
cylindrical waveguides in which the outer walls are perfect conductors. This type of
waveguide is well known in the microwave literature [4]. We show that the effects of
the corrugation geometry are captured by modeling the corrugated wave guide as a
smooth circular waveguide surrounded by a metamaterial surface when the period of
the corrugation geometry is sufficiently small.

The corrugated waveguide is a cylindrical waveguide of infinite length with cir-
cular cross section having periodic variations in the radius. The minimum radius of
the waveguide is rm, the maximum radius is rm + h, and the corrugation depth is
h. The periodic variation of the boundary is contained within the annular domain
{r | rm ≤ r ≤ rm + h}; see Figure 2(a). The period of the variation is denoted
by d and will be taken small relative to the inner radius rm, i.e., d < rm. On the
other hand, the depth h of the corrugation is not small, and the ratio of inner to
outer radius rm/(rm + h) can take any value in the interval (0, 1]. Here the width of
the corrugation is the fraction of the period d where the radius r of the wave guide
exceeds rm. Infinitely thin corrugations are obtained in the limit when the waveguide
has cross section of radius rm except for an infinitesimally small fraction of the period
where rm < r ≤ rm + h; see Figure 3(d).

We begin with Maxwell’s equations in the waveguide. Assuming a subwavelength
scale of corrugations, we expand the electric and magnetic fields in the waveguide as
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1270 R. LIPTON, A. POLIZZI, AND L. THAKUR

series in the period of the corrugations. Passing to the limit of vanishing period our
analysis replaces Maxwell’s equations in the corrugated waveguide by the Maxwell
system posed inside a circular waveguide of fixed radius rm. The fields in the lead-
ing order theory satisfy Maxwell’s equations on a smooth circular cylinder, of radius
rm, but now with an effective surface impedance boundary condition; see Figure 2.
In this way, subwavelength variations in waveguide geometry are manifested only in
an effective impedance condition imposed on a simpler problem. We provide an ex-
plicit formula for the effective surface admittance Yad that shows it is determined
by standing waves inside each corrugation; see section 3. The effective admittance
is seen to change sign for frequencies on either side of any standing wave resonance
frequency; see (36). The homogenized waveguide recovers trends seen in direct numer-
ical simulation [14] and predicts the emergence of negative dispersion for sufficiently
deep corrugations. It is well suited to the fast numerical computation of dispersion
relations, group velocities, and power flow, given below in section 4.

1.1. Background, motivation, and main results. Our work is motivated by
the study of backward wave propagation in corrugated waveguide structures, specif-
ically the observation that waveguides with sufficiently deep corrugations support
backward waves for wavelengths longer than the corrugation period; see [14]. Early
on, this was discovered in a heuristic way and exploited in [2] for infinitely thin corru-
gations in cylindrical waveguides. This is further investigated in more recent work [5].
These works employ the so-called surface impedance method [2], [3] to waveguides
with infinitely thin periodic corrugations with periods smaller than the wavelength of
the propagating modes. For this case the corrugated waveguides are formally replaced
by a smooth circular waveguide having a nonisotropic but uniform impedance.

In this paper we depart from the earlier work and show that it is possible to
recover an effective surface impedance model directly from Maxwell’s equations for
subwavelength corrugations through a direct asymptotic analysis. We show an effec-
tive impedance is a purely subwavelength phenomenon and naturally arises without
having to assume infinitely thin corrugations as in [2] and [5]. It is emphasized that
unlike the effective impedance layer treated in [13], we do not assume that the cor-
rugation depth is small relative to the radius of the waveguide. The finite size of
the corrugation depth is necessary for understanding its effect on wave dispersion
inside the waveguide. Our study unambiguously shows that the presence of negative
group velocity hybrid modes is a multiscale phenomenon that is captured directly
from Maxwell’s equations using asymptotic analysis. It is found numerically that
negative group velocity modes correspond to positive values of iYad while positive
group velocity modes correspond to negative values of iYad; see section 4. Changes
in the sign of iYad are shown to be caused by resonances generated inside the cham-
bers {r | rm, r ≤ rm + h} associated with the corrugated boundary. The sign change
is deduced from an explicit spectral representation formula for Yad; see section 3
and formula (36). In this way we see that the corrugated boundary functions as a
true metamaterial influencing dispersion at wavelengths longer than the period of the
corrugations.

The asymptotic analysis and effective surface impedance developed here recover
the special case of surface impedance associated with infinitely thin corrugations re-
ported in the microwave literature in the mid-20th century; see Clarricoats and Saha
[2]. Our analysis shows that more general corrugations result in different effective
surface impedances. For a given subwavelength corrugation profile, our method is
applied to compute dispersion relations, group velocities, and power flow within the
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NEGATIVE INDEX FROM METAMATERIAL STRUCTURES 1271

waveguide. In particular, we use our model to study the effect of the corrugation
depth on a waveguide’s ability to support backward waves. The results presented in
section 4 strongly affirm the results of the numerical investigation [14] which points to
the existence of metamaterial phenomena inside corrugated waveguides. This behav-
ior is also corroborated in the recent work [5], which makes use of surface impedance
formalism for infinitely thin corrugations developed in [2].

1.2. Approach. In this paper we develop two-scale asymptotic expansions [1],
[11]. This method has been applied to problems involving rough interfaces and rough
boundaries in [6], [8], [7]. We employ this approach to homogenize the rough surface
of the waveguide when the period d of the corrugation goes to zero. Here the depth
of the corrugations is kept fixed as the period is sent to zero. This together with
the perfect conducting boundary condition allows us to recover an effective surface
impedance that captures the resonance frequencies of local hybrid modes inside sub-
wavelength corrugations; see (10) and (13)–(17). These resonances appear as poles in
the effective surface admittance as seen in the formula (36). The surface admittance
Yad is computed in Figures 7(a) to 11. The local resonances are seen to directly af-
fect the dispersive properties of the waveguide through the leading order dispersion
relation given by Propositions 1 and 2.

The paper is organized as follows: The physical model is presented in section 2.
The method of two-scale expansion is described in subsection 2.1, subsection 2.2,
and subsection 2.3. The general formulation of the leading order theory for time
harmonic Maxwell’s equations is presented in subsection 2.4. In subsection 2.5, we
present the effective surface admittance/impedance associated with hybrid modes.
The effect of local resonances on the effective admittance and wave dispersion is
illustrated analytically and numerically in section 3, and the effect of corrugation
depth is explored in section 4. The two-scale asymptotic derivation of the model is
presented in Appendix A.

2. Model description. We assume a cylindrical waveguide of infinite length.
The outer metallic shell of the waveguide has periodic corrugations with no azimuthal
variation. The outer radius of the waveguide is rm + h, and the corrugation depth
is h. Hence, the region of the waveguide with subwavelength periodic variation is
contained in the annular domain {r | rm ≤ r ≤ rm +h}; see Figure 1 for a plane view
and Figure 2(a) for a cut-away view. The period of the corrugations is small relative
to the inner radius rm and given by d.

rm + h

rm

d

z

r

Fig. 1. Truncated sinusoidal corrugations in annular domain {r | rm ≤ r ≤ rm + h} of
cylindrical waveguide.

Examples of periodic corrugations include the d-periodic sinusoidal, saw tooth,
and rectangular corrugations; see Figure 3. The corrugation shape is initially defined
on a unit period, and the corrugations are described on rescaling by d. We define the
corrugation profile through the shape function θ(r) defined for rm < r < rm +h; here
θ(r) > 0 and |θ′(r)| <∞; see Figure 4.
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1272 R. LIPTON, A. POLIZZI, AND L. THAKUR

Within the waveguide, we assume a vacuum, while the surrounding metallic shell
is treated as a perfect conductor. Thus, the electric and magnetic fields in the wave-
guide satisfy Maxwell’s equations, satisfy perfectly conducting boundary conditions
on the surface of the shell, and are zero within the thin conducting shell. Our asymp-
totic analysis results in the d = 0 surface impedance model in which periodic corruga-
tions are replaced with an impedance surface surrounding the inner waveguide region
{r | r ≤ rm}. Our effective surface impedance model is described in subsection 2.4
below and supports general propagating time-harmonic modes. The effective surface
impedance model is also shown to support hybrid modes given by a mix of transverse
electric (TE) and transverse magnetic (TM) fields. For this case we recover a more
specific form of the effective surface impedance given in subsection 2.5.

d

h

rm

z

(a)

rm

z

surface impedance

(b)

Fig. 2. (a) Cut-away view of corrugated waveguide with d-periodic corrugations. (b) Homoge-
nized limit given by waveguide of uniform circular cross section with effective surface impedance.

2.1. Physics of waveguides and Maxwell’s equations. In this paper, the
periodic corrugation is represented by rescaling a unit-periodic geometry (see Fig-
ure 4) so that the corrugations are unit-periodic in y = z/d. The wavelength of a
propagating mode is denoted by λ, and we are interested in subwavelength propaga-
tion, d� λ. The cylindrical waveguide has corrugated outer walls, and θ(r) denotes a
profile function describing the corrugation shape as a function of r. In this paper, we
investigate rectangular corrugation profiles [14] as well as sawtooth, sinusoidal, and
infinitely thin rib profiles; see Figure 3.

h

d

(a)

h

d

(b)

h

d

(c)

h

d

(d)

Fig. 3. Corrugation geometries considered: (a) Truncated sinusoidal corrugations; (b) trun-
cated sawtooth corrugations; (c) rectangular corrugations; (d) infinitely thin corrugations.

We assume that the electric and magnetic fields within the waveguide have the
time-harmonic form

(1) E = E(y, z, r, ϕ)eiωt, B = B(y, z, r, ϕ)eiωt,
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NEGATIVE INDEX FROM METAMATERIAL STRUCTURES 1273

−1=2 1=2

r

θ(r)

rm

Fig. 4. Unit-periodic geometry with unit-periodic corrugation and profile function θ(r).

with E and B being unit-periodic in the “fast” y-variable, y = z/d. Here, (z, r, ϕ)
denote canonical cylindrical coordinates. E and B exhibit both a d-periodic variation
in z as well as a slow variation in z.

The waveguide is split into two concentric subdomains, denoted by ΩW and ΩI .
Here, ΩW is the cylindrical inner waveguide, 0 < r < rm; ΩI is the region inside the
corrugation, rm < r < rm + h (see Figure 5).

θ(r)d

~er

~ez

ΩI
d

rm + h h

rm

ΩW

Fig. 5. Plane view of domains ΩI and ΩW .

The fields inside ΩW are denoted by EW ,BW , and the fields inside ΩI are denoted
by EI ,BI . As we adopt eiωt-time-harmonic behavior, on ΩW , fields EW ,BW solve
the time-harmonic Maxwell equations

(2)





∇×EW = −iωBW ,

∇×BW = iωµ0ε0EW ,

∇ ·BW = 0,
∇ ·EW = 0,

and EI ,BI satisfy, on ΩI ,

(3)





∇×EI = −iωBI ,

∇×BI = iωµ0ε0EI ,

∇ ·BI = 0,
∇ ·EI = 0.

On the outer boundary of the waveguide, denoting the unit outer normal vector field
by ~ν, we impose perfect conducting boundary conditions

(4) EI × ~ν = 0, BI · ~ν = 0.

The waveguide boundary can have flat parts at r = rm for y−(rm) < y < y+(rm);
see Figure 5. Here we recall that the boundary of the waveguide is a metallic shell
given by a perfect conductor with zero electric and magnetic fields inside. With this
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1274 R. LIPTON, A. POLIZZI, AND L. THAKUR

in mind for r = rm, we extend EI and BI by zero onto the flat parts. We write this
observation as

(5)

{
EI(y, rm, z, ϕ) = 0 for y−(rm) < y < y+(rm),
BI(y, rm, z, ϕ) = 0 for y−(rm) < y < y+(rm).

With this extension we recover the continuity conditions at r = rm given by

(6)

{
(EW −EI)× ~er = 0,
(BW −BI) · ~er = 0.

We denote y-averages of a quantity q over the unit period [−1/2, 1/2] by 〈q〉 =∫ 1/2
−1/2 q(y)dy, and the homogenized transmission conditions at r = rm are

(7)

{
〈BW −BI〉 × ~er = J(r, ϕ, z),
〈ε0EW − ε0EI〉 · ~er = ρ(r, ϕ, z).

Here J(r, ϕ, z) and ρ(r, ϕ, z) are the homogenized surface current and charge density.
The surface current and density are not prescribed but defined as the y-averages of
the jumps in the electric and magnetic fields given on the left-hand side of (7).

2.2. Two-scale asymptotic expansions. As we are interested in subwave-
length behavior, d� λ, we expand EW ,BW ; EI ,BI in the two-scale expansion

(8)





EW = (EW0(y, z, r, ϕ) + dEW1(y, z, r, ϕ) +O(|d2|))eiωt,
BW = (BW0(y, z, r, ϕ) + dBW1(y, z, r, ϕ) +O(|d2|))eiωt,
EI = (EI0(y, z, r, ϕ) + dEI1(y, z, r, ϕ) +O(|d2|))eiωt,
BI = (BI0(y, z, r, ϕ) + dBI1(y, z, r, ϕ) +O(|d2|))eiωt.

We substitute the series (8) into Maxwell’s equations (2) and (3), perfect conducting
boundary conditions (4), and transmission conditions (6) and (7) to recover the leading
order theory describing propagating fields inside the waveguide. An outline of the
derivation is provided in Appendix A. In the following, components of the electric
and magnetic fields are written in cylindrical coordinates using the convention EW0 =
(EW0

r , EW0
z , EW0

ϕ ), BI0 = (BI0r , B
I0
z , B

I0
ϕ ), etc.

2.3. Leading order theory: The subwavelength limit of the asymptotic
expansions. We present the boundary value problem for EW0, BW0, EI0, BI0. The
derivation is given in Appendix A. In the interior waveguide, 0 < r < rm, the leading
order fields EW0,BW0 are independent of the y variable, depending only on r, ϕ, z,
and are solutions of Maxwell’s equations

(9)





∇×EW0 = −iωBW0,

∇×BW0 = iωµ0ε0EW0,

∇ ·BW0 = 0,
∇ ·EW0 = 0.

Inside the impedance layer, rm < r < rm + h, the asymptotic analysis shows to
leading order that the fields EI0,BI0 have the form

(10)

{
EI0 = ~ezE

I0
z ,

BI0 = ~eϕB
I0
ϕ + ~erB

I0
r ,
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NEGATIVE INDEX FROM METAMATERIAL STRUCTURES 1275

and EI0z , BI0ϕ , BI0r are functions of r, ϕ, z. We emphasize that the polarization for
EI0 and BI0 follows directly from the asymptotic analysis given in Appendix A and
is not assumed. At the interface, r = rm,

(11)

EW0
ϕ = 0, EW0

z = EI0z ,

−(BW0
ϕ − θ(rm)BI0ϕ ) = Jz, BW0

z = Jϕ,

ε0E
W0
r = ρ, BW0

r = BI0r ,

where ρ, Jz, and Jϕ are surface charge densities and currents and are determined by
the left-hand sides of (11). At r = rm + h,

(12) BI0r (z, rm + h, ϕ) = 0, EI0z (z, rm + h, ϕ) = 0.

Here EI0z , BI0ϕ , BI0r satisfy the system

1
r
∂r

(
r

θ(r)
∂r(θEI0z )

)
+

1
r2
∂2
ϕE

I0
z = −ω2µ0ε0E

I0
z ,(13)

EI0z (z, rm + h, ϕ) = 0,(14)

BI0r (z, rm + h, ϕ) = 0,(15)

BI0r = − 1
iω

1
r
∂ϕE

I0
z ,(16)

BI0ϕ =
1
iωθ

∂r(θEI0z ),(17)

where (15) follows immediately from (16), noting that ∂ϕEI0z is the tangential deriva-
tive on r = rm + h of EI0z and EI0z = 0 on r = rm + h.

Taken together, (9)–(17) provide transmission and boundary conditions satisfied
by EW0 and BW0 over the inner waveguide ΩW . In the next section we consider
solutions to the transmission boundary value problem for which the surface current
Jz defined by the jump on the left-hand side of (11) vanishes. We subsequently find
that such solutions exist by explicit construction. Assuming existence of solutions, it
is possible to rewrite this problem as an equivalent one posed exclusively over ΩW
with an effective surface impedance boundary condition given on r = rm.

2.4. Nonlocal surface impedance formulation for time-harmonic fields.
We make the ansatz 〈BW − BI〉 × ~er = 0, and a straightforward calculation gives
−(BW0

ϕ − θ(rm)BI0ϕ ) = 0. With this ansatz we get BW0
ϕ = θ(rm)BI0ϕ . We can

now reinterpret the leading order theory for the time-harmonic electric and magnetic
fields EW0 and BW0 as an equivalent problem defined on the circular waveguide
ΩW equipped with an effective anisotropic surface impedance. We now describe the
equivalent problem on ΩW and the effective surface impedance. In the domain 0 < r <
rm, we have that the zero-order fields EW0,BW0 satisfy Maxwell’s equations (9). Next
we introduce the Dirichlet to Neumann map at the interface r = rm. Define F (r, ϕ)~ez
taking prescribed boundary data f(ϕ) at r = rm and satisfying F (rm +h, ϕ) = 0 and

(18)
1
r
∂r

(
r

θ(r)
∂r(θ(r)F )

)
+

1
r2
∂2
ϕF = −ω2µ0ε0F

on rm < r < rm + h, 0 ≤ ϕ ≤ 2π.
The Dirichlet to Neumann map for this problem, denoted by Nϕ,z, maps the

Dirichlet data F (rm, ϕ) = f(ϕ)~ez to the Neumann data 1
iω∂r(θF )|rm

~eϕ. At the
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1276 R. LIPTON, A. POLIZZI, AND L. THAKUR

interface r = rm, we impose (11) together with (13) and (14) to see that the anisotropic
nonlocal surface impedance conditions are given on r = rm by

(19) EW0
ϕ (rm, ϕ, z) = 0, BW0

ϕ (rm, ϕ, z) = Nϕ,zEW0
z (rm, ϕ, z).

Collecting results, we obtain our fundamental result.

Proposition 1 (periodic corrugations as metamaterials). In the subwavelength
limit d→ 0, a solution to the homogenized problem is given by the solution (EW0,BW0)
of the time-harmonic Maxwell equations (9) in the circular waveguide ΩW that sat-
isfies the nonlocal anisotropic surface impedance conditions on the circular boundary
r = rm of ΩW given by (19).

In the next section we apply this result to hybrid waveguide modes and recover
explicit solutions to the homogenized problem posed in terms of the effective surface
impedance.

2.5. Effective surface impedance for hybrid modes in circular wave-
guides. In this section we apply Proposition 1 to recover the leading order theory for
waveguide modes inside the circular cylindrical waveguide. Waveguide modes inside
the circular waveguide ΩW have electric and magnetic fields according the following
separated forms; see [2], [10]. In the interior waveguide, we have electric field
(20)

EW0 = REnz (r)TEnz (ϕ)e−iβz~ez +REnϕ (r)TEnϕ (ϕ)e−iβz~eϕ +REnr (r)TEnr (ϕ)e−iβz~er

and magnetic field

(21) BW0 = RBnz (r)TBnz (ϕ)e−iβz~ez +RBnϕ (r)TBnϕ (ϕ)e−iβz~eϕ

+RBnr (r)TBnr (ϕ)e−iβz~er,

where the propagation constant β = 2π
λ and n = 0, 1, 2, . . . . Here all functions T (ϕ)

of ϕ are of the form

(22) T (ϕ) = ane
inϕ,

where an is an arbitrary complex constant. We write F (r, ϕ) = R(r)T (ϕ), and sub-
stitution of this form into (18) shows that R(r) is the solution of

(23)





r ddr

(
r
θ(r)

d
dr (θ(r)R(r))

)
+
(
r2k2 − n2

)
R(r) = 0, rm < r < rm + h,

R(rm) = 1,
R(rm + h) = 0,

where k2 = ω2/c2, c = 1/
√
µ0ε0, and µ0 and ε0 are the magnetic permeability and

dielectric permittivity of the vacuum. From (19) we recover the anisotropic effective
surface impedance conditions given by

(24) EW0
ϕ (rm, ϕ, z) = 0, BW0

ϕ (rm, ϕ, z) = µ0YadEW0
z (rm, ϕ, z).

Here the surface impedance is expressed in terms of the effective admittance Yad given
by

(25) Yad(k, n) =
y0
ik
∂r(θ(r)R(r))

∣∣∣
r=rm

,
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where y0 = ε0/µ0 is the free space admittance. Collecting results, we find that
subwavelength dispersion inside corrugated metallic waveguides is given to leading
order by replacing the highly oscillatory corrugated boundary with a metamaterial
having an anisotropic surface impedance.

Proposition 2 (periodic corrugations as metamaterials II). In the subwave-
length limit d→ 0 all hybrid modes (EW0,BW0) are given by

(26)





EW0
z = anJn(x)ei(nϕ−βz),

EW0
r = −ani kK

Jn(x)
x {βFn(x) + nΛ}ei(nϕ−βz),

EW0
ϕ = an

k
K
Jn(x)
x {nβ + ΛFn(x)}ei(nϕ−βz),

BW0
z = −anic−1ΛJn(x)ei(nϕ−βz),

BW0
r − an k

K c
−1 Jn(x)

x {β ΛFn(x) + n}ei(nϕ−βz),
BW0
ϕ = −ani kK c−1 Jn(x)

x {nβ Λ + Fn(x)}ei(nϕ−βz), n = 0, 1, . . . ,

where Jn is the Bessel function of order n, x = Kr, K2 = k2 − β2, β = β/k,
Fn(x) = xJ ′n(x)/Jn(x), and the mode coupling parameter Λ is given by −ic−1Λ =
BWO
z /EWO

z . All modes satisfy the anisotropic surface impedance conditions on the
circular boundary r = rm of ΩW given by (24) and Yad given by (25). The condition
EW0
ϕ (rm, ϕ, z) = 0 specifies the coupling constant and for xm = Krm is given by

(27) nβ + ΛFn(xm) = 0.

The condition BW0
ϕ (rm, ϕ, z) = µ0YadEW0

z (rm, ϕ, z) provides the k versus β disper-
sion relation for the waveguide modes given by

(28) µ0Yad(k, n) = −i k

xmK
{nβ Λ + Fn(xm)}.

For general corrugation shapes specified by θ(r) the admittance Yad(k, n) is com-
puted through the numerical solution of (23). The dispersion relation is then solved
for β at fixed k using a root finder in (28). For rectangular profiles θ(r) is a constant,
(23) is a boundary value problem for Bessel’s equation, and direct solution of (23)
gives the explicit formula for the admittance

(29) Yad(k, n) = −iθ(rm)
c

Yn(k(rm + h))J ′n(krm)− Jn(k(rm + h))Y ′n(krm)
Yn(k(rm + h))Jn(krm)− Jn(k(rm + h))Yn(krm)

.

This formula shows that the effective admittance depends linearly on the relative
width of the corrugation as well as its depth h. For θ = 1 formula (29) recovers the
surface impedance formula for corrugated waveguides with infinitely thin corrugations
postulated in the early 1970s by Clarricoats and Saha [2]. This provides the connection
between the metamaterial concept and the surface impedance formalism developed in
the mid-20th century microwave literature.

We apply (28) to numerically examine the effect of corrugation depth and shape
on dispersion curves in section 4.

3. Metamaterials and corrugations as microresonators. The characteris-
tic feature of metamaterials is the coupling of macroscopic fields through structurally
generated subwavelength resonance. For artificial magnetism generated in bulk meta-
materials this is accomplished using split ring resonators made from perfect conduc-
tors as in [9]. For the metallic corrugated waveguides treated here, it is the finely

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1278 R. LIPTON, A. POLIZZI, AND L. THAKUR

spaced corrugations that function as microresonators and provide the coupling be-
tween macroscopic electric and magnetic fields. Here the coupling is through the
frequency-dependent effective surface admittance Yad. We now provide an explicit
formula for the effective admittance that explicitly highlights the effect of subwave-
length resonances given by standing waves localized to the corrugations in the d→ 0
limit.

The standing waves are given for a fixed n = 1, . . . , by the orthonormal system
{φnj (r)}∞j=1 with respect to the weighted inner product 〈u, v〉 given by

(30) 〈u, v〉 =
∫ rm+h

rm

u(r)v(r)p(r) dr,

where p(r) = r/(θ(r)) > 0. Each standing wave φnj and eigenvalue λnj solve the
Sturm–Liouville eigenvalue problem

(31)
d

dr

(
p(r)

d

dr
φnj (r)

)
+ tn(r)φnj (r) = −λnj p(r)φnj (r) for rm < r < rm + h,

with φnj (rm) = φnj (rm + h) = 0 and tn(r) = −n2/rθ(r).
It is easily seen from (23) that the product φ(r) = θ(r)R(r) is the solution of the

boundary value problem

(32)





d
dr

(
p(r) ddrφ(r)

)
+ (r2k2−n2)

rθ(r) φ(r) = 0, rm < r < rm + h,

φ(rm) = θ(rm),
φ(rm + h) = 0,

and the admittance is written as

(33) Yad(k, n) =
y0
ik

d

dr
φ(r)|r=rm

.

We can write φ(r) = v(r) + `(r), where `(r) = θ(rm)(1− (r − rm)/h) and v(r) is
the solution of

(34)





d
dr

(
p(r) ddrv(r)

)
+ (r2k2−n2)

rθ(r) v(r) = g(r), rm < r < rm + h,

g(r) =
(
− d
dr

(
p(r) ddr `(r)

)
− (r2k2−n2)

rθ(r) `(r)
)

with the homogeneous boundary conditions v(rm) = v(rm + h) = 0.
We can express v(x) for n fixed in terms of the standing waves {φnj }∞j=1 as

(35) v(r) =
∞∑

j=1

〈g, φnj 〉φj(r)
k2 − (λnj )

,

and the spectral formula for the effective admittance is given by the following propo-
sition.

Proposition 3 (explicit spectral representation formula for the effective surface
admittance).

(36) Yad(k, n) =
y0
ik


−θ(rm)

h
+
∞∑

j=1

〈g, φnj 〉 ddrφnj (r)|r=rm

k2 − λnj


 .
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The formula for the effective surface admittance shows that for a fixed azimuthal
symmetry n the surface admittance changes sign for square frequencies k2 in the range
just below λnj to just above it, where λnj is the jth standing wave resonance.

For numerical simulation we measure corrugation depth in relative units as the
ratio rm/(rm + h), where smaller ratios correspond to deeper corrugations. The
resonances of the surface admittance at a fixed frequency depend upon the depth of the
corrugations. This is illustrated in Figures 6(a) and 6(b) for rectangular corrugations
and truncated sinusoidal profiles, where the truncated sinusoidal profiles have the
form

θ(r) =
1
2

+
1
π

arcsin[2(r − (rm + h/2))/1.2h];

see Figure 3(a). The admittance is plotted as a function of frequency for fixed cor-
rugation depths for rectangular, truncated sinusoidal, sawtooth, and infinitely thin
corrugations in Figures 7(a) to 11. It is seen that the admittance changes sign and
exhibits resonances at different frequencies for different corrugation profiles.

0.2 0.4 0.6 0.8

−1,000

0

1,000

rm/(rm + h)

(i
)Y

a
d

(a)

0.2 0.4 0.6 0.8 1

−200

0

200

rm/(rm + h)
(b)

Fig. 6. Admittance Yad as a function of corrugation depth ratio rm/(rm+h) for (a) rectangular
corrugations (θ ≡ 3/5) and (b) truncated sinusoidal corrugations at fixed frequency ω ≈ 50 × 109

rad/s, which corresponds to krm = 2.0.

4. Controlling negative dispersion and power flow with corrugation
depth. Backward waves are traveling wave modes with group velocity and phase
velocity in opposing directions. In all cases the phase velocity is directed along the
waveguide in the positive ~ez direction. In this section we show existence of backward
waves for corrugated waveguides when the corrugations are sufficiently deep. It is seen
that group velocity and integrated power flow can be made opposite the phase velocity,
depending on the depth of the corrugations. We also confirm that negative group
velocity modes correspond to EH11 modes defined by Ez > Hz. This is important to
describe Cherenkov interaction between the electromagnetic wave and electrons inside
traveling wave tube amplifiers [14].

For future reference we will refer to the cut-off frequency for a dispersion curve
as the frequency on the dispersion curve for which β = 0. Figures 12(a) to 13(b) give
dispersion curves for hybrid modes and their dependence on the depth of corrugations.
As before, depth is measured in relative units as the ratio rm/(rm + h), and we
consider corrugation depths associated with ratios between 0.3 and 0.6. The dispersion
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0 χ1 z3 5 χ5 z7 10
−1,000

−500

0

500

1,000

krm

(i
)Y

a
d

(a) rm/(rm + h) = 0.30

0 1 z1 χ1 6 z2 8 χ2

−1,000

−500

0

500

1,000

krm

(b) rm/(rm + h) = 0.60

Fig. 7. (a) Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.30
with rectangular ribbed corrugations (θ ≡ 3/5). Resonances are seen at frequencies where krm takes
values of χ1 ≈ 1.415, χ2 ≈ 2.735, χ3 ≈ 4.065, χ4 ≈ 5.405, χ5 ≈ 6.745, χ6 ≈ 8.095, χ7 ≈ 9.435.
Zeros are seen at z1 ≈ 1.035, z2 ≈ 2.185, z3 ≈ 3.465, z4 ≈ 4.785, z5 ≈ 6.115, z6 ≈ 7.445,
z7 ≈ 8.785. (b) Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.60
with rectangular ribbed corrugations (θ ≡ 3/5). Resonances are seen at frequencies where krm takes
values of χ1 ≈ 4.775, χ2 ≈ 9.445. Zeros are seen at z1 ≈ 2.735, z2 ≈ 7.205.

0 χ1 z3 5 χ5 z7

−400

−200

0

200

400

krm

(i
)Y

a
d

(a) rm/(rm + h) = 0.30

0 1 z1 χ1 6 z2 8 χ2

−400

−200

0

200

400

krm

(b) rm/(rm + h) = 0.60

Fig. 8. (a) Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.30 with
truncated sinusoidal corrugations. Resonances are seen at frequencies where krm takes values of
χ1 ≈ 1.445, χ2 ≈ 2.765, χ3 ≈ 4.095, χ4 ≈ 5.425, χ5 ≈ 6.765, χ6 ≈ 8.105, χ7 ≈ 9.455. Zeros
are seen at z1 ≈ 0.935, z2 ≈ 2.075, z3 ≈ 3.385, z4 ≈ 4.725, z5 ≈ 6.065, z6 ≈ 7.405, z7 ≈ 8.755.
(b) Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.60 with truncated
sinusoidal corrugations. Resonances are seen at frequencies where krm takes values of χ1 ≈ 4.965,
χ2 ≈ 9.615. Zeros are seen at z1 ≈ 2.185, z2 ≈ 6.885.

relations are displayed in terms of normalized frequency and wave number given by
krm and βrm, respectively. For all cases we discover that there is a corrugation ratio
below which all hybrid modes have backward waves associated with EH11 modes
corresponding to Ez > Hz.

As a first example we consider rectangular corrugations of relative width θ(rm) =
3/5. Figure 12(a) shows a bifurcation between forward and backward wave modes for
corrugation depth between the ratios of 0.6 and 0.48. The cut-off frequency for these
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0 χ1 z3 5 χ5 z7 10

−1,000

0

1,000

krm

(i
)Y

a
d

(a) rm/(rm + h) = 0.30

0 1 z1 χ1 6 z28 χ2

−1,000

0

1,000

krm

(b) rm/(rm + h) = 0.60

Fig. 9. (a) Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.30 with
truncated sawtooth corrugations. The profile function θ(r) decreases linearly from θ(rm) = d1 = 3/5
to θ(rm + h) = d2 = 2/5. The slope of this profile then depends on the corrugation depth h. The
profile function is given by θ(r) = d1 + ((d2 − d1)/h)(r − rm). Resonances are seen at frequencies
where krm takes values of χ1 ≈ 1.435, χ2 ≈ 2.745, χ3 ≈ 4.075, χ4 ≈ 5.415, χ5 ≈ 6.775, χ6 ≈ 8.095,
χ7 ≈ 9.445. Zeros are seen at z1 ≈ 1.095, z2 ≈ 2.215, z3 ≈ 3.485, z4 ≈ 4.795, z5 ≈ 6.125, z6 ≈
7.455, z7 ≈ 8.795. (b) Admittance Yad as a function of frequency for fixed ratio rm/(rm+h) = 0.60
with truncated sawtooth corrugations. Resonances are seen at frequencies where krm takes values
of χ1 ≈ 4.825, χ2 ≈ 9.485. Zeros are seen at z1 ≈ 2.955, z2 ≈ 7.35.

0 χ1 z3 5 χ5 z7 10

−1,000

0

1,000

krm

(i
)Y

a
d

(a) rm/(rm + h) = 0.30

0 1 z1 χ1 6 z2 8 χ2

−1,000

0

1,000

krm

(b) rm/(rm + h) = 0.60

Fig. 10. (a) Admittance Yad as a function of frequency for fixed ratio rm/(rm+h) = 0.30 with
infinitely thin corrugations (θ ≡ 1). Resonances are seen at frequencies where krm takes values of
χ1 ≈ 1.415, χ2 ≈ 2.735, χ3 ≈ 4.065, χ4 ≈ 5.405, χ5 ≈ 6.745, χ6 ≈ 8.095, χ7 ≈ 9.435. Zeros are
seen at z1 ≈ 1.035, z2 ≈ 2.185, z3 ≈ 3.465, z4 ≈ 4.785, z5 ≈ 6.115, z6 ≈ 7.445, z7 ≈ 8.785. (b)
Admittance Yad as a function of frequency for fixed ratio rm/(rm + h) = 0.60 with infinitely thin
corrugations (θ ≡ 1). Resonances are seen at frequencies where krm takes values of χ1 ≈ 4.755,
χ2 ≈ 9.445. Zeros are seen at z1 ≈ 2.735, z2 ≈ 7.205. Note the poles and zeros for iYad are the
same for corrugations with θ = 1 and θ = 3/5. This follows from the explicit formula for iYad given
by (29).

modes is approximately 1.8 in normalized units. The dispersion relation for the 0.48
corrugation exhibits negative group velocity at cut-off, while the mode associated with
the 0.6 corrugation exhibits positive group velocity. The wave modes associated with
deeper corrugations of ratios 0.4, 0.35, 0.3 are all EH11 modes and are backward waves
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0 z1 χ1 z2 χ2 z3 χ3 z4

−1,000

−500

0

500

1,000

krm

(i
)Y
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d

Fig. 11. Admittance Yad as a function of frequency for the rectangular corrugations (θ ≡ 1/2)
considered in [14]. rm = 1.6 cm, and h = 1.8 cm (this corresponds to depth ratio rm/(rm + h) =
0.4706). Resonances are seen at frequencies where krm takes values of χ1 ≈ 2.845, χ2 ≈ 5.615,
χ3 ≈ 8.395. Zeros are seen at z1 ≈ 1.785, z2 ≈ 4.335, z3 ≈ 7.075, z4 ≈ 9.835.

exhibiting negative group velocity. For corrugations given by truncated sinusoidal
profiles, Figure 12(b) shows similar trends. As seen before, there is a bifurcation
between forward and backward wave modes for corrugation depth between the ratios
of 0.6 and 0.48. The cut-off frequency for these modes is roughly 1.8 for the backward
wave and 1.9 for the forward wave. As before, the dispersion relation for the 0.48
corrugation exhibits negative group velocity at cut-off, while the mode associated with
the 0.6 corrugation exhibits positive group velocity. The wave modes associated with
deeper corrugations of ratios 0.4, 0.35, 0.3 are also EH11 modes and are backward
waves exhibiting negative group velocity. These trends are repeated for truncated
sawtooth corrugations in Figure 13(a) and for the infinitely thin ribbed corrugations
in Figure 13(b). We conclude by plotting dispersion relations for the rectangular
corrugation geometries considered in [14]; see Figure 14(a). For this case, rm = 1.6
cm, and we plot dispersion curves for ratios rm/(rm + h) associated with different
corrugation depths h. As before, we see a similar bifurcation between forward and
backward modes in corrugated waveguides with increasing corrugation depth. We
confirm existence of a backward wave EH11 mode at cut-off for a corrugation depth
of 1.8 cm. In Figure 14(b) we plot both normalized group velocity (dk/dβ)/c and
integrated Poynting vector

∫ rm

0 dP (r) for the rectangular corrugations of [14] (see
Figure 14(a)) with corrugation depth h = 1.8 cm. We see that both are negative
at the cut-off frequency and become positive for normalized wave numbers larger
than 2.7. For comparison, we display Figure 15 associated with a positive wave for a
rectangular corrugation with θ(rm) = 3/5 and a corrugation depth of ratio 0.6. Here
both normalized group velocity and integrated Poynting vector are positive for all
wave numbers on the dispersion curve.

We conclude this section by numerically demonstrating that negative group veloc-
ity modes correspond to positive values of iYad, while positive group velocity modes
correspond to negative values of iYad; see section 4. Consider first rectangular cor-
rugations with θ = 3/5 with deep corrugations rm/(rm + h) = 0.3. Figure 7(a)
shows iYad > 0 for normalized frequency between z1 = 1.035 and χ1 = 1.415, and
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Fig. 12. (a) Dispersion curves for rectangular corrugations with θ ≡ 3/5 for corrugation
depth ratios rm/(rm + h) in the range 0.3 to 0.6. (b) Dispersion curves for truncated sinusoidal
corrugations having the form θ(r) = 1

2 + 1
π

arcsin[2(r − (rm + h/2))/1.2h] for corrugation depth
ratios rm/(rm + h) in the range 0.3 to 0.6.
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(b)

Fig. 13. (a) Dispersion curves for truncated sawtooth corrugations. The profile function θ(r)
decreases linearly from θ(rm) = d1 = 3/5 to θ(rm + h) = d2 = 2/5. The slope of this profile then
depends on the corrugation depth h. The profile function is given by θ(r) = d1+((d2−d1)/h)(r−rm).
These are plotted for corrugation depth ratios rm/(rm + h) in the range 0.3 to 0.6. (b) Dispersion
curves for infinitely thin ribbed corrugations for corrugation depth ratios rm/(rm + h) in the range
0.3 to 0.6.

we see that this corresponds to the negative dispersion over that frequency range in
the corresponding dispersion curve associated with rm/(rm + h) = 0.3 given in Fig-
ure 12(a). On the other hand, consider rectangular corrugations with θ = 3/5 with
shallow corrugations rm/(rm + h) = 0.6. Figure 7(b) shows iYad < 0 for normalized
frequency less than z1 = 2.735, and we see that this corresponds to the positive dis-
persion over that frequency range in the corresponding dispersion curve associated
with rm/(rm + h) = 0.6 given in Figure 12(a).

This pattern is found to persist for all corrugation profiles. We now give a brief ac-
counting. For truncated sinusoidal profiles with deep corrugations rm/(rm+h) = 0.3,
Figure 8(a) shows iYad > 0 for normalized frequency between z1 = 0.935 and χ1 =
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∫ rm

0 dP (r)
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(b)

Fig. 14. (a) Dispersion relation for the rectangular corrugations considered in [14]. Here
an inner waveguide of radius rm = 1.6 cm with rectangular corrugations (θ ≡ 1/2). Dispersion
relations are given for depths h = 0.8 cm (rm/(rm + h) ≈ 0.667), 1.0 cm (rm/(rm + h) ≈ 0.615),
1.2 cm (rm/(rm + h) ≈ 0.5714), 1.4 cm (rm/(rm + h) ≈ 0.5333), 1.6 cm (rm/(rm + h) = 0.5),
1.8 cm (rm/(rm + h) ≈ 0.4706). (b) Normalized group velocity (dk/dβ)/c and integrated Poynting
vector

∫ rm
0 dP (r) for the rectangular corrugations of [14] (see Figure 14(a)) with corrugation depth

h = 1.8 cm (a ratio of rm/(rm + h) = 0.4706).

1.445, and we see that this corresponds to the negative dispersion over that frequency
range in the corresponding dispersion curve associated with rm/(rm + h) = 0.3 given
in Figure 12(b). On the other hand, for shallow truncated sinusoidal corrugations
rm/(rm + h) = 0.6, Figure 8(b) shows iYad < 0 for normalized frequency less than
z1 = 2.185, and this corresponds to the positive dispersion over that frequency range in
the dispersion curve associated with rm/(rm+h) = 0.6 given in Figure 12(b). For trun-
cated sawtooth profiles with deep corrugations rm/(rm + h) = 0.3, Figure 9(a) shows
iYad > 0 for normalized frequency between z1 = 1.095 and χ1 = 1.435, and we see
that this corresponds to the negative dispersion over that frequency range in the cor-
responding dispersion curve associated with rm/(rm +h) = 0.3 given in Figure 13(a).
On the other hand, for shallow truncated sawtooth corrugations rm/(rm + h) = 0.6,
Figure 9(b) shows iYad < 0 for normalized frequency less than z1 = 2.955, and this
corresponds to the positive dispersion over that frequency range in the dispersion
curve associated with rm/(rm + h) = 0.6 given in Figure 13(a). For infinitely thin
but deep corrugations rm/(rm + h) = 0.3, Figure 10(a) shows iYad > 0 for normal-
ized frequency between z1 = 1.035 and χ1 = 1.415, and we see that this corresponds
to the negative dispersion over that frequency range in the corresponding disper-
sion curve associated with rm/(rm + h) = 0.3 given in Figure 13(b). On the other
hand, for shallow infinitely thin corrugations rm/(rm + h) = 0.6, Figure 10(b) shows
iYad < 0 for normalized frequency less than z1 = 2.735, and this corresponds to the
positive dispersion over that frequency range in the dispersion curve associated with
rm/(rm + h) = 0.6 given in Figure 13(b).

5. Conclusions. We have applied two-scale asymptotic expansions to confirm
that negative group velocity can be induced through the design of subwavelength cor-
rugations that are sufficiently deep. Our analysis and simulations definitively show
that this phenomenon occurs due to the coupling of macroscopic electric and magnetic
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(a) Normalized group velocity

1 2 3
0

2

4

6

·10−2

βrm

∫ r
m

0
dP

(r
)

(b) Integrated Poynting vector

Fig. 15. Normalized group velocity (dk/dβ)/c and integrated Poynting vector
∫ rm
0 dP (r) for

the rectangular corrugations (θ ≡ 3/5; see Figure 12(a)) with corrugation ratio rm/(rm + h) = 0.6.
We observe that both the group velocity and the power flow are positive.

fields through subwavelength resonance. This is manifested in an anisotropic effective
surface impedance coupling electric to magnetic fields. The theory shows it is possible
to represent corrugated waveguides as smooth cylindrical waveguides with a metama-
terial surface characterized by an effective surface admittance. The effective surface
admittance is the Dirichlet to Neumann map for a two point boundary value problem
in terms of an ordinary differential equation with coefficients that depend on the cor-
rugation shape. The interval over which the boundary value problem is posed depends
upon the corrugation depth h and corresponds to the interval rm < r < rm + h. The
reduced order model is far faster to compute than direct numerical simulation and
can be used as a design tool for dispersion engineering. The reduced model allows
one to quickly traverse the universe of geometries associated with corrugation profiles
and depths. This enables fast prototyping of slow wave interaction structures for use
in applications such as Cherenkov masers [12].

Appendix A. Derivation of the homogenized problem. In this section we
derive the leading order transmission boundary value problem (9)–(17) using two-scale
expansions.

A.1. Maxwell’s equations in local coordinates. Again using the definition
of the fast variable y = z/d so that ∂z → ∂z + d−1∂y,

(37)





∇×E = ~er( 1
r∂ϕEz − (∂z + d−1∂y)Eϕ)

+~eϕ((∂z + d−1∂y)Er − ∂rEz) + ~ez( 1
r∂r(rEϕ)− 1

r∂ϕEr)
= −iω(Br~er +Bϕ~eϕ +Bz~ez),

∇×B = ~er( 1
r∂ϕBz − (∂z + d−1∂y)Bϕ)

+~eϕ((∂z + d−1∂y)Br − ∂rBz) + ( 1
r∂r(rBϕ)− 1

r∂ϕBr)
= iωµ0ε0(Er~er + Eϕ~eϕ + Ez~ez),

∇ ·E = 1
r∂r(rEr) + 1

r∂ϕEϕ + (∂z + d−1∂y)Ez = 0,
∇ ·B = 1

r∂r(rBr) + 1
r∂ϕBϕ + (∂z + d−1∂y)Bz = 0.

For rm < r < rm + h the fast variable y lies in the waveguide between the
corrugations. This is written as the union of intervals −1/2 < y < y−(r) and y+(r) <
y < 1/2, and this union is denoted by Y (r). The width between corrugations θ(r) is
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1286 R. LIPTON, A. POLIZZI, AND L. THAKUR

given by θ(r) = 1− (y+(r)− yr(r)). The interval [−1/2, 1/2] is denoted by Y , and y
values outside the waveguide are given by the interval y−(r) < y < y+(r) or Y \ Y (r)
for rm < r < rm + h. The perfectly conducting boundary is y = y±(r). Part of the
corrugations on r = rm can be flat sections of perfect conductor, and this corresponds
to y−(rm) < y < y+(rm) or Y \ Y (rm). Similarly, at r = rm + h there are flat parts,
and this corresponds to Y (rm + h) given by the union −1/2 < y < y−(rm + h) and
y+(rm + h) < y < 1/2.

It is also convenient to write the boundary of the corrugation as a function of y.
The boundary is written as r = rm + h(y), and recalling y = x/d, we get the formula
for the normal vector to y±(r) given by

(38) ~ν =
−d−1∂yh(y)~ez + ~er

(1 + d−2(∂yh(y))2)1/2
.

For future reference, it is easily seen that

(39)

{
y′(r) = 1

∂yh(y)
,

θ′(r) = y′−(r)− y′+(r).

With these preliminaries in hand, we describe boundary conditions on the wave-
guide boundary. On y = y±(r), rm < r < rm + h, the perfect conducting boundary
conditions become

(40)




~ν ·BI = −d−1∂yh(y)BI

z+BI
r

(1+d−2(∂yh(y))2)1/2 = 0,

~ν ×EI = d−1(~er∂yhE
I
ϕ−~eϕ∂yhE

I
r )

(1+d−2(∂yh(y))2)1/2 + ~ezE
I
ϕ − ~eϕEIz = 0,

for r = rm and y on Y \ Y (rm)

(41)

{
~er ×EW = ~ezE

W
ϕ − ~eϕEWz = 0,

~er ·BW = BWr = 0,

and for r = rm + h and y on Y (rm + h)

(42)

{
~er ×EI = ~ezE

I
ϕ − ~eϕEIz = 0,

~er ·BI = BIr = 0.

We denote the operators∇ and∇× expressed in terms of slow cylindrical variables
r, ϕ, z by ∇x and ∇x×. Applying (37), for E and B, denoting EW ,BW and EI ,BI ,
we get the system

(43)





∇×E = ∇x ×E + d−1(−~er∂yEϕ + ~eϕ∂yEr) = −iωB,
∇×B = ∇x ×B + d−1(−~er∂yBϕ + ~eϕ∂yBr) = iωµ0ε0E,
∇ ·E = ∇x ·E + d−1∂yEz = 0,
∇ ·B = ∇x ·B + d−1∂yBz = 0.

In the next section we substitute the two-scale expansion into (5), (6), (7), and (40)–
(43) and equate like powers of d to obtain a system of equations for determining the
leading order theory.
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A.2. Asymptotic theory. Substitution of expansions (8) into equations (40),
(42), and (43) gives (for E = EW or E = EI and B = BW or B = BI)

∇x ×Ej−1 − ~er∂yEjϕ + ~eϕ∂yE
j
r = −iωBj−1,(44a)

∇x ×Bj−1 − ~er∂yBjϕ + ~eϕ∂yB
j
r = iωµ0ε0Ej−1,(44b)

∇x ·Ej−1 + ∂yE
j
z = 0,(44c)

∇x ·Bj−1 + ∂yB
j
z = 0,(44d)

and on y = y±(r),

(45)

{
−~eϕEI(j−1)

z + ~ezE
I(j−1)
ϕ + ∂yh(−~eϕEIjr + ~erE

Ij
ϕ ) = 0,

−∂yhBIjz +B
I(j−1)
r = 0,

and, at r = rm + h and y on Y (rm + h),

(46) EIjϕ = 0, EIjz = 0, BIjr = 0.

At r = rm and for j = 0, applying (6) and (7) gives

(47)





−(EW0
ϕ − EI0ϕ )~ez + (EW0

z − EI0z )~eϕ = 0,
−〈BW0

ϕ −BI0ϕ 〉~ez + 〈BW0
z −BI0z 〉~eϕ = Jz~ez + Jϕ~eϕ,

〈ε0EW0
r − ε0EI0r 〉 = ρ,

(BW0
r −BI0r ) = 0,

and for j > 0,

(48)





−(EWj
ϕ − EIjϕ )~ez + (EWj

z − EIjz )~eϕ = 0,
−〈BWj

ϕ −BIjϕ 〉~ez + 〈BWj
z −BIjz 〉~eϕ = 0,

〈ε0EWj
r − ε0EIjr 〉 = 0,

(BWj
r −BIjr ) = 0,

and from (5) and (41) for r = rm and y in Y \ Y (rm) and j ≥ 0,

(49)

{
~ezE

Ij
ϕ − ~eϕEIjz = 0,

BIjr = 0,

and

(50)

{
~ezE

Wj
ϕ − ~eϕEWj

z = 0,
BWj
r = 0.

Here we use the convention that Ej ,Bj ≡ 0 for j < 0.

A.3. j = 0 theory. The zero-order theory, i.e., (44a) with j = 0 gives

(51) −~er∂yE0
ϕ + ~eϕ∂yE

0
r = 0,

which holds for E = EW0 and E = EI0, while (44b) for BW0, BI0 yields

(52) −~er∂yB0
ϕ + ~eϕ∂yB

0
r = 0.
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Equations (44c) and (44d) for both B = BW0,BI0 and E = EW0,EI0 yield

(53) ∂yE
0
z = 0, ∂yB

0
z = 0.

On the boundary, y±(r), rm < r < rm + h, we have

(54) −~eϕEI0r + ~erE
I0
ϕ = 0, −BI0z = 0,

so for y in Y and 0 < r < rm and for y in Y (rm) and r = rm,

(55)
EW0
r = EW0

r (z, r, ϕ), EW0
z = EW0

z (z, r, ϕ), EW0
ϕ = EW0

ϕ (z, r, ϕ),

BW0
r = BW0

r (z, r, ϕ), BW0
z = BW0

z (r, z, ϕ), BW0
ϕ = BW0

ϕ (r, z, ϕ),

and for y in Y (r) and rm < r ≤ rm + h,

(56)
EI0r = EI0r (z, r, ϕ), EI0z = EI0z (z, r, ϕ), EI0ϕ = EI0ϕ (z, r, ϕ),

BI0r = BI0r (z, r, ϕ), BI0z = BI0z (r, z, ϕ), BI0ϕ = BI0ϕ (r, z, ϕ).

Applying the boundary condition (54) shows that for rm < r ≤ rm+h and y in Y (r),

(57) EI0r (z, r, ϕ) = 0, EI0ϕ (z, r, ϕ) = 0, BI0z (z, r, ϕ) = 0.

So, in the impedance layer rm < r < rm + h, y in Y (r), we have

(58)

{
EI0 = ~ezE

I0
z (z, r, ϕ),

BI0 = ~eϕB
I0
ϕ (z, r, ϕ) + ~erB

I0
r (z, r, ϕ),

with (from the boundary condition at r = rm + h)

(59)

{
EI0z (z, rm + h, ϕ) = 0,
BI0r (z, rm + h, ϕ) = 0.

This establishes (10) and (12). The interface conditions at r = rm given by (11) now
follow from a straightforward calculation using (5), (47), (49), (50), (55), (56), and
(57). In the following section we recover the differential equations satisfied by the
leading order theory.

A.4. j = 1 theory. In this final section we recover the differential equations
(9), (13), (16), and (17) satisfied by EW0, BW0, EI0, and BI0. Starting with (44a)
in both the interior waveguide and in the impedance layer, we have

(60) ∇x ×E0 + (−~er∂yE1
ϕ + ~eϕ∂yE

1
r ) = −iωB0.

For 0 < r < rm we integrate (60) in the y variable over Y and note that EW1 is
periodic in y while EW0, BW0 are independent of y to recover the equation

(61) ∇x ×EW0 = −iωBW0, 0 < r < rm.

For rm < r < rm+h, in the impedance layer, we integrate (60) over −1/2 < y < y−(r)
and over y+(r) < y < 1/2:

(62)
∫ y−(r)

−1/2
∇x ×EW0 dy +

(
−~er

∫ y−(r)

−1/2
∂yE

W1
ϕ dy

+~eϕ
∫ y−(r)

−1/2
∂yE

W1
r dy

)
= −iω

∫ y−(r)

−1/2
BW0 dy,
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(63)
∫ 1/2

y+(r)
∇x ×EW0 dy +

(
−~er

∫ 1/2

y+(r)
∂yE

W1
ϕ dy

+~eϕ
∫ 1/2

y+(r)
∂yE

W1
r dy

)
= −iω

∫ 1/2

y+(r)
BW0 dy.

We add (62) and (63), noting that EW0 and BW0 are independent of y, and apply

(64) θ(r) =
∫ y−(r)

−1/2
dy +

∫ 1/2

y+(r)
dy

to get

θ(r)∇x ×E0 +
∫ 1/2

y+(r)
(−~er∂yE1

ϕ + ~eϕ∂yE
1
r ) dy

+
∫ y−(r)

−1/2
(−~er∂yE1

ϕ + ~eϕ∂yE
1
r ) dy = −iωθ(r)B0.

Since EI1 is Y periodic, we get

(65) ∇x ×EI0 + θ−1(r)(−~er(E1
ϕ(y−(r))− E1

ϕ(y+(r)))

+ ~eϕ(E1
r (y−(r))− E1

r (y+(r)))) = −iωBI0.

From the boundary condition (45), for rm < r < rm + h, we deduce the scalar
equations

EI0r (y±, z, r, ϕ) = − 1
∂yh(y±)

EI0z (z, r, ϕ),(66)

EI1ϕ (y±, z, r, ϕ) = 0,(67)

and from earlier work, we have

EI0ϕ (z, r, ϕ) = 0, rm < r < rm + h.

Now, applying (39) and collecting results gives

(68) ~eϕ(−∂rEI0z − θ−1(r)∂rθ(r)EI0z ) + ~er

(
1
r
∂ϕE

I0
z

)
= −iω(~erBI0r + ~eϕB

I0
ϕ )

for rm < r < rm + h. Taking the dot product of (68) with unit vector ~er in the
impedance layer yields

(69)
1
r
∂ϕE

I0
z = −iωBI0r , rm < r < rm + h,

and the dot product of (68) with unit vector ~eϕ and elementary manipulation yields

(70) ∂r(θ(r)EI0z ) = θ(r)iωBI0ϕ , rm < r < rm + h.

Apply (44b) with j = 1 for 0 < r < rm to write

∇x ×BW0 − ~er∂yBW1
ϕ + ~eϕ∂yB

W1
r = iωµ0ε0EW0.
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As before, integrate both sides of this equation with respect to y over Y , noting that
BW1
ϕ and BW1

r are periodic with respect to y and BW0 and EW0 are y independent
to see that

(71) ∇x ×BW0 = iωµ0ε0EW0, 0 < r < rm.

Inside the impedance layer rm < r < rm + h, the j = 1 theory for (44b) gives

∇x ×BI0 − ~er∂yBI1ϕ + ~eϕ∂yB
I1
r = iωµ0ε0EI0.

Taking the dot product with ~ez yields

(72)
1
r
∂r(rBI0ϕ )− 1

r
∂ϕB

I0
r = iωµ0ε0E

I0
z .

In the inner waveguide 0 < r < rm the j = 1 theory for (44c) gives

∇x ·EW0 + ∂yE
W1
z = 0.

Again, integrating this equation over y ∈ Y and using the y-periodicity of EW1
z gives

us

(73) ∇x ·EW0 = 0, 0 < r < rm.

Similarly, we can apply (44d) to find

(74) ∇x ·BW0 = 0, 0 < r < rm.

Now applying the j = 1 theory for (44d) inside the impedance layer rm < r <
rm + h we have

∇x ·BI0 + ∂yB
I1
z = 0.

Here, BI0 = ~erB
I0
r (z, r, ϕ) + ~eϕB

I0
ϕ (z, r, ϕ), and, in local coordinates, we get

1
r
∂r(rBI0r ) +

1
r
∂ϕB

I0
ϕ + ∂yB

I1
z = 0.

At the boundaries y±(r), the j = 1 theory for (45) gives

(75) ∂yh(y±)BI1z (y±(r), z, r, ϕ) = BI0r (z, r, ϕ),

and integrating (75) over −1/2 < y < y−(r) and y+(r) < y < 1/2 (and adding the
results) gives

(76) θ(r)
(

1
r
∂r(rBI0r ) +

1
r
∂ϕB

I0
ϕ

)
+Bz(y−(r), z, r, ϕ)−BI1z (−1/2, z, r, ϕ)

+BI1z (1/2, z, r, ϕ)−BI1z (y+(r), z, r, ϕ) = 0.

Applying (39) and (75) gives the string of equalities

BI1z (y−(r), z, r, ϕ)−BI1z (y+(r), z, r, ϕ) =
(

1
∂yh(y−)

− 1
∂yh(y+)

)
BI0r (z, r, ϕ)

= (∂ry−(r)− ∂ry+(r))BI0r (z, r, ϕ)

= ∂rθ(r)BI0r (z, r, ϕ),
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and we arrive at the equation

(77) θ(r)
(

1
r
∂r(rBI0r ) +

1
r
∂ϕB

I0
ϕ

)
+ ∂rθ(r)BI0r (z, r, ϕ) = 0.

In summary, we have recovered (9) from (61), (71), (73), and (74). Equations (16)
and (17) follow from (69) and (70). We then substitute (16) and (17) into (77) to see
that (77) is satisfied identically. Finally, we recover (13) upon substituting (16) and
(17) into (72).
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