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We consider the totality of orthotropic composites made from two isotropic lin-
early elastic components in fixed proportion. The elastic properties of orthotropic
composites are characterized by nine independent moduli. We provide bounds for
six of these, namely the three Youngs moduli and three in-plane shear moduli.
The bounds are optimal and correlate the six moduli.

1. Introduction

Recent investigations have focused on the characterization of composites with
~ prescribed symmetry. Work in this area provide bounds on the moduli of elastic

tensors associated with composites of a given symmetry class (see Avellaneda
1987; Francfort & Murat 1986; Hashin & Shtrikman 1962; Hashin & Rosen 1964;
Hill 1964; James et al. 1990; Lipton 1992; Lipton & Northrup 1993; Milton 1985;
Norris 1985). In this paper we derive new optimal bounds on six of the nine
effective elastic moduli for two-phase orthotropic elastic composites.

We consider orthotropic composites made from two well ordered isotropic elas-
- tic components in specified volume fractions. The component elasticities are spec-
ified by the tensors C;, 7 = 1,2, given by

with I being the identity on 3 x 3 matrices and I the 3 x 3 identity matrix. We
adopt the convention p; < pg, K1 < k2. The volume fraction of each material
in the composite is given by #; for material-1 and 6, for material-2 such that
1 = 6; +0,. The effective compliance tensor C*~! of an orthotropic composite has
the following matrix representation relative to the standard engineering basis of
3 x 3 strains (cf. Thurston 1984) given by

[ 1/Ef —I/lg/E; "‘V13/E§ 0 0 0 7
""'1/21/E1e 1/E§' '-1/23/E§ 0 0 0 .
—V31/Ef —I/32/E§ 1/E3 0 0 0 (1 2)
0 0 0 gt o 0 :
0 0 0 0 el
[ 0 0 0 0 0 Gl |
t This paper was producedl from the author’s disk by using the TeX typesetting system.
Proc. R. Soc. Lond. A (1894) 443, 399-410 © 1994 The Royal Society

Printed in Great Britain 399
16 Vol. 444, A



400 R. Lipton

Here EY, B3, E5 are the effective Youngs moduli, G5, G353, G55 are the effective
shear moduli, and ‘v;;* are the effective Poisson ratios, with (v1,/ES) = (v21/EY),
(v1s/E5) = (v /E3), and (vas/Ef) = (v32/E).

In the work of Lipton & Northrup (1993), arithmetic and harmonic mean
bounds on the effective shear moduli G%,, G¢,, G§; were established, as well
as optimal upper and lower bounds on sums of energies associated with shear
strains. In this paper we shall expand on these results and obtain optimal bounds
correlating the six ‘diagonal’ moduli E%, ES, E5, GS,, G¢, and G5;3. In addition
we display a method for calculating optimal upper and lower bounds on sums of
energies associated with an arbitrary ensemble of stress fields. In physical terms
our results provide optimal microstructures that represent the stiffest or most
compliant response.

Our method makes exclusive use of the Hashin—Shtrikman variational prin-
ciples (see Hashin & Shtrikman 1962). It is known in many contexts that the
associated upper and lower bounds are saturated by finite rank stiff and com-
pliant laminar composites (see Avellaneda 1987; Gibianskii & Cherkaev 1984;
Kohn & Lipton 1988; Milton & Kohn 1988). The extremal properties of lami-
nates are elucidated in the comparison principle given by Avellaneda (1987). In
this context the principle states that: given the effective compliance C*~! of an
orthotropic composite made from well-ordered components C1, C; in proportions
61, 6, respectively, then there exists a finite rank orthotropic soft-laminate with

compliance C™* and a finite rank orthotropic stiff laminate with compliance c
made from the same components and volume fractions such that for any set of

3 x 3 constant stress tensors gy, i = 1,...,n.
n n n
Zﬁ—lai 10; < ZC’e_lai 10 < Zg_lai D Oy (1.3)
=1 =1 =1

This principle suggests that explicit bounds on the effective elastic moduli
for orthotropic composites can be found if one has a closed form description of

the set of effective orthotropic compliance tensors C™* and C « Indeed, such a
description is presented in § 3. This description is applied in § 4 to provide optimal
bounds on the diagonal moduli for orthotropic composites.

2. Orthotropic finite rank laminates

A finite rank laminate is defined iteratively. To illustrate, we show how to
construct a rank 2 laminate. One starts with a core of material 2 and layers it
with a coating of material 1 in layers of thickness 2 perpendicular to a specified
direction n;. One then takes this finely layered material and again layers it with
a coating of material 1 in layers of thickness ¢ perpendicular to a second direction
ng. The & — 0 limit of this microgeometry is called a rank 2 laminate. Conversely
one could start with a core of material 1 and layer it with a coating of material
2 and so on. Laminates of higher rank are constructed in the same way. Explicit
formulas have been developed for tensors describing the effective properties of
finite rank laminates (see Francfort & Murat 1986; Lurie & Cherkaev 1984; Tartar
1985). For fixed volume fractions §; and 6, of materials 1 and 2 the effective
elasticity tensor of a rank j strong laminate C with material 1 as core and material
2 as layers with layer direction given by the unit vectors n!, n2,...,n? is given
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NS ~ x
01 (Cz - C) = (C2 - Cl) ! - 92 T2 . (21)
effective elasticity of a rank j compliant laminate C with material 2 as
1d material 1 as layers with layering directions n!, n?,...,n/ is given by
0, (C—C) ' =(Co—C)  +0, T, (2.2)
j A .
=S ol ), s=1,2 (2.3)

ij pi=1 (2.4)

e tensor I**(v) is given by

M = g (M s oo+ - [(Mo)u+ o(Mo) = (O s ov)on]  (25)
symmetric 3 x 3 matrices M and s = 1,2. Here all quantities vv, (Mv)v,
are the usual dyadic products between vectors. The quantities 6;p; and,
)pearing in (2.1)—(2.3) are the relative proportions of layer materials intro-
in the ¢th lamination. Formulas (2.1) and (2.2) were developed by Francfort
at (1986).

llows from equations (2.1) and (2.2) that the effective tensors of finite rank
tes are orthotropic if and only if the tensors

T, s=1,2

hotropic and have matrices of the form given by

t; t, t3 0 0 0
t, 3 t3 0 0 0
He th B 0 0 0
0 0 0 g 0 0 (2.6)
0 0 0 0 g¢ o0
0o 0 0 0 0 g

matrix representa,tlon of the orthotropic group (denoted by O) has four
ts QT, T = 1,2, 3, 4. The identity is denoted by Q* and the remaining three
n matrices are associated with a rotation of 7 radians around the ¢ axis,
ion of 7 radians around the j axis and a rotation of = radians around the
respectively. Group averaging formula (2.3) over the orthotropic group we
explicit formulas for the entries in the matrix (2.6) for 7°. Indeed these
is are given by

Zp, s () forn<m=123, (2.1)

Soc. Lond. A (1994)
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J
= Z pigi(n), k=123, (2.8)

where the weights p; Y. p; = 1, and unit vectors n’ are associated with layer
directions and relative layer thicknesses.
Here t¢,,(v) and g;(v) are orthotropic polynomials of degree four on the unit

sphere given by

t31(v) = (7 — 2B,)vi + 2841, ‘

t5(v) = (s — 28:)v3 + 26,03,

t33(v) = (s — 285)v3 + 28,93,

t55(0) = (7 — 2Bo)vind,

t33(v) = (7 — 26s)vivs, _ (2.9)
)

t:szs(v = (75 253)”2’03)
gi1(v) = 2(vs — 2,6;)11?’0% + ﬂS(U% + 'vg)v
g5(v) = 2(7s — 2B:)vivs + Ba(vf + v3),
g3(v) = 2(7s — 20B)v3v5 + Bs(v3 + v3), )
where [, and 7y, are the characteristic combinations of constants given by
1 3
Bs = 2—#3, Ys = —3ks+4/-l's.

(2.10)

3. The set of effective tensors for orthotropic laminar composites

To obtain a closed form description of the set of effective tensors of orthotropic
laminates we determine the set of all parameters t2,,, and g given by (2.7) and
(2.8) as one varies over all layer directions n* and parameters p;.

Noting that Y} 7_, p; = 1 it follows from (2.7)-(2.9) that the parameters ¢7,,
and g can be written in terms of moments of a probability measure supported
on the unit sphere. To facilitate the subsequent analysis we use the identity
v? +v2 4+ v2 = 1 to rewrite the functions #$, (v), t5,(v), t5(v), gi (v), g5(v), gi(v) as
homogeneous polynomials of degree 4 on the unit sphere. We obtain the formulas

th(v) = (s — 255)”1 + 28, (vf + Ul"’z + viv3), )
t3,(v) = (¥s — 2/83)'”2 + zﬂs(vl 'Uz + Uz + Uz"’a)
t33(v) = (% 255)")3 + 2,33(1)1113 2”3 + 'Us) ! ' (3.1)

91(”) = 2(7, — 206:)vivs + Bs(vi + 2"’1'”2 + vivg + '02 +v303),

95(v) = 2(vs — 285 )vivi + Bs(vf + Ul'Uz + 2v}vd + 2'”3 v3),s

95(v) = 2(7s — 2B5)v30; + Bs(viv] + v; + 205v3 + vivi +03). )

For any probability measure p defined on the unit sphere we introduce the
moments

m1:/vfdu, mzz/vgdu,, m3=/v§du,

(3.2)
My = /vf'ug dy, mz= /’ulv3 dp, me= /v§v§ du,

Proc. R. Soc. Lond. A (1994)
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integration is over the unit sphere. Noting that the sums in (2.7) and (2.8)
sond to discrete measures on the unit sphere and since the set of discrete
res is dense we see that the parameters t ., and g; may be given by
th = (s — 28,)my + 2,35(7721 + my+ ms), )
ty = (Vs — 28:)ma + 2B, (mq + my + me),
3, = (75 — 28s)m3 +2Bs(ms + me + ms3),
tiZ = (75 - 2ﬁs)m4,
t35 = (7 — 205)ms, b (3.3)
t3s = (7s — 26.)ms,
g5 = 2(7vs — 285)my + Bs(my + 2my + mg + my + M),
g5 = 2(7s — 26,)ms + Bs(my + my + 2ms + mg + m3),
g5 = 2(vs — 265)me + Bs(my + my + 2mg +ms + m3).
sbserve that a closed from description for the set of effective elastic tensors

s from a closed form characterization of the moments m;, ¢ = 1 to 6. This
stion is given in the following theorem.

worem 3.1. The set of moments given by (3.2), associated with all proba-
measures on the unit sphere are precisely all points

m= (ml,mz,ms,mmms,ms)
closed-convex set R C R® described by
m; =b;/r i=12,...,6, (3.4)

7‘=b1+b2+b3+2(b4+b5+b6)
,i=1,...,6 lie in the set given by

bl. > Oa b4 2 07 b5 2 07 b6 > 01 (35)
b by '
Y 55)

by by bs
by by bs |20 (3.7)
bs b b3

if. We denote by S the surface described by the system

{'U‘11’ 'Ug, 'Ug, 'Uf'ug’ 'Uf""g, ’Ugvg}
ints v = (v1,v3,v3) on the unit sphere. This surface lies on the plane
bt vf o+ 2(vi0R + viv2 + viv2) = 1, and the closed conic hull K(S) of the
+ is given by all points (b, b, . ..,bs) defined by

bl=/vfda, bo =/v§da, b3=/vgd0,
by = /vf'ug do, bs= /vf'ug do, bs= /v§v§ do,

o is any positive measure on the unit sphere.

(3.8)
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In what follows we show that K(S) is precisely the set of points that satisfy
(3.5)(3.7). To see this we note that the dual cone K7 (S) is identified with the
set of all non-negative, homogeneous, polynomials of degree 4, invariant under

the orthotropic group, i.e. of the type
P(v) = aw] + Bv; + 8vg +yviv; + pvivs + Evges, (3.9)

Moreover, it is immediate that a point (by,...,bs) lies in K(S) if and only if for
every non-negative polynomial of the type (3.9); the associated form

aby + Bby + bbs + by + pbs + Ebg (3.10)

is non-negative.

Thus as in the theory of the trigonometric and power moment problems (cf.
Krein & Nudel’'man 1977) a closed form description of K(S) follows from an
explicit representation of the dual cone, i.e. the explicit representation of all
homogeneous non-negative orthotropic polynomials of degree four on the unit
sphere. Fortunately such a representation follows from a theorem of Hilbert (1888)
which states that: every positive definite homogeneous polynomial ‘F” of degree
4 on R* admits the representation

3
F(z)= Z(M’x -z)?, (3.11)
g=1

where M*, i = 1, 2,3 are symmetric 3 x 3 matrices and z is in R°. From homogene-
ity it is evident that every positive definite polynomial on the unit sphere also
has the representation (3.11). Upon group averaging (3.11) over the orthotropic
group (i.e. computing izfyﬂ F(Q"v),v on the unit sphere) it follows that all
non-negative orthotropic homogeneous polynomials of degree 4 on the unit sphere

admit the representation

3
P() =Y _{(miyv] +mbau; +migu3)® +4((mis) *vivg + (mis)*vivg + (m3s) v3v3) .
i=1
(3.12)

Here mi, are the elements of the matrices M. Tt now follows from (3.12), that .
points (by,...,bs) lie in K(S) if and only if the form

3
> Bm'-m’ (3.13)

=1
: . i i = (i i i b eni i ) 5
is non-negative for all vectors m'. Here m' = (m?;, mb,, mis, mbs, mis, mi,), i =
1,2,3 and the matrix B is given by

1 by by 0 0 O
b, b, b O 0 O
bs b by 0 O O
0 0 0 4 0 0 (3.14)
O 0 0 0 4b O
0 0 0 0 0 4b |

We observe that inequalities (3.5)—(3.7) follow immediately from the positive.
semidefiniteness of the matrix B.

Proc. R. Soc. Lond. A (1994)
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obtain the representation for the moments m;, i = 1,...,6, we apply the
ity (vZ +v3 + v2)% = 1 to obtain the identity

rEbl+bg+b3+2(b4+b5+bs)=/da (3.15)

3.4) follows.

3 evident from Theorem 3.1 that the set of moments R consists of all points
on the intersection of the plane b; + b, + b3 + 2(by + bs + bg) = 1 and the
x set described by (3.5)—(3.7).

see that all moments are attained by finite rank orthotropic laminates we
rom Caratheodory’s theorem that the convex hull of the surface S can be
ssed as

k ‘ k ‘ k .
my =3 pi(nd)t, ma=>_ pi(nd)?, ms=_ p;(nd)*
j=1 =1 i=1

Y

) ) ) b (3.16)
Z (n])*(n)?, ms = Z:Pj(”{)z(né)z, m6=Zp,-(n§)2(n§)2,

J
'k < 6and E;f:l p; = 1. Attainability follows by observing that substitution
ation (3.16) into equation (3.3) corresponds exactly to equations (2.7)-(2.9)
n the description of the effective tensor of finite rank laminates.

4. Optimal bounds for diagonal moduli

start by providing explicit closed form formulas for the effective Young’s
li and in-plane shear moduli of finite rank laminates. Algebraic manipulation
ations (2.1), (2.2) and (2.6) shows that the effective Young’s moduli for stiff
rank orthotropic composites are given by

1= o2+ O1{c AT, + A3 (A, + A + 245,) + 2c2da (4], + AL}, (4)
= [e2 + 0:{G A%, + GG (AL, + A5 + 24%) + 2025 (43, + A3} 7Y, (42)
3= oo+ 01{cf A5, + dj (AT, + A 2 +24%) + 2eady (AR + A5)N7Y (43)
the constants ¢; and d, are given by

2 =35(3m +pz'), do=3(3k3" —ju5")

2,42, A2, A2, A2, A2, are rational functions of the moments described
sorem 3.1. (Explicit formulas for A are given in the Appendix.)

» effective in-plane shear moduli for orthotropic finite rank stiff laminates
ven by

[ ]

>

o IR |

Cas = 2p2 — 6,2Au]1 — 6:,2Apg2] 7Y, (4.4)
@13 =2y — 912A#[1 - 922Aug§]—1, (4-5)
@.12 :l 2/_],2 — 912AM[1 ot 022A,U'g]2_]—1, (4'6)

Ap = (g — p1) and g2, g5 and g2 are functions of the moments given by

. Soc. Lond. A (1994)
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(3.3). Effective Youngs moduli for soft orthotroﬁic laminates are given by

E=la~ 92{05‘4}1 + df(“ﬁz + fi%a + 22;3) +2c1d; (fi%z + *‘1%3)}]‘17 (4.7)
By = [c1 — 0{c] A5 + B(A]; + Ay + 241;) + 20101 (AL, + AL)] 7, (4.8)
Ey = e - 92{5314%3 + df(Ah + Aéz + 2A%2) +2¢1dy (A§3 + /1;3)]—17 (4.9)
where ¢; = $(3s7" + p1"); di = 3(3#7" — 3u7") and Al are rational functions
given in the Appendix. -
The effective in-plane shear moduli for soft laminates are

Gos = 2u1 + 622Ap[1 + 6,2Apug3]) ™, (4.10)
Gis = 2u1 + 022Ap[1 +6,2Apg3] 7, (4.11)
Gio = 2u1 + 0:2Ap[1 + 6,2Apg; ]~ (4.12)
Here gi, g3, g3 are functions of the moments given by (3.3).
It is seen from (3.4) that the moments m;, i = 1,...,6 lie in the plane
m, +m2+m3+2(m4+m5+m6) =1 (413)

and it follows that the closed convex set R delivered by Theorem 3.1 lies in a
five-dimensional affine space. Thus the sets of moduli given by

S = (E1, B, Es, Ga3, G, Gua), (4.14)
ﬁ = (ElvEZa_E_S) Q237Q137Q12) (415)

sweep out surfaces in the six-dimensional space of effective elastic moduli
(EY, B3, B, G2, Gis, G1a)

as the moments m;, i = 1,2,...,6 vary over the set R. From the comparison
principle we see that these surfaces possess extremal properties in the space of
effective moduli. Indeed it follows that

Theorem 4.1. For any orthotropic composite made from materials C;, C,
in the proportions 6y, 0,, respectively, then there exists finite rank stiff, and
soft orthotropic composites made of the same components and proportions with
effective moduli in the sets S and S such that

E,<EKE, i=123, (4.16)
QZS < G;S < Z:'7231 Q13 < GiS < _G137 Q12 < G‘le2 < _@12' (417)

It is evident that the extremal surfaces S and S given in parametric form by
(4.1)~(4.6) and (4.7)-(4.12), deliver bounds that correlate extremal values of the
six diagonal moduli.

Bounds on each modulus independent of the other moduli are obtained by
finding extremal values for the functions (4.1)-(4.12) as m ranges over R. Indeed
we let

E =minF,, E;L = max—Ei, 1=1,2,3, (4.18)
meR mER
Gy = gleiggzm G = gé%g_13, Gp'= Imneil}%_@m, (4-19)
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G3 = Iélgﬁ—gzs, G = Iélgg@ls, Gi, = %131){(@12. (4.20)
imple calculation shows
Gos =Gz = G = (01(2p) 7 + 62(2p,) ™)L = A, (4.21)
G = G = Gy = 61201 + 0,24, = u. (4.22)

4.21) and (4.22) are the harmonic mean and arithmetic mean of the shear
li respectively.
then have

eorem 4.2. Given an orthotropic composite made from Ci, C, in propor-
01, 6, then upper and lower bounds on each modulus is given by

E7 <E;<Ef, fori=1,2,3, (4.23)
h <GS, <y, (4.24)
h < G%, < u, (4.25)
h <G < u. (4.26)

licit algebraic forms for E;, and E; require tedious computation, however,
ren component moduli and volume fractions the bounds E;”, E;* can be com-
numerically. The bounds (4.24)-(4.26) were found origionally in (Lipton &
rup 1993). These bounds are saturated by rank 1 orthotropic laminates. In-
:he upper bound in (4.24) is attained for a rank 1 stiff orthotropic laminate
ayer normal parallel to (0,0, 1). The lower bound in (4.24) is saturated by a
| soft laminate with layer normal parallel to (1,0,0), or (0,1,0). Physically
ing, we observe that among all orthotropic composites for a given in-plane
the rank 1 stiff laminate with layer normal perpendicular to the shear plane
le strongest resistance to shear. While rank 1 soft laminates with layer nor-
paralle] to displacement fields associated with in-plane shearing have the
t response.

complete the discussion we provide formulas for the remaining off diagonal
s of the effective compliance tensors. For stiff laminates these are given by

“512/E2 =dy+6 [cgfifz + dg (Afz + Ais + 1433 + /133)

+dacy (A7, + AL, + A3 + A%,)], (4.27)

*713/E3 =d;+0, [03/133 + dg(fifz + Afa + 4‘132 -+ *‘133)
Adaca (A2 + A%, + A2, + A2)], (4.28)

~Uns/Es = dy + 0, [c3 A2 + d3 (A2, + A2, + A2, + AZ,)
tdpey (A2, + A2, 4+ A2, 4 A2,)], (4.29)

ft laminates the entries are:
—v13/ By = dy — 03[ A3, + d3(AL, + ALy + AL + AL)

+die (A + A}, + A + AL)), (4.30)
—t1s/ By = dy ~ 0[c] A1 + df(A%z + Ais + Agp + Aés)
“I‘dlCl(Ail + A%z -+ Aés + Aés)]a (4-31)
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408 R. Lipton
~a3/Es = di — 0;[c} Aps + dz(fiil N Az + A + Afy)
+d1€1 (A12 + A 3)] (4 32)

Here the elements A ;» 8 = 1,2 are rational functions of the moments m;, i =
1,...,6 and are glven in the Appendlx

The compliance matrices for orthotropic finite rank laminates are of the form
(1.2) and their entries are given through the equations (4.1)~(4.6) and (4. 27)-
(4.29) for stiff laminates and by (4.7)-(4. 12) and (4. 30) (4.32) for soft laminates.

We denote the associated matrices by C (m) and C (m)
For a given ensemble of constant stresses o', 0%,...,0™ the bounds on the

effective comphance energy 3. C o' : ¢t are glven by

mmZC (m)o* : o ZC’e_lai: meRZC (m)o* : o, (4.33)

R
me i=1

For fixed values of component moduli and volume fraction these bounds can be
computed numerically.

I thank Professor Luc Tartar for pointing out the representation theorem of D. Hilbert. This
research was partly supported by NSF grant DMS-9205158.

Appendix A.

We provide here, the formulas for the functions A” appearing in equations
(4.1)~(4.12) and (4.27)-(4.32). Introducing the parameters Ak = Ky — K1, Ap =
2 — p1 and

N° = 5((AR)77 +3(Ap)7") +0a3 (G +17Y), s =1,2,
=5((Ak)™ = 3/2(Au) ") + 33671 = LuTh), s=1,2,
and the functions 5,, t5,, 135, t3,, t33, ti3, s = 1,2, given by (3.3) we define the
determinant
Ay = (B1ty; + N)[(utz, + N') (6183 + N') = (61835 + L*)?]
—(Outyy + L)[(Grt1, + L) (6athy + N*) — (6135 + L) (Buth, + LY)]
+(01t13 + Ll)[(eltiz + Ll)(gltés + Ll) - (Qltis + Ll)(gltéz + Nl)]>
and the functions A, are defined by
AL =AL/A;, 1<i<5<38
where
A, = (6285 + N")(6ut3s + N') — (Brts + L')7),
Aty = —[(1t, + L') (Batzs + N*) — 6tz + L) (Brt]; + L)),
Ag = [(61t1, + L) (Batys + L) — (Butyy + N')(6t55 + L),
Ay = —[(61t1; + N")(Butys + L) — (Buty, + L) (B:81; + L)),
Azy = [(6ut], + NY) (0183, + N*) — (6121, + L)),
Agy = [(61t1, + N*) (6113 + NY) — (i, + L)),
Proc. R. Soc. Lond. A (1994)
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Optimal bounds on effective elastic tensors 409
oducing the determinant
= (N? = 0583,)[(N? — 65t5,) (N? — 6t3,) — (L* — 6,t%,)?%]
~(L* = 0:t3,)[(L* — 6t3,) (N — 0t35) — (L2 — 0,t3) (L7 ~ 0,¢2,)]
+(L? — 013 [(L* — 6583,)(L? — 6atdy) — (N? — 0t2,)(L? — 6,82%,)),

nctions A% are defined by

AL =A% /A, 1<i<j<s3,

ADy = [(N? = 0515 (N? — 05t3;) — (L2 — 6,13,)7],

Aly = ~[(L? = 0313,) (N? — 0,83,) ~ (L* — 8,8%,)(L? — O,t,)],
Ay = [(L? = 653,) (L — Oat2) — (L2 — 0,¢2;)(N? — b2t3)],
Ajs = —[(N? = 6:83,) (L7 — 05t25) — (L2 — 6,8%,) (L% — 6,¢%,))],
Agz = [(N2 - ‘92t§1)(N2 - 92t§3) - (L2 - 92t¥3)2]’

Az = [(N? = 6583,) (N? — Oaty,) — (L2 — 6,82,)7).

]
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