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Abstract

A methodology is given for the construction of configurations of multi-phase nonlinear dielectric materials with

electric fields that have the smallest Lp norm among all configurations subject to a resource constraint. Examples are

given for configurations of two isotropic linear and nonlinear dielectrics with electric fields minimizing the L2 norm and

L4 norm, respectively.
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1. Introduction

Consider a bounded simply connected domain
O in the plane and prescribe an electric potential
U0 on the boundary @O: The domain contains N

nonlinear dielectric materials and the DC electric
potential inside the composite is denoted by f with
f ¼ U0 on the boundary. In the ith material the
energy density is given by ðgi=pÞjrfjp: Here gi is
the nonlinear susceptibility of the ith material and
p is any positive number greater than unity. For
p ¼ 2 the material is a linear dielectric. A config-
uration of these materials in O is described by the
piecewise constant susceptibility given by gðxÞ ¼PN

i¼1 wiðxÞgi; where the indicator function wiðxÞ
equals one in the ith phase and zero outside. The
potential is a solution of

divðgðxÞjrfjp�2rfÞ ¼ 0: ð1Þ
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By a solution of (1) we mean that f is continuous
on O,@O; p-harmonic inside each phase, i.e.,
divðjrfjp�2rfÞ ¼ 0 in each phase, and on inter-
faces between materials i and j

n � gi jrfjp�2rfi ¼ n � gj jrfjp�2rfj : ð2Þ

Here n is the unit normal pointing into phase j and
the subscripts indicate the side of the interface that
a quantity is evaluated on. The electric field inside
the composite is given by E ¼ �rf:

We address the problem of finding a configura-
tion of N nonlinear materials that minimizes the
Lp norm of the electric field

R
O jEjp dx: Here a

minimizing configuration is sought over the class
of configurations satisfying the resource con-
straints

R
O wi dx ¼ bi; i ¼ 1;y;N; with

PN
i¼1 bi ¼

areaðOÞ: We consider the class of problems for
which p can take any value in 1opoN:

A lower bound on the p norm of the electric field
is given by Dirichlet’s principle which states that
among all potentials c ¼ U0 on @O such thatR
O jcjp dxoN and

R
O jrcjp dxoN the p norm of
d.
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the electric field E ¼ �rc is bounded below by
Z
O
jEuj

p dxp
Z
O
jEjp dx; ð3Þ
where Eu ¼ �ru with u ¼ U0 on @O and u is a
solution of the p-Laplace equation
divðjrujp�2ruÞ ¼ 0: ð4Þ
Based upon this observation a methodology is
given for the construction of optimal configura-
tions. It is shown here that an optimal configura-
tion is made by placing each nonlinear material
inside subdomains of O with boundaries given by
the level lines of the q-harmonic function v that is
conjugate to u: Here 1=p þ 1=q ¼ 1: It is shown
that the electric field for these configurations is
precisely Eu: This is rigorously demonstrated for a
large class of boundary data. Examples are given
for p ¼ 2 and 4.

Related earlier work addresses optimal design
problems for the case p ¼ 2 in the presence of a
charge density in O: There the goal is to minimize
the L2 norm of the difference of the gradient of
state and a target electric field. The problem was
proposed in Ref. [1] and minimizing sequences of
locally layered configurations were characterized
for a Gd dense set of targets. It was shown in Ref.
[1] that for this class of targets only one scale of
oscillation would develop in minimizing sequences
of configurations. In Refs. [2] and [3] minimizing
sequences made from locally layered materials
with a single scale of oscillation were rigorously
identified for all target fields. However this result
does not give the full story as that analysis does
not rule out the appearance of several scales of
oscillation in minimizing sequences. This question
is answered in Ref. [4] (for two and three
dimensional problems) and in Ref. [5] (two
dimensional problems) where the explicit fully
relaxed problem formulation is given. They show
that there is only one scale of oscillation for
minimizing sequences of locally layered materials
for all choice of targets.
2. Lp minimizing configurations

We show how to choose a configuration of N

nonlinear dielectric materials so that u is also a
solution of

divðgðxÞjrujp�2ruÞ ¼ 0: ð5Þ

It is clear that the electric field for this type of
configuration is Eu: For this reason we call such
configurations Lp minimizing configurations.

In what follows it is supposed that the unit
tangent t and normal n vectors are defined
almost everywhere on @O and that the tangential
derivative @tU0 exists on @O: The p-harmonic
conjugate [6] to u is denoted by v and is
the q-harmonic function inside O with 1=q þ 1=p ¼
1 and @nv ¼ @tU0 on @O; where @nv is the normal
derivative of v on @O: Here v satisfies the p-
Cauchy–Riemann equations [6] vx ¼ �jrujp�2uy

and vy ¼ jrujp�2ux: It is evident that the
stream lines of u are the equipotential lines of v:
Both u and v have locally H .older continuous
gradients and the zeros of ru and rv are isolated.
See Refs. [6] and [7] for a complete discussion and
references to the literature. Let n denote the unit
normal to an equipotential line of v then it is
evident that

n � jrujp�2ru ¼ 0 ð6Þ

on equipotential lines of v:
Now we show how to construct configurations

of N isotropic materials for which u is also a
solution of (5). For pa2 we assume that there are
no critical points of u in O; i.e., rua0 in O: Then
it is known [8] that u is real analytic in O: For
p ¼ 2 we make no such assumption and note that u

is real analytic in O anyway. Thus for pa2 it
follows from the p-Cauchy–Riemann equations
that v has no critical values. For p ¼ 2 Sard’s
theorem [9] together with the Cauchy–Riemann
equations shows that the set of critical values of v

has measure zero. Let Vþ
0 and V�

0 be the
maximum and minimum values of v: Pick numbers
t1;y; tNþ1 such that t2;y; tN are not critical
values of v and t1 ¼ V�

0 ot2ot3o?otNo
tNþ1 ¼ Vþ

0 : The open sets of points in O where
tiovotiþ1 are denoted by ftiovotiþ1g: The
boundaries fv ¼ tig are smooth curves.
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Construction of Lp minimizing configurations. Let
*wi denote the indicator function of the sets
ftiovotiþ1g and put *gðxÞ ¼

PN
i¼1 *wiðxÞgi then

divð*gðxÞjrujp�2ruÞ ¼ 0:

Proof. Its clear that u is p-harmonic in each phase
and continuous across interfaces. Since material
interfaces correspond to the equipotential lines of v

it is evident that the transmission condition (2)
follows immediately from (6). &

It is noted that there is considerable leeway in
the choice of the numbers t2;y; tN so there is no
unique Lp minimizing configuration.
3. Application to optimal design

In this section the design problem of finding a
configuration of N nonlinear dielectrics that
minimizes the Lp norm of the electric fieldR
O jEjp dx is addressed. In what follows we

suppose that @tU0 exists. For boundary data U0

such that u has no critical points in O we have the
following result.

Optimal design result. Consider the q-harmonic
function v conjugate to u: One can find numbers
t2ot3o?otN such that the characteristic func-
tions *wi of the sets ftiovotiþ1g satisfy the
constraints bi ¼

R
O *wi dx and

PN
i¼1 bi ¼ areaðOÞ:

Then a configuration of nonlinear dielectric
materials that supports the electric field with
minimum Lp norm among all admissible config-
urations is constructed by placing the material
with susceptibility gi in the set ftiovotiþ1g for
i ¼ 1;y;N : Moreover the electric field for this
design is precisely the one that minimizes Diri-
chlet’s principle (3).

Proof. Introduce the distribution function lvðtÞ ¼
jfv > tgj where fv > tg is the set of points in O
where v > t and jfv > tgj is the Lebesgue measure of
fv > tg: Since there are no critical points of u in O
one sees that there are no critical points of v and so
the function lvðtÞ is continuous and strictly
decreasing on the interval ½V�

0 ;V
þ
0 �: Appealing

to the intermediate value theorem we find
t2ot3o?otN such that lvðtiÞ ¼ bi þ biþ1 þ?þ
bN for i ¼ 2;y;N: For this choice the measure of
the sets ftiovotiþ1g is lvðtiÞ � lvðtiþ1Þ ¼ bi: It is
clear that the characteristic functions *wi of the sets
ftiovotiþ1g satisfy the constraints bi ¼

R
O *wi dx:

We now show that the susceptibility *gðxÞ ¼PN
i¼1 *wiðxÞgi describes an optimal configuration of

nonlinear dielectric materials. Indeed, from the
previous section we see that *gðxÞ satisfies
divð*gðxÞjrujp�2ruÞ ¼ 0 and optimality follows
from Dirichlet’s principle. &
4. Methodology and examples

The methodology for finding the optimal con-
figuration is easily summarized. For given bound-
ary data U0 compute the q-harmonic solution v for
which @nv ¼ @tU0: Then place each nonlinear
material inside subdomains with boundaries given
by the equipotentials of v: This method is
illustrated in the following examples.

For the first example the design domain
is the rectangle 0:1oxo2; �1oyo1: The problem
is to find an arrangement of three linear dielectric
materials that minimizes the L2 norm of the
electric field for a prescribed boundary potential
U0: Here the resource constraints on each
dielectric are specified as follows: 16:15% of
the rectangle is occupied by material 1; 68:08%
is occupied by material 2 and 15:77% is
occupied by material 3: The boundary data U0

is given by the trace of the harmonic function
x2 � y2 on the boundary of the rectangle. It is clear
from the methodology that an optimal
design is obtained by placing material inside the
level lines of the function 2xy; see Fig. 1. The
optimal design is given in Fig. 2. It is important to
note that this design is optimal for any choice of
the dielectric constants provided that they are all
positive.

The second design problem is to find a config-
uration of four nonlinear dielectric materials with
susceptibilities gi; i ¼ 1;y; 4 and local energy
densities ðgi=4Þjrfj4; that minimizes the L4 norm
of the electric field for a prescribed boundary
potential U0: Here the design domain is the
rectangle 0:1oxo2; �0:8oyo0:8: The boundary
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Fig. 1. The level lines of x2 � y2 are given by the dashed curves. The solid curves are the level lines of 2xy and form the interfaces

between different dielectrics.
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Fig. 2. An optimal configuration for minimizing the L2 norm of the electric field.
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data U0 is given by the trace of the 4-harmonic
function u chosen from ‘the quasi-radial zoo’ (see
Refs. [6,7,10]). Here u is given by

u ¼ rð1=3Þ expðy=3Þ; ð7Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and y ¼ arctan y=x: An opti-

mal design is obtained by placing material inside
the level lines of the 4

3-harmonic function v

conjugate to u given by

v ¼ ð2=27Þr�1 expðyÞ; ð8Þ
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Fig. 3. The dashed curves are the level lines of u described by Eq. (7). The solid curves are the level lines of the conjugate function v

given by Eq. (8). These form the interfaces between different dielectrics.
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Fig. 4. An optimal configuration for minimizing the L4 norm of the electric field.
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see Fig. 3. The optimal design is given in Fig. 4.
This design supports an electric field that is a
minimizer for Dirichlet’s principle (3) for p ¼ 4
with U0 prescribed as above.
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