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Abstract.

The penetration function measures the effect of the boundary data on the energy of
the solution of a second order linear elliptic PDE taken over an interior subdomain.
Here the coefficients of the PDE are functions of position and often represent the
material properties of non homogeneous media with microstructure. The penetration
function is used to assess the accuracy of global-local approaches for recovering local so-
lution features from coarse grained solutions such as those delivered by homogenization
theory.
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1 Introduction.

Let us consider the elliptic problem on a bounded domain Ω ⊂ R2 with piece-
wise smooth Lipschitz boundary Γ

divA(x) gradu(x) = f on Ω,(1.1a)

u(x) = g(x) on ∂Ω = Γ,(1.1b)

or

∂u(x)/∂nc = h(x) on ∂Ω = Γ,(1.1c)

where

A(x) = {ai,j(x), ai,j(x) ∈ L
∞(Ω), i, j = 1, 2}
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is a symmetric positive matrix satisfying the coercivity condition

γ1|ξ|
2 ≤ ξTA(x)ξ ≤ γ2|ξ|

2, 0 < γ1 < γ2 <∞.(1.2)

In general we assume that ai,j(x) ∈ L∞(Ω) are only measurable functions,
but we will also consider other classes Υ of A. For example we will consider the
class Υ0 of isotropic matrices for which a1,2 = a2,1 = 0, a1,1(x) = a2,2(x) and

a1,1(x) = γ1 or a1,1(x) = γ2,

i.e., a1,1(x) takes only one of two values γ1 or γ2 depending on x.
We introduce the bilinear form B(u, v) defined on H1(Ω)×H1(Ω) given by

B(u, v) =

∫
Ω

(∇v)TA(x)(∇u)dx(1.3)

and

F ∈ (H1(Ω))∗.(1.4)

If g = G/Γ ∈ H1/2(Γ), G ∈ H1(Ω) and f ∈ L2(Ω), then the solution u of (1.1)
satisfies

u = G+ u0, u0 ∈ H
1
0(Ω)(1.5)

and for all v ∈ C∞0 (Ω)

B(u0 +G, v) = F (v) =

∫
Ω

fvdx.(1.6)

The solution exists and is unique. If h ∈ H−1/2(Γ) and
∫
Γ
hds+

∫
Ω
fdx = 0, then

the solution u ∈ H1(Ω) of (1.1) satisfies

B(u, v) = F (v) =

∫
Γ

hvds+

∫
Ω

fvdx(1.7)

for all v ∈ C∞(Ω). It exists and is unique up to an additive constant. We denote
the energy norm by ‖u‖E(Ω) = (B(u, u))

1/2 and the associated energy space
by E. The energy norm is equivalent to the H1(Ω) norm. If A is only measurable
then the solution u is in the space H1(Ω), however if A is constant and f = 0
then the solution u is analytic in Ω (but not in Ω). Here it is noted that the
assumption Ω ⊂ R2 is not necessary and is made to illustrate the ideas.
The numerical treatment of the problem (1.1) is usually directly or indirectly
related to a homogenization approach. The theory of homogenization in its most
general formulation is described by the theory of G-convergence [30], or the H-
convergence theory when nonsymmetric matrices are considered [25]. Here we
consider a sequence of matrices An(x), n = 1, 2, . . . , which converges in the
sense of the G-convergence to the limit AH(x). In this context the homogenized
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solution uH satisfies (1.1) when A is replaced by AH . The solution un of the
problem (1.1) with A = An converges to uH in L2(Ω) but not in H

1(Ω).
However the energies

∫
Ω
(∇un)TAn(∇un)dx converge to

∫
Ω
(∇uH)TAH(∇uH)dx

see, [30, 25]. The reader is referred to [30] and [25] for a full accounting of the
theory of G (or H) convergence, see also [15].
For the periodic matrices Aε(x) = A(x/ε), ε > 0, ε → 0 the homogenization
theory is well developed, see e.g. [6]. Here explicit formulas for AH are available.
Nevertheless there are still open questions related to the decay of boundary layers
and the behavior of the solution in the neighborhood of singular points and near
corner points on the boundary. The exposition presented in [2] among others
provides a history of numerical approaches for replacing the microscale equation
by the macroscale solution. There are many different computational approaches
for solving problems with microscale, see e.g., [1, 3, 10, 11, 14, 31, 32]. Methods
suitable for problems arising in the context of composite materials are introduced
in [4, 8] see also [9].
This paper examines the problem of how to accurately recover the microscale
features of the solution of (1.1) from the known macroscopic (homogenized) solu-
tion. An approach to this problem is suggested for example in [1, Section 3.5]
or [27]. The main idea behind the recovery of the microscale information inside
a subdomain ω ⊂ Ω is the classical, widely used, idea of the global-local ap-
proach. In this context if the crude (homogenized) solution UH is known then
on ω the actual solution u is approximated by the solution uω of (1.1a) with the
boundary condition

uω(x) = UH(x) on ∂ω

or

∂uω/∂nc = ∂UH/∂nc on ∂ω,

where ∂uω/∂nc is the conormal derivative with respect to A(x) and ∂U/∂nc is
the conormal derivative with respect to AH(x). One then considers the accuracy
of the approximation uω on subdomains ω̃ ⊂ ω. It is tacitly assumed that the
error ‖u − uω‖E(ω̃) is small provided that ∂ω̃ is not close to ∂ω. We will show
that this assumption is in general false. We will develop lower and upper bounds
for ‖u− uω‖E(ω̃) when the homogenized solution UH is known.
The homogenized solution UH is usually smooth (possibly analytic) and on ∂ω
it can be well approximated by an m-dimensional space, so that only m co-
efficients are available for disposition. If UH is analytic then m is very small
since UH is well approximated by polynomials of low degree.
For a selected m dimensional space Vm, respectively for a sequence of spaces
{Vm}, we are interested in

inf
χ∈Vm

‖u− χ‖E(ω̃)

where u is the solution of (1.1) about which we know only that u ∈ H1(ω) and
u ∈ H1/2(∂ω).
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We will show that in the general case we have the lower bound

inf
χ∈Vm

‖u− χ‖E(ω̃) ≥ Cm
−1/2+ε

and for the upper bound

inf
χ∈Vm

‖u− χ‖E(ω̃) ≤ Cm
−δ

where δ > 0 depends on γ1, γ2 in (1.2). The maximal (or sup) δ is not known.
Let us assume that the numerical homogenized solution was obtained by the
finite element method with size ∆. Then in general these results show that we
cannot retrieve the microscopic features of the solution with an accuracy better
than O(|∂ω|/∆)−1/2 where |∂ω| is the length of the boundary ∂ω. We will see
later that the retrieval could be worse depending for example on the contrast
γ2/γ1 in (1.2), see Section 5.2.
The aforementioned bounds apply to the general class of matricesA. It remains
to be seen what new estimates hold for different classes Υ of A.

2 The penetration function.

Let ω ⊂ Ω, d = dist(ω, ∂Ω) and Vn ⊂ H1/2(∂Ω), n = 1, 2, . . . be m(n)
dimensional spaces. Let

Wn =
{
v ∈ H1(Ω) | v satisfies (1.1) with f = 0 and v/∂Ω ∈ Vn

}
.(2.1)

Further let g ∈ H1/2(∂Ω) and u(g) ∈ E be the solution of (1.1a), (1.1b) with
f = 0. We define the penetration function Ξ(Vn, d):

Ξ(Vn, d) = Ξ(n, d) = sup
‖g‖

H1/2(∂Ω)
=1

{ inf
w∈Wn

‖u(g)− w‖E(ω)}.(2.2)

The penetration function Ξ(n, d) depends on the sequence {Vn}, n = 1, 2, . . .
and on the class Υ of matrices A under consideration. If m(n) = n then we will
be interested in the estimate of Ξ(n, d) of the form Ξ(n, d) ≤ Cn−β. We will
be interested in the maximal β in the sense that lim supn→∞ Ξ(n, d)n

β < ∞.
Obviously the penetration function Ξ(n, d) is a measure of our ability to retrieve
the details of the micro solution with a desired accuracy.
The penetration function respectively the error of the retrieval depends
on {Vn}. Hence the question arises what is the optimal selection of the spacesVn.
This question is naturally related to the Kolmogorov n-width [29] and we define

Θ(m(n), d) = inf
Vn
Ξ(Vn, d), dimVn = m(n).

In this discussion we have assumed that f = 0 and in the applications this is
often the case. However if f 	= 0 then we can eliminate f by a particular solution
and the previous considerations hold. So far we have defined the penetration
function for the Dirichlet boundary condition (1.1b). The penetration function
for the Neumann boundary condition (1.1c) is completely analogous.
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3 Weighted Sobolev spaces and the penetration function.

For points x inside Ω we let d(x) denote the distance of x to the boundary ∂Ω.
Then for |α| < 1 we define

H1,α(Ω) =
{
u
∣∣∣
∫
Ω

|∇u|2dαdx = ‖u‖21,α <∞
}

and take H1,α0 (Ω) to be the closure of the space C
∞
0 (Ω) in the norm ‖ ‖1,α.

Remark 3.1. For α > 1 the space H1,α0 (Ω) is dense in H
1(Ω).

Remark 3.2. In this treatment we will consider the spaces H1,α0 (Ω) and
H1,−α0 (Ω) for |α| < 1.

Let us now define the Dirichlet problem over the weighted Sobolev spaces. The
bilinear form (1.3) is well defined on H1,α0 (Ω)×H

1,−α
0 (Ω) and is continuous.

Let 0 ≤ α < 1, G ∈ H1(Ω), g = G/∂Ω ∈ H1/2(∂Ω) and F ∈ (H1,−α0 (Ω))∗, then
u ∈ H1,α(Ω) is the solution of the Dirichlet problem if

a. u = G+ u0, u0 ∈ H1,α(Ω),
b. B(G+ u0, v) = F (v), for any v ∈ H

1,−α
0 (Ω).

We have

Theorem 3.1 ([26]). Suppose the bilinear form B(u, v) is defined and con-

tinuous on H1,α0 (Ω)×H
1,−α
0 (Ω) with 0 ≤ α < 1 and

inf
u
sup
v
|B(u, v)| ≥ c1 > 0, ‖u‖1,α = 1, ‖v‖1,−α = 1,(3.1a)

inf
v
sup
u
|B(u, v)| ≥ c2 > 0, ‖u‖1,α = 1, ‖v‖1,−α = 1,(3.1b)

F ∈
(
H1,−α0 (Ω)

)∗
,(3.1c)

then there exists a unique solution u ∈ H1,α0 (Ω) such that

B(u, v) = F (v) for any v ∈ H1,−α0 (Ω)(3.2a)

and

‖u‖1,α ≤ C‖F‖
∗
1,−α, ‖F‖

∗
1,α = sup v

|F (v)|

‖v‖1,−α
.(3.2b)

The following Theorem 3.2 follows from the embedding theorems for weighted
Sobolev spaces (see [16]).

Theorem 3.2. There exists δ > 0 such that for any 0 < α < δ the con-
ditions (3.1a), (3.1b) hold and hence the solution u ∈ H1,α of the Dirichlet
problem exists and (3.2b) holds.

The major problem is to determine the value δ. This value can be determined
from the analysis of the embedding theorems for Sobolev weighted spaces. For
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example by an easy analysis we could obtain an estimate δ = λ/(2 + λ) where
λ = γ1/γ2 but this value is pessimistic. Also from [7, 22] an estimate for δ can be
obtained. Once more it will be pessimistic. We are of course interested in sup δ.
Note that for α = 0 the conditions (3.1a), (3.1b)) are trivially satisfied.
We now apply Theorems 3.1 and 3.2 to obtain an upper estimate for the
penetration function Ξ(Vn, d). First we introduce some useful notation. If g ∈
H1/2(∂Ω), we denote by ψ(g) ∈ H1(Ω) the solution of (1.1a), (1.1b) with f = 0
and A = I.
We prove now the following Theorem 3.3:

Theorem 3.3. Let 0 ≤ α < δ as in the Theorem 3.2. Further let Vn ⊂
H1/2(∂Ω) be m(n) dimensional space and assume that for any v ∈ H1,−α0 (Ω),

inf
z∈Vn

|B((ψ(g) − ψ(z)), v)| ≤ S(g,Vn)‖v‖1,−α(3.3)

S(g,Vn) ≤ Q(Vn)‖g‖H1/2(∂Ω),(3.4)

then

Ξ(n, d) ≤ CQ(Vn)d
−α/2.(3.5)

Proof. Let u(g) respectively w(z) be the solution of (1.1a) with u(g) = g
respectively w(z) = z ∈ Vn on ∂Ω. Then u(g) − w(z) = ψ(g) − ψ(z) + u0
and because we assumed that f = 0 the function u0 ∈ H10(Ω) satisfies for all
v ∈ H1,−α0 (Ω) ⊂ H10(Ω) the equation B(u0, v) = −B(ψ(g) − ψ(z), v). From this
we get

‖u0‖1,α ≤ S(g,Vn).

Because Theorem 3.2 holds also for A = I, we get

‖ψ(g)− ψ(z)‖1,α ≤ CS(g,Vn)

and (3.5) follows immediately from (3.4).

Let us consider now a special case when Ω is the unit disk

Ω = {r,Θ | 0 ≤ r < 1, 0 ≤ Θ < 2π}.

Note that any g ∈ H1/2(∂Ω) can be written in the form

g(Θ) =
∞∑
k=0

ak cos kΘ+
∞∑
k=1

bk sin kΘ

and

‖g‖2H1/2(∂Ω) = π
(
2a20 +

∞∑
k=1

(
a2k + b

2
k

))
.
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Further

ψ(g) =
n∑
k=0

akr
k cos kΘ+

n∑
k=1

bkr
k sin kΘ.(3.6)

Based on this we select

Vn =
{
z(Θ)

∣∣∣ z(Θ) =
n∑
k=0

ck cos kΘ+
n∑
k=1

dk sin kΘ, ck, dk ∈ R
}

(3.7)

and Vn has dimension m = 2n+ 1. For

z(Θ) =
∞∑

k=n+1

ak cos kΘ+
∞∑

k=n+1

bk sin kΘ

we get

ψ(g)− ψ(z) =
∞∑

k=n+1

akr
k cos kΘ+

∞∑
k=n+1

bkr
k sin kΘ.

By an easy computation we get

S(g,Vn) ≤ Cn
−α/2 logα/2 n‖g‖H1/2(∂Ω).(3.8)

Hence from the Theorem 3.3 we get

Theorem 3.4. Let Ω ⊂ R2 be the unit disk and Vn ∈ H1/2(∂Ω) be the space
of trigonometric polynomials of degree n on ∂Ω. If A satisfies condition (1.2)
then there exists 0 < α < 1 such that

Ξ(Vn, d) < C(d)n
−α/2 logα/2 n.(3.9)

Remark 3.3. The inequality (3.9) delivers an upper bound for the pene-
tration function that depends on the value α respectively δ. Later in Section 5.2
we will see by a numerical investigation that this estimate is very pessimistic for
the class Υ0 of A.

If A = I we use (3.6) to immediately deduce the following theorem.

Theorem 3.5. Let A = I, Ω is the unit disk and Vn is the space of trigono-
metric polynomials of degree n on ∂Ω. Then

Ξ(Vn, d) < Ce
−n(3.10)

Remark 3.4. The estimate (3.10) holds for the entire class Υ of matrices A
which are analytic on Ω.

Remark 3.5. Theorem 3.5 is related to the well known Saint Venant principle
and Theorem 3.4 can be understood as a generalization of the Saint Venant
principle.
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When Ω is the unit disk we selected a special space Vn, namely the space
of trigonometric polynomials on ∂Ω for which (3.3) and (3.4) hold. For generic
domains Ω the spaces Vn have to be selected so that (3.3) and (3.4) are satis-
fied. These choices of Vn are also naturally related to the Kolmogorov n-width
functions on ∂Ω see, [29].
We conclude noting that we have obtained upper bounds on the penetration
function for Dirichlet boundary conditions. The results obtained for the Dirichlet
case apply to Neumann boundary conditions as well since we can appeal to
the dual formulation which transforms the Neumann boundary conditions into
Dirichlet boundary conditions.

4 The lower estimate for the penetration function.

In Section 3 we considered the case when the domain Ω was the unit disk.
This is equivalent with the problem which is periodic in a strip.
Let

Ω = {x = (x1, x2) | x1 ∈ Γ = (−π, π], 0 ≤ x2 ≤ q <∞}

Ωl = {x | x1 ∈ Γ, l < x2 < q} and

H =
{
u ∈ H1(Ω)|u is 2π periodic in x1 and symmetric with respect to x1=0

}
.

(4.1)

We consider now the differential equation (1.1a) on Ω with A satisfying (1.2)
and A(x1, x2) = A(−x1, x2) with f = 0 and boundary conditions

u(−π, x2) = u(π, x2)(4.2a)

∂u(x)/∂nc = h(x1) ∈ H
−1/2(Γ), x1 ∈ Γ, x2 = 0(4.2b)

∂u(x)/∂nc = 0 on x1 ∈ Γ, x2 = q(4.2c)

where u(x1, x2), h(x1) are symmetric with respect to x1 = 0, 2π-periodic and∫
Γ
h(x1)dx1 = 0. The solution u ∈ H1(Ω) of the Neumann problem stated above

exists and is unique up to a constant function.
Any h(x1) ∈ H−1/2(Γ), symmetric and 2π-periodic can be written in the form

h(x1) =
∞∑
k=1

ak cos kx1(4.3)

with

‖h‖2H−1/2(Γ) =
∞∑
k=1

a2kk
−1 <∞.(4.4)

For h1, h2 ∈ H−1/2(Γ), h1(x1) =
∑∞
k=1 ak cos kx1, h2(x1) =

∑∞
k=1 bk cos kx1 we

can define a scalar product

〈h1, h2〉 =
∞∑
k=1

akbkk
−1.
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The Neumann problem creates the mapping of H−1/2(Γ) into H given in (4.1).
As before we denote u(h) the solution of the Neumann problem satisfying the
conditions (4.2).
Let

Sn(Γ) =
{
v ∈ H−1/2(Γ)

∣∣∣ v =
n∑
k=1

ak cos kx1
}

Gn(Γ) =
{
g ∈ H−1/2(Γ)

∣∣ 〈g, v〉 = 0 for any v ∈ Sn(Γ)},
then as in Section 2 we define

Ξ(Sn, l) = sup
h

‖u(h)‖E(Ωl), h ∈ Gn, ‖h‖H−1/2(Γ) = 1.

To get lower estimate for Ξ, we will analyze a special class Υ of A,

A = {ai,j}, i, j = 1, 2,

a1,1(x) = c1(x1), a2,2(x) = c2(x1), a1,2(x) = a2,1(x) = 0
(4.5)

where

c1(x1) =
1

ϕ′(x1)
, c2(x1) = ϕ

′(x1), ϕ
′(x1) = dϕ(x1)/dx1,(4.6a)

0 < α0 ≤ ϕ
′(x1) ≤ α1 <∞(4.6b)

ϕ(−π) = −π, ϕ(π) = π, ϕ(x1) is antisymmetric.(4.6c)

The function ϕ is a one to one mapping of (−π, π) onto (−π, π). Let

ξ = ϕ(x1), x1 = ψ(ξ),(4.7)

with

dx1/dξ = 1/ϕ
′(x1).

We have now

Lemma 4.1. Let u0(x1, x2) be the solution of the periodic Neumann problem
with A(x) given in (4.5) and the boundary condition (4.2). Let

w(ξ, x2) = u0(ψ(ξ), x2),(4.8)

then w(ξ, x2) is the solution of the periodic Neumann problem

∂2w(ξ, x2)/∂ξ
2 + ∂2w(ξ, x2)/∂x

2
2 = ∆w(ξ, x2) = 0(4.9a)

∂w/∂x2(ξ, 0) = h(ψ(ξ))ψ
′(ξ)(4.9b)

∂w/∂x2(ξ, q) = 0(4.9c)

and ‖w‖H1(Ω) is equivalent with ‖u0‖E(Ω).
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This lemma is easy to prove.
Let us prove

Theorem 4.2. There exists An of the form (4.5), (4.6) such that

Ξ(Sn, l) ≥ C(l)n
−1/2(4.10)

Remark 4.1. In Theorem 4.2 the matrix An is dependent on n. A similar
result for a special A independent of n will be proved in the sequel.

Proof. Let

cosϕ(x1) = cosx1 + σ(x1),(4.11)

where

σ(x1) = λ cosnx1 sin
4 x1, λ = O

(
1

n

)
.(4.12)

First we will prove that ϕ(x1) satisfies condition (4.6). We have

ϕ(x1) = arccos
(
cosx1 + λ cosnx1 sin

4 x1
)

and ϕ(x1) is antisymmetric, ϕ(−π) = −π, ϕ(π) = π. For x1 ≥ 0 we get

ϕ′(x1) =
(
sinx1 + λ

(
n sinnx1 sin

4 x1 − 4 cosnx1 sin
3 x1 cosx1

))
×
(
1−
(
cosx1 + λ cosnx1 sin

4 x1
)2)−1/2

and

1−
(
cosx1 + λ cosnx1 sin

4 x1
)2

= sin2 x1
(
1− 2λ cosx1 cosnx1 sin

2 x1 − λ
2 cos2 nx1 sin

6 x1
)

and

ϕ′(x1) =

(
1 + λ

(
n sinx1 sin

3 x1 − 4 cosnx1 sin
2 x1 cosx1

))
(
1− 2λ cosx1 cosnx1 sin

2 x1 − λ2 cos2 nx1 sin
6 x1
)1/2 .

Hence (4.6) holds for λ = c
n
with c sufficiently small and independent of n.

Let

W (ξ) = h(ψ(ξ))ψ′(ξ) = ∂w/∂x2(ξ, 0),

then W (ξ) ∈ H−1/2(Γ) and

W (ξ) =
∞∑
k=1

zk cos kξ, π
∞∑
k=1

z2kk
−1 = ‖W‖2H−1/2(Γ).
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Hence we have

w(ξ, x2) =
∞∑
k=1

zk cos kξχk(x2)k
−1

with

χk = (e
−kx2 − ek(−2d+x2))/(1− e−2kd)

and

‖w(ξ, x2)‖H1(Ωl) ≥ |z1|c(l).

We have

z1 = π
−1

∫ π
−π
cos ξ∂w/∂x2(ξ, 0)dξ = π

−1

∫ π
−π
cos ξh(ψ(ξ))ψ′(ξ)dξ

= π−1
∫ π
−π
h(x1) cosϕ(x1)dx1

= π−1
∫ π
−π
h(x1) cosx1dx1 + π

−1

∫ π
−π
σ(x1)h(x1)dx1.

Further we have

cosnx1 sin
4 x1

=
1

16
(cos(n+ 4)x1 + cos(n− 4)x1 − 4(cos(n+ 2)x1 cos(n− 2)x1)

+
3

8
cosnx1.

(4.13)

Let h(x1) = cosnx. Then

|z| = Cλ = O

(
1

n

)
, and ‖u0‖H1(Ω) ≥ O

(
1

n

)
with ‖h‖H−1/2(Γ) = O

(
1

n1/2

)

which leads to (4.10)

In Theorem 4.2 the matrix A depends on n. We now prove a similar theorem
for a special coefficient matrix A that is chosen independently of n.

Theorem 4.3. There exist h ∈ H−1/2(Γ) and a matrix A of the form (4.5),
(4.6) such that

lim
n→∞

supΞ(Sn, h)/n
−1/2 lg5 n ≥ C‖h‖H−1/2(Γ).(4.14)

Proof. Let

h(x1) =
∞∑
k=1

ak cos kx1,
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with

ak = lg
−2 k for k = 2 + 9n, n = 1, 2, . . .

= 0 for k 	= 2 + 9n, n = 1, 2, . . .

Define

bk = akk
−1/2,

then

‖h‖2H=1/2(Γ) = π
∞∑
n=1

b2k =
∞∑
n=2

((2 + 9n) lg4(2 + 9n))−1(4.15)

and

Q2 =
∞∑
n=1

b2k lg
2 k =

∞∑
n=1

((2 + 9n) lg2(2 + 9n))−1.(4.16)

Because (4.15) and (4.16) there exists a Rademacher function r (see [12, p. 205]),
r(k) = 1 or −1, k = 1, 2, . . . such that

ρ(x1) =
∞∑
k=1

bkr(k) sin kx1 =
∞∑
k=1

b∗k sin kx1

is a bounded function with

|ρ(x1)| ≤ CQ.(4.17)

Further let

h∗(x1) =
∞∑
k=1

akr(k) cos kx1 =
∞∑
k=1

a∗k cos kx1

with

‖h∗‖H−1/2(Γ) = ‖h‖H−1/2(Γ).

Further let

κ(x1) =
∞∑
k=1

b∗kk
−1 cos kx1

then

‖dκ(x1)/dx1‖L∞(Γ) = ‖ρ(x1)‖L∞(Γ) ≤ CQ.(4.18)

Now analogously as before we let

σ(x1) = λκ(x1) sin
4 x1(4.19)
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and

ϕ(x1) = arccos(cosx1 + σ(x1))

The inequalities (4.6) hold on noting that λ = O(1) in (4.18).
Now we have

z1 = π
−1

∫ π
−π
h∗(x1)σ(x1)dx1 =

∞∑
n=1

(lg−4(2 + 9n))(2 + 9n)−3/2(4.20)

where we have used the fact that 〈h∗,Sn〉 = 0.
From (4.20) we get

|z1| ≥ C(n+ 1)
−1/2 lg−5(n+ 1)

and we obtain (4.14).

In this analysis we have studied the penetration function associated with Neu-
mann boundary data. However these results apply to Dirichlet boundary data
noting that the Dirichlet problem can be transformed to the Neumann problem
using the usual duality formulation.
The lower estimate was analyzed by considering an example given by a very
special matrix A. At this stage it is not yet clear what to expect for a general
coefficient matrix. The example indicates that the upper estimate may be unduly
pessimistic. We also have assumed that the u ∈ H1(Ω) only. Nevertheless it is
known that u enjoys higher regularity and is Hölder continuous (see e.g., [13, 28]).
Presently it is not clear how much this information could influence the decay rate
for the penetration function with respect to n.
Obviously the penetration function depends on the class Υ. If we would con-
sider the class of problems with A ∈ Hk,∞(Ω) then u ∈ Hk+1 and the lower
estimate can be obtained in an analogous way. There is a practical difficulty
with the characterization of the class Υ, for example when considering fiber re-
inforced composite materials (see [4]), the fibers have circular cross-section with
the diameter d ∼ 7µ. Regularity theory shows that the solution u is an element
of H3/2−ε(Ω), however the associated norm is very large. So practically it is
better to view the solution u as an element of H1/2(Ω) where the norm is of
reasonable size.
There are many open problems related to the penetration function. In the next
section we will provide a numerical approach for determining the penetration
function associated with the class Υ0 of matrices A with coefficients taking only
two values.

5 The penetration function for piece-wise constant coefficients.

In the first part of this section we show that the lower bound on the penetration
function given in Theorem 4.2 applies to the class Υ0 for special choices of γ1
and γ2. In the second part we proceed directly and provide a numerical method
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for computing lower bounds on the penetration function for the class Υ0. We
use the method to compute lower bounds on the Neuman penetration function
for different choices of γ1 and γ2. The results of the computations are used to
estimate the decay of the penetration function as a function of γ1 and γ2.

5.1 Correspondence between Υ0 and the coefficient matrices of Section 4.

Recall the class Υ0 of matricesA with coefficients taking only two values given
in the introduction. Matrices in this class are written as

A = γ(x)I(5.1)

where γ(x) is any simple function taking only the values γ1 or γ2. We emphasize
the dependence on γ1 and γ2 and write this class as Υ0(γ1, γ2). The set of all
G-limits (H-Limits) associated with this class is well known [33, 21]. This set of
coefficient matrices is referred to as the G-closure of Υ0(γ1, γ2) [21] and we denote
it by GΥ0(γ1, γ2). It is also known that every coefficient matrix in GΥ0(γ1, γ2) is
realized by the effective coefficient matrices of G-convergent sequences of simple
functions associated with layered configurations [33, 21]. The effective coefficient
matrices AL associated with these limits are of the form AL = RT (β)CR(β)
where R(β) is a rotation matrix associated with a rotation of β radians and the
diagonal matrix C is given by

C =

[
c1 0
0 c2

]
,(5.2)

with coefficients given by

c1(θ, ρ) = γ1 +
θγ1(γ2 − γ1)

γ1 + (1− θ)(1− ρ)(γ2 − γ1)

c2(θ, ρ) = γ1 +
θγ1(γ2 − γ1)

γ1 + (1− θ)ρ(γ2 − γ1)
,

(5.3)

where θ, ρ and β are measurable functions and θ = θ(x) is the local area fraction
of γ2, ρ = ρ(x) is the local anisotropy parameter, and β = β(x) is the local layer
orientation with

0 ≤ θ ≤ 1, 0 ≤ ρ ≤ 1, 0 ≤ β ≤ π.(5.4)

Theorem 5.1. There exist fixed choices γ1 and γ2 independent of n =
1, 2 . . . such that for every matrix An defined in Theorem 4.2 there is a diagonal
matrix ALn of the form A

L
n = C with C given by (5.2) and (5.3) such that

An = A
L
n .(5.5)

Proof. Solution of the system c1(θ, ρ) = 1/ϕ
′, c2(θ, ρ) = ϕ

′ shows that the
resulting curve θ = θ(ϕ′), ρ = ρ(ϕ′) satisfies the constraints (5.4) when γ1 and γ2
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are chosen to satisfy the inequalities

γ−11 − γ1 + γ2 − γ
−1
2

γ2
γ1
− γ1γ2

< α0 < α1 <

γ2
γ1
− γ1
γ2

γ−11 − γ1 + γ2 − γ
−1
2

(5.6)

and

γ1 < 1 < γ2.(5.7)

Here the first inequality (5.6) follows from the well known harmonic mean –
arithmetic mean bounds on c1 and c2 while (5.7) is necessary for the curve
c−11 = c2 to lie in the set GΥ0(γ1, γ2).

For future reference we display the curves for θ and ρ. These are given by

θ =
(γ1 + γ2)

(
1− ϕ′γ1

)(
ϕ′ − γ1

)
ϕ′
(
1− γ21

)
(γ2 − γ1)

(5.8)

ρ = 1 + γ1

(
ϕ′
(
1− γ21

)
− (γ1 + γ2)

(
1− ϕ′γ1

)
ϕ′(γ2 − γ1)

(
1− γ21

)
− (γ1 + γ2)

(
1− ϕ′γ1

)(
ϕ′ − γ1

)
)
.(5.9)

The penetration function for a generic class of coefficients Υ is defined to be
the supremum of Ξ(Sn, l) taken over all coefficient matrices in that class. The
supremum is denoted by Ξ(Sn, l,Υ). The associated penetration function for
the class Υ0(γ1, γ2) is written Ξ(Sn, l,Υ0(γ1, γ2)). Theorem 5.1 enables one to
apply the lower bound displayed in Theorem 4.2 to Ξ(Sn, l,Υ0(γ1, γ2)). This is
expressed in the following theorem.

Theorem 5.2. Given that γ1 and γ2 satisfy (5.6) and (5.7) then the pene-
tration function for the class Υ0(γ1, γ2) satisfies

Ξ(Sn, l,Υ0(γ1, γ2)) ≥ C(l)n
−1/2.(5.10)

Proof. For each coefficient matrixAn given in Theorem 4.2 one applies The-
orem 5.1 to assert the existence of a sequence of coefficient matrices {γk(x)I}∞k=1
in Υ0(γ1, γ2) associated with locally layered configurations that G-converge to
ALn = An. The corresponding solutions of (1.1) with A = γk(x)I are denoted
by uk. Theorem 5.2 then follows noting that the energies

∫
Ωl
(∇uk)Tγk(x)I(∇uk)dx

converge to the limit energy associated with An.

5.2 A numerical method for computing the decay of the penetration function
and applications.

The calculation of Ξ(Sn, l,Υ0(γ1, γ2)) is a problem of optimal design and re-
quires one to take a supremum of an objective function over the class of simple
functions. This type of problem is well known to be theoretically ill-posed over
the class Υ0(γ1, γ2) see, [23, 19]. The problem is made well-posed by noting that
the objective function is continuous with respect to G-convergence and extend-
ing the class Υ0(γ1, γ2) to include the set of G-limits GΥ0(γ1, γ2) associated with
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all G-convergent sequences of coefficient matrices in Υ0(γ1, γ2). This fact can be
stated as

Ξ(Sn, l,Υ0(γ1, γ2)) = Ξ(Sn, l, GΥ0(γ1, γ2)).(5.11)

The set GΥ0(γ1, γ2) is known explicitly and can be parameterized using the
explicit formulas for AL given in the previous section, see, [21, 33]. This theory
is now well known and was introduced in [20, 24]. With this theory in hand one
can write

Ξ(Sn, l,Υ0(γ1, γ2)) = sup
(θ,ρ,β)

{
Ξ(Sn, l),A

L = RT (β)CR(β)
}
,(5.12)

with C defined by (5.2) and (5.3) and the parameters θ, ρ, and β subject to the
box constraints (5.4). Here the supremum on the right hand side of (5.12) can
be computed numerically.
In view of future applications we point out that penetration functions can also
be defined in terms of ‖∇u(h)‖L2(Ωl). For this case put

P(Sn, l) = sup
h
‖∇u(h)‖L2(Ωl), h ∈ Gn, ‖h‖H−1/2(Γ) = 1,(5.13)

and the penetration function Ξ(Sn, l,Υ0(γ1, γ2)) for the class Υ0(γ1, γ2) is equiva-
lent to the penetration function P(Sn, l,Υ0(γ1, γ2)) defined by

P(Sn, l,Υ0(γ1, γ2)) = sup
A
{P(Sn, l),A ∈ Υ0(γ1, γ2)}.(5.14)

Here it is easily seen that

√
γ1P(Sn, l,Υ0(γ1, γ2)) ≤ Ξ(Sn, l,Υ0(γ1, γ2)) ≤

√
γ2P(Sn, l,Υ0(γ1, γ2)).

(5.15)

In the following simulations we work with the penetration function given
by (5.14). The evaluation of P(Sn, l,Υ0(γ1, γ2)) is also an ill-posed problem
of optimal design. To make the problem well posed we: 1) extend the class
Υ0(γ1, γ2) to GΥ0(γ1, γ2) and 2) identify all limit points of the sequences
{‖∇un(h)‖L2(Ωl)}

∞
n=1 associated with G-convergent sequences {An}

∞
n=1 ∈

Υ0(γ1, γ2). These limits are identified in [17, 18] and are given by

lim
n→∞

‖∇un(h)‖L2(Ωl) =
(∫
Ωl

(∇uH )
T (∂γ1AH + ∂γ2AH)(∇uH )dx

)1/2
(5.16)

whereAH is the G-limit of the sequence, uH is the homogenized solution and ∂γ1
and ∂γ2 are the derivatives of AH with respect to the parameters γ1 and γ2.
In order to proceed with the numerical computation of lower bounds on the
penetration function we incorporate the explicit parameterization of the set of
G-limits given by the coefficient matrices AL and write

R(u(h)) =
(∫
Ωl

(∇u(h))T
(
∂γ1A

L + ∂γ2A
L
)
(∇u(h))dx

)1/2
(5.17)
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where u(h) solves (1.1) with A = AL. We put

RP(Sn, l) = sup
h
R(u(h)), h ∈ Gn, ‖h‖H−1/2(Γ) = 1,(5.18)

and define the relaxed penetration function RP(Sn, l, GΥ0(γ1, γ2)) given by

RP(Sn, l, GΥ0(γ1, γ2)) = sup
(θ,ρ,β)

{
R(Sn, l),A

L = RT (β)CR(β)
}
,(5.19)

with C defined by (5.2) and (5.3) and the parameters θ, ρ, and β subject to the
box constraints (5.4). It is shown in [5] that

P(Sn, l,Υ0(γ1, γ2)) = RP(Sn, l, GΥ0(γ1, γ2)).(5.20)

A lower bound is obtained by fixing hn = an cos (n+ 1)x in Gn with ‖hn‖H−1/2(Γ)
= 1, and computing

LP(Sn, l, GΥ0(γ1, γ2)) = sup
(θ,ρ,β)

{
R(u(hn)),A

L = RT (β)CR(β)
}
.(5.21)

Then

LP(Sn, l, GΥ0(γ1, γ2)) ≤ P(Sn, l,Υ0(γ1, γ2))(5.22)

and from (5.15)

√
γ1LP(Sn, l, GΥ0(γ1, γ2)) ≤ Ξ(Sn, l,Υ0(γ1, γ2)).(5.23)

The lower bound LP(Sn, l, GΥ0(γ1, γ2)) is computed using the solutions
of (1.1a) on the strip Ω defined in Section 4. Here the strip is of width 1, i.e.,
q = 1. In the computations the non-homogeneous Neuman boundary condi-
tion (4.2b) is given by hn = an cosnx1. This boundary condition is applied to
the top of the strip x1 ∈ Γ, x2 = 1. The homogeneous Neuman boundary condi-
tion is applied on the bottom of the strip, x1 ∈ Γ, x2 = 0. For these examples Ωl,
l = 1/2, is the bottom half of the strip {x|x1 ∈ Γ, 0 < x2 < 1/2}. The distance
separating the inhomogeneous boundary data and Ωl is 1/2. We carry out the
optimization over the design parameters θ, ρ, β using a steepest decent method.
We compute the lower bound LP(Sn, l, GΥ0(γ1, γ2)) for n = 1, . . . , 100 for
the choices γ1 = 1.0, γ2 = 10 and γ1 = 0.5, γ2 = 10. The plots of lg(n) versus
lg(LP(Sn, l, GΥ0(γ1, γ2))) are the upper two curves displayed in Figure 5.1. The
top curve corresponds to γ1 = 0.5, γ2 = 10 and the one below corresponds to
γ1 = 1.0, γ2 = 10. Both of these curves flatten out with increasing n and are seen
to decay at a rate of n−0.4. The lowest curve in Figure 5.1 corresponds to the
lower bound on the decay of the penetration function given by R(hn) associated
with An given in Theorem 4.2 with λ = 0.44/n in (4.12). For eachAn we equate
it with a G-limit according to Theorem 5.1. Here the G-limit is associated with
a sequence of simple functions taking the values γ1 = 0.5 and γ2 = 10. It is seen
that the lowest curve decays as n−1/2.
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Figure 5.1: Decay of the penetration function.

The local area fraction θ of γ2 corresponding to the optimal design attaining
LP(S5, l, GΥ0(γ1, γ2)) with γ1 = 0.5, γ2 = 10 is plotted in Figure 5.2. Here θ = 0
inside the white region, θ = 1 in the black regions, and θ takes values between
zero and one in the gray regions. The coefficient matrix associated with θ takes
the value γ2I in the black regions, the value γ1I in the white region, and the gray
zone corresponds to the G-limit (effective coefficient) associated with the local
microstructure. The local flux field j = AL∇u(h5)) and level curves of u(h5)
associated with the optimal design are plotted in Figure 5.3.

It is also interesting to compare the designs that generate data points on
the highest and lowest curves in Figure 5.1. The local area fraction of material
two associated with A10 is plotted in Figure 5.4. This coefficient matrix was

Figure 5.2: Area fraction distribution inside the optimal design for n = 5.

Figure 5.3: Vectors indicate local flux fields plotted with level curves of u, inside the
optimal design for n = 5.
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used to generate the data point for the choice n = 10 on the lowest curve in
Figure 5.1. The data point for the choice n = 10 lying on the highest curve
in Figure 5.1 corresponds to an optimized design. The local area fraction of
material two for this design is plotted in Figure 5.5 for comparison. The design
in Figure 5.4 corresponds to one in which the coefficient matrix is changing
in the x1 coordinate only. While the design in Figure 5.5 is optimized over all
coefficients in the class Υ0(γ1, γ2) and exhibits variation along both the x1 and x2
directions.

In Figure 5.6 we display the normalized lower bounds on the penetration func-
tion for γ1 = 1, γ2 = 10 and γ1 = 0.5, γ2 = 10. Here the bounds are normalized
so that the bounds equal one for n = 1. Comparison of the curves show that
the curve corresponding to the higher contrast case γ1 = 0.5, γ2 = 10 lies above

Figure 5.4: Area fraction distribution inside a design for n = 10 corresponding to class
of matrices in Theorem 4.1.

Figure 5.5: Area fraction distribution inside the optimal design for n = 10.

Figure 5.6: Decay of the normalized penetration function.
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the curve corresponding to the lower contrast case γ1 = 1, γ2 = 10. However
the slopes of the curves remain nearly the same for larger values of n. This
behavior is surprising in view of the upper bound on the penetration function
presented in Section 3 which becomes significantly flatter with an increase in the
contrast γ2/γ1.
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32. T. Strouboulis, L. Zhang, and I. Babuška, Generalized finite element method using mesh-
based handbooks: application to problems in domains with many voids, Comput. Methods
Appl. Mech. Eng., 192 (2003), pp. 3109–3161.

33. L. Tartar, Estimations fines de coefficients homogénéisés, in Ennio De Georgi Colloquium,
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