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Summary

New higher-order homogenization results are employed in an inverse homogenization pro-
cedure to identify graded microstructures that provide desirable structural response while
ensuring stress control near joints or junctions between structural elements. The method-
ology is illustrated for long cylindrical shafts reinforced with stiff cylindrical elastic fibres
with generators parallel to the shaft. The local fibre geometry can change across the shaft
cross-section. The methodology is implemented numerically for cross-sectional shapes that
possesses reentrant corners typically seen in lap joints and junctions of struts. Graded locally
layered microgeometries are identified that provide the required structural rigidity with respect
to torsion loading while at the same time mitigating the influence of stress concentrations at the
reentrant corners.

1. Introduction

Modern design practice increasingly incorporates the use of load bearing components made from
composite materials. Composites are now used in structural geometries that involve abrupt dimen-
sional changes within structural components, such as skins connected to ribs, panel reinforcements
and junctions of struts. Associated with these geometries are stress concentrations and the potential
for failure. In this paper a design strategy is formulated for identifying graded microstructures that
can be used to control the local fluctuating stresses near stress concentrations induced by rivets,
bolts or reentrant corners. Reentrant corners are typically found in lap joints and near the junction
between stiffeners and panels.

The inverse homogenization design method is based upon the formulation of a homogenized
design problem expressed in terms of suitable macroscopic quantities that satisfy two requirements.
The first is that the homogenized design problem should be computationally tractable. The second
requirement is that the solution of the homogenized design problem must provide the means to
explicitly identify graded microstructures that engender suitable structural response while at the
same time control local fluctuating stresses in regions located near stress concentrations.

It is now well known that effective macroscopic constitutive properties relating average stress
to average strain can be employed in the numerical design of composite structures for optimal
structural compliance and natural frequency. This type of design problem has received significant
attention from both the applied mathematics and structural optimization communities in the 1980s
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140 R. LIPTON AND M. STUEBNER

and 1990s; see for example (1 to 10). This list is by no means complete and for a description of the
history of the problem and extensive references to the literature the reader is referred to (11 to 18). In
the context of functionally graded materials this design strategy for optimizing structural properties
appears in (19, 20). In all of these works the problem of determining the optimal spatial dependence
for the composition is obtained through the use of effective macroscopic constitutive relations.

Recent efforts have initiated the development of numerical methods for structural optimization
in the presence of stress constraints. The investigation given in (21) provides a numerical method
for the stress constrained minimum volume design problem. The method is carried out using an
empirical model that is an extension of the power penalized stiffness model also known as the solid
isotropic microstructure with penalization (SIMP) model (18). The choice of local stress constraints
proposed in (21) is motivated by the explicit form of the corrector tensors associated with rank-
two orthogonal laminar microstructures. The problem of design of long fibre reinforced shafts for
maximum torsional rigidity in the presence of mean square stress constraints is addressed in (22).
A rigorous inverse homogenization method for the optimal distribution of fibre diameters across the
shaft is developed. It is shown that the appropriate homogenized problem requires the use of the
second moment or covariance tensor in addition to the effective compliance. This methodology can
be applied to the design of graded locally periodic microstructures involving multiple anisotropic
phases in three dimensional elastic structures (23). Very recently (24) a homogenization method for
topology design subject to mean square stress constraints using locally layered microstructures of
arbitrary rank has been developed.

For problems of thermal conduction the work of (25) considers the problem of finding microstruc-
tures that minimize the mean square deviation of the temperature gradient from a prescribed target.
The analysis given in (25) provides the connection between minimizing sequences of optimal lo-
cally layered microstructures and the optimal design coming from the homogenized problem. This
connection is shown to apply for an implicitly defined set of target fields. For composites made
of two isotropic phases the work of (26, 27) shows that minimizing sequences of discrete micro-
structures can be found within the class of locally layered materials for any choice of target field.
The work of (28) provides an explicit formula for the homogenized optimization problem and
characterizes all possible minimizing sequences of microstructures. This is used to rule out the
appearance of minimizing sequences of layered configurations with more than one scale of oscil-
lation. Another recent development is given in (29). Here for any choice of target the notion of
constrained quasiconvexity is applied and is used to identify minimizing sequences of locally lay-
ered microstructures. We close by pointing out that methods developed in (30) for non-self adjoint
optimization problems may be applied to the problems of optimal design subject to mean square
stress constraints.

In all of the aforementioned work the stress constraints or objective functions were of mean
square type. In this work a rigorous design methodology is presented that allows for tighter control
of local stresses at the level of the microstructure. This is important when designing against failure
initiation. In what follows we provide a new methodology that delivers graded materials that provide
pointwise control of the stress inside subdomains with boundaries that do not intersect the boundary
of the structure. In order to proceed new macroscopic properties beyond effective constitutive laws
and covariance tensors are required. In this work we make use of the macrofield modulation func-
tions and the homogenization constraints given in (31 to 33). The macrofield modulation functions
together with effective constitutive relations are used here to construct a suitable homogenized de-
sign problem that satisfies the two requirements associated with the inverse homogenization design
method.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article-abstract/59/1/139/1920569 by Louisiana State U

niversity user on 10 January 2020



POINTWISE STRESS CONTROL 141

To illustrate the ideas this article treats the problem of reinforcement of a long shaft with constant
cross-section subjected to torsion loading. The microstructure within the shaft consists of long re-
inforcement fibres of constant cross-section with isotropic shear modulus G2 embedded in a more
compliant material with shear modulus G1. The shaft together with the fibres are right cylinders
with generators along the x3-axis and the cross-section of the reinforced shaft is constant and spec-
ified by a region � in the (x1, x2)-plane. The characteristic length scale of the microgeometry is
assumed to be small relative to the dimensions of the shaft cross-section and is denoted by ε. In the
neighbourhood of any point x = (x1, x2) the local microgeometry is given by layers of stiff material
interspersed with layers of compliant material. The thicknesses of the stiff and compliant layers are
specified by εθ2 and εθ1 respectively, with θ1 +θ2 = 1. The layer normals are specified by the angle
γ . The thickness of the layers and layering orientation is free to change across the cross-section; see
Fig. 1. For future reference this type of microstructure is called a locally layered microstructure.

In what follows a constraint is placed on the total cross-sectional area occupied by the stiff ma-
terial. The goal of the design problem is to identify a distribution of local layer orientations and
relative layer thicknesses across the cross-section such that the following requirements are met.

(i) The reinforced shaft has a torsional rigidity that is acceptable.
(ii) The magnitude of the local stress at the length scale of the microstructure is controlled over a

designated subset of the cross-section.

In section 2 we present the homogenized problem and describe the inverse homogenization
method for identifying suitable locally layered designs satisfying requirements (i) and (ii). The
theoretical results presented here can be applied to fully three-dimensional problems using locally
layered microstructures; this issue is taken up in the Conclusion. It is pointed out that the inverse ho-
mogenization design method for graded locally periodic microstructures is rigorously established
in the context of multi-phase three-dimensional elasticity in (23). In section 3 the numerical im-
plementation for the inverse homogenization design method is discussed. The inverse homogeni-
zation design method is carried out for X-shaped and L-shaped shaft cross-sections; see section 4.

Fig. 1 Domain filled with a graded locally layered microstructure. The local layer orientations in the
neighbourhood of the points x and x∗ are displayed
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142 R. LIPTON AND M. STUEBNER

These geometries typify the junctions between composite substructures and possesses reentrant cor-
ners typically seen in lap joints and junctions of struts. Sections 5 and 6 develop the theory behind
the inverse homogenization method for pointwise stress control.

It is clear that the theoretical and numerical treatment presented here falls short of addressing
many of the issues pertinent to the design of actual bonded composite structures. However, the ap-
proach given introduces the appropriate physical quantities within a mathematically rigorous con-
text and uses these to construct a numerically feasible strategy for the design of microstructures
within structural elements.

2. Inverse homogenization method

In this section we state the homogenized design problem and provide the explicit connection be-
tween the optimal homogenized design and a desirable locally layered microgeometry that satisfies
pointwise stress constraints while delivering a torsional rigidity close to that of the optimal homog-
enized design.

The design variables for the homogenized design problem are given by the local relative layer
thickness of material one, θ1, and the layer angle γ . The relative layer thickness of material two is
denoted by θ2 and θ1 + θ2 = 1. These design variables can change across the shaft cross-section
and are functions of x. The associated vector of design variables is denoted by B and B(x) =
(θ1(x), γ (x)). The resource constraint on the amount of stiff material that can be used to reinforce
the shaft cross-section is given by∫

�
(1 − θ1(x)) dx1 dx2 � � × (Area of �), (2.1)

where 0 < � < 1. At each point the design vector satisfies the box constraints given by

0 < θmin
1 � θ1 � θmax

1 < 1 and 0 � γ � 2π. (2.2)

Here the constraints on the relative layer thickness θ1 correspond to microstructured material filling
out the entire design domain. The local microgeometry specified by B changes continuously with
position and

|θ1(x) − θ1(x + h)| � K |h|α, |γ (x) − γ (x + h)| � K |h|α (2.3)

for fixed constants K and α such that 0 < α � 1. The set of all design vectors B satisfying the
resource constraint, box constraints, and (2.3) is denoted by D�.

The compliance in shear for each material is given by S1 = (2G1)
−1 and S2 = (2G2)

−1. Here
material one is assumed to be the more compliant material, S1 > S2. The effective compliance
tensor SE (B) is given by

SE (B(x)) = R(γ (x))D(θ1(x))RT (γ (x)), (2.4)

where R(γ ) is the matrix associated with an anti-clockwise rotation of γ radians and

D(θ1) =
[
(θ1S−1

1 + (1 − θ1)S
−1
2 )−1 0

0 θ1S1 + (1 − θ1)S2

]
. (2.5)

The macroscopic stress potential φH vanishes on the boundary of the cross-section and satisfies

− div
(
SE (B)∇φH) = 1 (2.6)
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POINTWISE STRESS CONTROL 143

inside the cross-section. The torsional rigidity for the homogenized shaft cross-section made from
a homogenized material with compliance SE (B) is given by

R(B) = 2
∫

�
φH dx1 dx2. (2.7)

The stress in the homogenized shaft is given by σ H = R∇φH , where R is the rotation matrix
associated with an anti-clockwise rotation of π/2 radians.

The macroscopic stress constraints associated with materials one and two are given in terms of
the macrostress modulation functions introduced in (31). We define the matrices

Q1(B(x)) = R(γ (x))(
1(θ1(x)))2 RT (γ (x)), (2.8)

Q2(B(x)) = R(γ (x))(
2(θ1(x)))2 RT (γ (x)), (2.9)

where the 2 × 2 matrices 
1(θ1) and 
2(θ1) are given by


1(θ1) =
⎡
⎢⎣1 − (S2 − S1)(1 − θ1)

θ1S1 + (1 − θ1)S2
0

0 1

⎤
⎥⎦ and 
2(θ1) =

⎡
⎢⎣1 + (S2 − S1)θ1

(θ1S1 + (1 − θ1)S2
0

0 1

⎤
⎥⎦ .

The explicit formulae for the macrostress modulations are given by

f1(B(x), v) = Q1(B(x))v · v if θ1(x) > 0, f1(B(x), v) = 0 if θ1 = 0, (2.10)

f2(B(x), v) = Q2(B(x))v · v if θ2(x) > 0, f2(B(x), v) = 0 if θ2 = 0 (2.11)

for every vector v. We choose a subset S of the shaft cross-section that lies a finite distance away
from the boundary. On this set the prescribed macroscopic stress constraints are

f1(B(x), ∇φH (x)) � T 2, f2(B(x), ∇φH (x)) � T 2. (2.12)

In this treatment domains with reentrant corners are considered and so there will be a stress
singularity at each such corner. Therefore the choice of T > 0 depends on the distance between
S and the reentrant corner. It is clear that the stress constraint might not be satisfied by any homo-
genized design if T is chosen too small.

The homogenized design problem is given by

H P =
{

inf {R(B)} ; subject to:

{B in D�,

fi (B(x), ∇φH (x)) � T 2, i = 1, 2 for x in S.

}}

In what follows it is supposed that at least one design B in D� satisfies (2.12).

THEOREM 2.1. There is a design vector B̂ in D� for which the infimum of the homogenized design
problem H P is attained.

This is demonstrated in section 5.
Next we present the class of locally layered microstructures for which a microstructure satisfying

the requirements (i) and (ii) can be identified using the information given by the optimal design B̂
of the homogenized design problem.
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144 R. LIPTON AND M. STUEBNER

Consider a partition of the shaft cross-section into the N subdomains ωk , k = 1, . . . , N , such
that � = ⋃N

k ωk . Here the maximum diameter of the subdomains in the partition is denoted by τ N .
We denote such a partition by Pτ N . Inside the kth subdomain the stiff material is given by layers of
thickness εθ k

2 separated by layers of compliant material of thickness εθ k
1 , with θk

1 + θk
2 = 1. The

layer normals inside ωk are specified by the angle γ k and are given by nk = (cos γ k, sin γ k). As
before θk

1 and γ k satisfy the box constraints

0 � θmin
1 � θk

1 � θmax
1 < 1, 0 � γ k � 2π, k = 1, . . . , N . (2.13)

The characteristic function of the set occupied by material one for such a layered microgeometry is
denoted by χε,N

1 , where χε,N
1 = 1 inside material one and zero outside and χε,N

2 = 1 − χε,N
1 . The

rapidly oscillating piecewise constant compliance for such a layered microgeometry is denoted by
Sε,N and Sε,N = S1χ

ε,N
1 + S2χ

ε,N
2 .

The stress potential associated with a locally layered microgeometry is denoted by φε,N and
vanishes on the boundary of the cross-section. The stress potential satisfies the equilibrium equation

− div
(
Sε,N ∇φε,N ) = 1. (2.14)

The torsional rigidity of the cross-section is given by

Rε,N = 2
∫

�
φε,N dx1 dx2. (2.15)

Lastly we recall that the non-zero components of the in plane stress denoted by the vector σε,N =
(σ ε,N

13 , σ ε,N
23 ) are related to the gradient of the stress potential according to

σε,N = R∇φε,N , (2.16)

where the matrix R corresponds to an anti-clockwise rotation of π/2 and |σε,N | = |∇φε,N |.
For a given tolerance T the ultimate goal would be to identify a locally layered microstructure

specified by Sε,N with an acceptable torsional rigidity and stress potential satisfying the stress con-
straints in each of the materials over the prescribed set S given by

χε,N
1 (x)|∇φε,N (x)| � T and χε,N

2 (x)|∇φε,N (x)| � T . (2.17)

In what follows we show that it is possible to enforce these stress constraints in a controlled asymp-
totic fashion and simultaneously construct a locally layered microstructure with torsional rigidity
close toR(B̂).

THEOREM 2.2 (Identification of graded microstructure). For any given t > T and small number
δ > 0, one can construct a partition Pτ N0 and locally layered microstructure specified by Sε0,N0 for
which the part of S over which the constraints

χ
ε0,N0
1 (x)|∇φε0,N0(x)| � t and χ

ε0,N0
2 (x)|∇φε0,N0(x)| � t (2.18)

are violated has measure (area) less than δ and

|Rε0,N0 −R(B̂)| < δ, (2.19)

and ∫
�

(1 − χ
ε0,N0
1 ) dx1dx2 � � × (Area of �) + δ. (2.20)
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POINTWISE STRESS CONTROL 145

Inside each subdomain ωk associated with the partition Pτ N0 the local layer directions and area
fractions are determined from the optimal homogenized design B̂ = (θ̂1, γ̂ ) through the averages
given by

θ̂k
1 = 1

Area of ωk

∫
ωk

θ̂1(x) dx1 dx2, γ̂ k = 1

Area of ωk

∫
ωk

γ̂ (x) dx1 dx2. (2.21)

The systematic way in which the partition Pτ N0 is chosen is provided in Remark 6.3 of section 6.
Taken together, Theorems 2.1 and 2.2 provide an inverse homogenization method for identifying
locally layered microstructures that satisfy pointwise stress constraints while delivering a torsional
rigidity close to that given by the optimal design B̂ for the homogenized design problem.

3. Computational approach to the homogenized design problem

In the computational examples we enforce the stress constraint by adding a penalty term to the
torsional rigidity and minimize

L = −R(B) + l
∫

�
( fi (B(x), ∇φH ))p dx, i = 1, 2, (3.1)

over all design vectors B in D�, where l > 0 and φH satisfies

− div
(
SE (B)∇φH) = 1 (3.2)

and vanishes at the boundary. The computational examples provided here will be carried out for
a domain with reentrant corners of interior angle 3π/2. In view of the strength of the associated
singularity at the reentrant corners the power p appearing in the penalty term is chosen to be less
than 3. The existence of a minimizing design B̂ for this problem is guaranteed by the following
theorem.

THEOREM 3.1. There exists a design vector B̂ in D� for which the infimum of (3.1) is obtained.

This theorem is established in section 5.
As before we use the information given in the optimal design B̂ of (3.1) to construct a locally lay-

ered microstructure for which we have control of the pointwise stresses and for which the torsional
rigidity is close to that of the optimal design for (3.1). This is formalized in the following theorem.

THEOREM 3.2 (Identification). Given the optimal design B̂ = (θ̂1, γ̂ ) for (3.1) with associated
stress potential denoted by φ̂H , consider the sets

AT
i = {x in � for which fi (B̂(x), ∇φ̂H ) � T 2}. (3.3)

For a prescribed tolerance δ > 0 and t > T one can construct a partition Pτ N0 and locally layered
microstructure specified by Sε0,N0 for which the part of AT

i over which the constraints

χ
ε0,N0
1 (x)|∇φε0,N0(x)| � t and χ

ε0,N0
2 (x)|∇φε0,N0(x)| � t (3.4)

are violated has measure (area) less than δ and

|Rε0,N0 −R(B̂)| < δ, (3.5)

and ∫
�

(1 − χ
ε0,N0
1 ) dx1 dx2 � � × (Area of �) + δ. (3.6)
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146 R. LIPTON AND M. STUEBNER

Inside each subdomain ωk associated with the partition Pτ N0 the local layer directions and area
fractions are determined from the optimal homogenized design B̂ = (θ̂1, γ̂ ) through the averages
given by (2.21).

It is noted that this theorem follows from the same arguments used to justify Theorem 2.2.
The macrostress modulation functions (2.10) and (2.11) are discontinuous at θi = 0. This is

consistent with the fact that the stress amplification due to the presence of a second phase can
persist even though only an infinitesimal amount of it is present. Since the objective function is
differentiable on 0 < θmin

1 � θ1 � θmax
1 < 1 the augmented objective function defined by (3.1)

is optimized using a straightforward gradient minimization algorithm. For our computations we
choose θmin

1 = 0·01 and θmax
1 = 0·99. To compute sensitivities we introduce the adjoint field λ.

Here λ is the solution of

− div
(
SE (B)∇λ

) = 1 + l div
(
2p(Qi (B)∇φH · ∇φH )p−1 Qi (B)∇φH), (3.7)

where 1 � p < 3 and λ = 0 on the boundary. For η � 1 the change in φH due to small local
perturbations ηθ̃1, ηγ̃ in the thickness and direction of the layers is written as φ̃ and

− div
(
SE (B)∇φ̃

) = div
(
(∂θ1 SE (B)θ̃1 + ∂γ SE (B)γ̃ )∇φH), (3.8)

where φ̃ = 0 on the boundary. The first variation with respect to the design variables θ1 and γ gives
to lowest order

�L = −
∫

�
φ̃ dx +

∫
�

p(Qi (B)∇φH · ∇φH )p−1(∂θ1 Qi (B) θ̃ + ∂γ Qi (B) γ̃ )∇φH · ∇φH dx

+
∫

�
2p(Qi (B)∇φH · ∇φH )p−1 Qi (B)∇φH · ∇φ̃ dx . (3.9)

The choice of θ̃1 and γ̃ that renders �L the most negative is given by

θ̃1 = −∂θ1 SE (B)∇λ∇φH − 2lp(Qi (B)∇φH · ∇φH )p−1∂θ1 Qi (B)∇φH · ∇φH , (3.10)

γ̃ = −∂γ SE (B)∇λ∇φH − 2lp(Qi (B)∇φH · ∇φH )p−1∂γ Qi (B)∇φH · ∇φH . (3.11)

The continuity constraints on θ1(x), γ (x) expressed by (2.3) are enforced by the way in which the
design variables are initialized and updated. The local average of a scalar function f over the disk
of radius R centred at p is denoted by 〈 f 〉R(p). For given fields θ1, γ satisfying the resource and
box constraints (2.1) and (2.2) the initial choice of design variables θ0

1 , γ 0 is given by

θ0
1 = 〈θ1〉R (x) and γ 0 = 〈γ 〉R (x). (3.12)

At the nth step we suppose that θ1 and γ are given and we solve for φ and λ using the system of
equations (3.2) and (3.7). Then θ1 and γ are updated according to

θ1,new = 〈θ1 + ηθ̃1〉R(x) and γnew = 〈γ + ηγ̃ 〉R(x), (3.13)

where θ̃1 and γ̃ are given by (3.10) and (3.11). Because the updated functions are given by averages
of bounded functions it is easily seen that they satisfy (2.3) for α = 1 and for some non-negative
constant K independent of x.
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POINTWISE STRESS CONTROL 147

The algorithm is guaranteed to converge due to the monotonic change of the objective under our
choice of perturbation. The use of local averaging in the update scheme is similar to the use of filters
in topology optimization; see (34, 18).

For points near the boundary a difficulty arises when defining the averages. This is dealt with by
extending θ1 and γ to the slightly larger domain �R = {x ∈ R2; dist (x,�) � R}. The particular
form of extension is up to the designer. Possibilities include setting θ1 = 1 and γ = 0 in �R\�
or reflection of θ1, γ across the boundary of � into �R . In the discretized problem used for the
simulations we allow θ1 and γ to take constant values inside each element and define 〈θ1〉R and
〈γ 〉R to be the averages of θ1 and γ over neighbouring elements.

4. Numerical implementation for the X-shaped and L-shaped cross-sections

The first set of computational examples are carried out for an X-shaped domain. All interior angles
for the reentrant corners are fixed at 3π/2 radians. The shear stiffness of material one is assigned
the value G1 = 1 G Pa and the shear stiffness of material two is assigned the value G2 = 2 G Pa.
For these choices S1 = 1/(2G1) = 0·5 and S2 = 1/(2G2) = 0·25. All of the design optimizations
presented here are carried out with the area fraction of the compliant material held near 30 per cent
of the total area of the shaft cross-section.

In Fig. 2(a), a grey scale plot of the local density θ̂1(x) of material one is given for an opti-
mal design minimizing (3.1) subject to the penalization on

∫
( f1), so that i = 1 and p = 1 in

(3.1). The darkest regions correspond to zones of composite containing the highest density of the
compliant material, θ̂1 = 0·99. The lightest zones correspond to regions where θ̂1 = 0·01. In this
design the most compliant material is placed next to the reentrant corners. In Fig. 2(b), the arrows
representing the local layer normals (cos γ̂ (x), sin γ̂ (x)) are plotted for the optimal homogenized
design.

In the next example we optimize for torsional rigidity only. The resulting design is referred to as
design 1. The grey scale plot of θ̂1 for this design is given in Fig. 3(a). Here the lightest region cor-
responds to the stiffest possible effective material with density θ̂1 = 0·01. The darkest corresponds
to the most compliant material with θ̂1 = 0·99. As expected this design ignores the stress concen-
tration at the reentrant corners and the stiffest material surrounds the compliant material in order
to impart the greatest torsional rigidity to the structure. In the next example the torsional rigidity is
optimized in the presence of an integral penalization

∫
( f1)

2, so that i = 1 and p = 2 in (3.1). The
plot of θ̂1 for this design (design 2) is given in Fig. 4(a). For this case the more compliant material
surrounds the stress concentration at the reentrant corners. In the final example the torsional rigidity
is optimized in the presence of an integral penalization

∫
( f2)

2, so that i = 2 and p = 2 in (3.1). The
plot of θ̂1 for this design (design 3) is given in Fig. 5(a). It is seen that the more compliant material
surrounds the stress concentration at the reentrant corners. The associated torsional rigidities for all
of these cases are listed in Table 1. It is seen from the table that the torsional rigidity drops for the
penalized designs.

The contour plot of the macrostress modulation function f1 for design 1 is given in Fig. 3(b).
Figure 4(b) gives the contour plot for f1 in design 2. When comparing designs 1 and 2 it is clear
from Figs 3(b) and 4(b) that design 2 provides a significant reduction in the size of the overstressed
zone f1 � 0·3.

Note that Theorem 2.2 provides the method for constructing a locally layered material from the
data given in design 2. The choice of partition Pτ N0 used in the construction can be obtained from
any initially chosen partition after sufficient refinement of the initial partition; this is discussed in
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148 R. LIPTON AND M. STUEBNER

Fig. 2 (a) Density distribution of compliant material in X-shaped cross-section optimized for torsional
rigidity with a p = 1 integral penalization on f1. The darkest regions correspond to the most compliant
material the lightest region corresponds to the location of the stiffest material. (b) Local layer directions

and level lines of stress potential inside the X-shaped cross-section optimized for torsional rigidity
with a p = 1 integral penalization on f1

Fig. 3 Design 1. (a) Grey level plot of the density distribution of compliant material in X-shaped shaft
cross-section optimized for torsional rigidity only. (b) Contour plot of f1
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POINTWISE STRESS CONTROL 149

Fig. 4 Design 2. (a) Density distribution of compliant material in X-shaped cross-section optimized for
torsional rigidity with p = 2 integral penalty on f1. (b) Contour plot of f1

Fig. 5 Design 3. (a) Density distribution of compliant material in X-shaped cross-section optimized for
torsional rigidity with p = 2 integral penalty on f2. (b) Contour plot of f2
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150 R. LIPTON AND M. STUEBNER

Table 1 Results for X-shaped domains

Design number Stress constraint S1-volume fraction Torsional rigidity

1 None 30·8% 0·82
2

∫
( f1)

2 32·1% 0·61
3

∫
( f2)

2 30·1% 0·62

section 6. To fix ideas we choose a tolerance δ = 1/1000 and t = 0·301. Then Theorem 2.2
together with Remark 6.3 show how to construct a locally layered composite with layer thicknesses
on a length scale ε0 > 0 and torsional rigidityRε0,N0 for which

|Rε0,N0 − 0·61| < 1/1000 (4.1)

and for which the magnitude of the in-plane stress in material one lies below 0·301 for all points in
the region f1 < 0·3 of Fig. 4(b), with the possible exception of a subset of points of area less than
1/1000.

The contour plot of the macrostress modulation function f2 is plotted in Fig. 6 for design 1. Fig-
ure 5(b) gives the contour plot of f2 for design 3. An inspection of these figures shows that design 3
provides a significant reduction in the size of the overstressed zone f2 � 0·1 when compared to
design 1.

Lastly we consider the L-shaped domain. In the first example for this domain we optimize for
torsional rigidity only. The resulting design is referred to as design 4. The grey scale plot of θ̂1 for
this design is given in Fig. 7(a). Here the lightest region corresponds to the stiffest possible effective
material with density θ̂1 = 0·01. The darkest corresponds to the most compliant material with
θ̂1 = 0·99. As before this design ignores the stress concentration at the reentrant corners and the
stiffest material surrounds the compliant material in order to impart the greatest torsional rigidity to
the structure. In the next example the torsional rigidity is optimized in the presence of the integral
penalization

∫
( f2)

2. The plot of θ̂1 for this design (design 5) is given in Fig. 8(a). It is seen that
the more compliant material surrounds the stress concentration at the reentrant corners. The contour
plot of the macrostress modulation function f2 is plotted in Fig. 7(b) for design 4 and in Fig. 8(b)
for design 5. Inspection of these figures shows that design 5 provides a significant reduction in the
size of the overstressed zone f2 � 5·0 when compared to design 4. We point out that the torsional
rigidity for design 4 is 3·9 while for design 5 it drops by almost half to 2·0. The examples show that
the optimized designs for the L-shaped domain exhibit the same trends as the those for the X-shaped
domain.

5. The optimal design for the homogenized design problem

We proceed using the direct method of the calculus of variations to show that there is an optimal
design for the homogenized design problem presented in section 2. One starts by considering a
minimizing sequence {Bn}∞n=1 for the homogenized design problem. The associated sequence of
compliance tensors is denoted by {SE (Bn(x))}∞n=1 and the stress potentials {φH

n }∞n=1 vanish on the
boundary of the cross-section and are solutions of

− div
(
SE (Bn)∇φH

n

) = 1 (5.1)
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POINTWISE STRESS CONTROL 151

Fig. 6 Contour plot of f2 for design 1

Fig. 7 Design 4. (a) Density distribution of compliant material in L-shaped cross-section optimized for
torsional rigidity only. (b) Contour plot of f2

satisfying the stress constraints

fi (Bn, ∇φH
n ) � T 2 for i = 1, 2 (5.2)

over the set S and

H P = lim
n→∞ 2

∫
�

φH
n dx1 dx2. (5.3)
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152 R. LIPTON AND M. STUEBNER

Fig. 8 Design 5. (a) Density distribution of compliant material in L-shaped cross-section optimized for
torsional rigidity subject to rigidity with p = 2 integral penalty on f2. (b) Contour plot of f2

Since {Bn(x)}∞n=1 is an equicontinuous family of functions over the closure of � one readily
deduces that there is a subsequence, also denoted by {Bn(x)}∞n=1, converging uniformly in � to a
design B̂ in D�. This delivers the convergence

lim
n→∞ SE (Bn(x)) = SE (B̂(x)) and lim

n→∞ fi (Bn(x), v) � fi (B̂(x), v), i = 1, 2, (5.4)

for every point x in the domain. From the theory of G-convergence (35) and H-convergence (36)
one has that the sequence {φH

n }∞n=1 converges weakly in the Sobolev space W 1,2
0 (�) to the stress

potential φ̂H associated with SE (B̂), where

− div
(
SE (B̂)∇φ̂H) = 1 (5.5)

and

lim
n→∞ 2

∫
�

φH
n dx1 dx2 = 2

∫
�

φ̂H dx1 dx2. (5.6)

To conclude the proof one checks to see if the homogenized stress constraints (2.12) are satis-
fied by the stress associated with B̂. Since the sequence {SE (Bn(x))}∞n=1 converges pointwise to
SE (B̂(x)) the sequence of gradients {∇φH

n }∞n=1 converge strongly in L2(�)2 to ∇φ̂H ; see (35).
Passing to a subsequence if necessary, also denoted by {∇φH

n }∞n=1, it follows that this subsequence
converges pointwise to ∇φ̂H . From this one deduces that

T 2 � lim
n→∞ fi (Bn, ∇φH

n ) � fi (B̂, ∇φ̂H ) for i = 1, 2 (5.7)

for almost every point and Theorem 2.1 is established.
The proof of Theorem 3.1 follows the same steps. As before one concludes that the minimizing

sequence {Bn(x)}∞n=1 of designs for (3.1) converge uniformly to the limit B̂ where B̂ is in Dθ . Here
the associated stress potentials {φH

n }∞n=1 satisfy

lim
n→∞ 2

∫
�

φH
n dx1 dx2 = 2

∫
�

φ̂H dx1 dx2 = R(B̂) (5.8)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article-abstract/59/1/139/1920569 by Louisiana State U

niversity user on 10 January 2020



POINTWISE STRESS CONTROL 153

and the pointwise convergence

lim
n→∞ ∇φH

n (x) = ∇φ̂H (x) a.e., (5.9)

where

− div
(
SE (B̂)∇φ̂H) = 1. (5.10)

Last, Fatou’s lemma gives∫
�

fi (B̂(x), ∇φ̂H ))p dx � lim inf
n→∞

∫
�
( fi (Bn(x), ∇φH

n ))p dx, i = 1, 2, (5.11)

and Theorem 3.1 follows.

6. Identifying locally layered microgeometry with desirable strength and
stiffness properties

In this section, Theorem 2.2 is established. The proof is based on two steps. First, a version of the
identification theorem is established (Theorem 6.2) for the case when the design vector B(x) takes
piecewise constant values. Secondly, Theorem 2.2 is established by using a sequence of piecewise
constant approximations to the optimal design vector B̂.

Consider a partition of the shaft cross-section Pτ N with the subsets in the partition denoted by
ωk

N , k = 1, . . . , N . We follow the standard convention in the theory of finite elements and take
the subsets in the partition to be open such that the union of their closures is equal to the closure
of the set � describing the cross-section. Denoting the piecewise constant design vector by BN (x)
we suppose that it takes the constant values (θ1

k
N , γ k

N ) for x inside each subdomain ωk
N . Here θ1

k
N

and γ k
N satisfy the box constraints given by (2.13). The associated compliance tensor SE (BN ) is

piecewise constant and the stress potential φN vanishes on the boundary and is the solution of

− div
(
SE (BN )∇φN ) = 1.

Suppose we are given that ∇φN satisfies the stress constraints given by

fi (BN , ∇φN ) � τ 2 for i = 1, 2 and x in ω, (6.1)

where ω is a subset of the cross-section. Here the distance between any point inside ω and the
boundary of the cross-section is greater than some fixed positive number. Next consider the locally
layered microstructure with the thickness of the stiff layers and compliant layers given by εθ1

k
N and

εθ2
k
N respectively in ωk

N . The layer normals are specified by γ k
N in ωk

N . The associated piecewise
constant compliance is given by Sε,N = S1χ

ε,N
1 + S2χ

ε,N
2 . The stress potential in the shaft cross-

section filled with locally layered material is denoted by φε,N . The stress potential vanishes on the
boundary and is a solution of

−div
(
Sε,N ∇φε,N ) = 1.

DEFINITION 6.1. For t � 0 we introduce the distribution function λε,N
i (t, ω) which gives the

Lebesgue measure (area) of the set of points in ω where χε,N
i |∇φε,N | > t , i = 1, 2.

THEOREM 6.2. Suppose that the homogenized stress constraint (6.1) holds. Then, on passage
to a subsequence if necessary, the sequence of stress potentials {φε,N }ε>0 has the following two
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154 R. LIPTON AND M. STUEBNER

properties:

lim
ε→0

2
∫

�
φε,N dx1 dx2 = 2

∫
�

φN dx1 dx2 (6.2)

and

lim
ε→0

λε,N
i (t, ω) = 0 for t > τ. (6.3)

Note here that (6.3) states that for any t > τ > 0, the area of the part of ω over which
χε,N

1 |∇φε,N | > t and χε,N
2 |∇φε,N | > t vanishes as ε → 0.

Proof. The sequence {Sε,N }ε>0 associated with locally layered geometries converges in homoge-
nization to SE (BN ); see (3). Consequently the sequence of potentials {φε,N }ε>0 converges weakly
in W 1,2

0 (�) to φN and (6.2) follows. To establish (6.3), we introduce the characteristic function
χε,N

i,t of the set of points in � where χε,N
i |∇φε,N | > t , i = 1, 2. Here

λε,N
i (t, ω) =

∫
ω

χε,N
i,t dx1 dx2. (6.4)

From the theory of weak convergence (37) one passes to a subsequence if necessary to assert the
existence of a density θ N

i,t for which

lim
ε→0

λε,N
i (t, ω) =

∫
ω

θ N
i,t dx1 dx2. (6.5)

Here, 0 � θ N
i,t � 1. In physical terms θ N

i,t can be thought of as giving the distribution of states for
the stress in the homogenized composite. The derivative of θ N

i,t with respect to t gives the density
of states. For any point x inside the cross-section we introduce the sequence of squares centred at
x with side length � j = 1/j , j = 1, 2, . . . denoted by Q(x, j). For j large enough the squares
are contained inside ω. We test the microstructure inside the squares by imposing two linearly
independent unit loads given by e1 = (1, 0) and e2 = (0, 1) and track the stress fluctuations inside
the square as ε tends to zero. Mathematically this is done by keeping track of the Q(x, j) periodic
stress potentials w

ε, j,N
m that solve

div
(
Sε,N (∇wε, j,N

m + em)
) = 0 for m = 1, 2. (6.6)

For y in Q(x, j) we introduce the fluctuation matrix Qi,ε, j,N
mn (y) defined by

Qi,ε, j,N
mn (y) = χε,N

i (y)(∇wε, j,N
m (y) + em) · (∇wε, j,N

n (y) + en). (6.7)

From (31, Lemma 3.7) one has

t2θ N
i,t (x) � Mi,N (x)∇φN (x) · ∇φN (x) a.e., (6.8)

where the tensor Mi,N (x) is defined by

Mi,N (x) = lim
j→∞ lim

ε→0

1

|Q(x, j)|
∫

Q(x, j)
χε,N

i,t (y)Qi,ε, j,N (y) dy1 dy2. (6.9)

We now develop an upper bound on Mi,N (x) that is given in terms of θ N
i,t (x) and fi (BN , ∇φN (x)).

It is supposed that x lies in one of the subsets of the partition. This is true for almost every point
in the cross-section. Without loss of generality suppose this subset is ωk

N . For � j sufficiently small

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article-abstract/59/1/139/1920569 by Louisiana State U

niversity user on 10 January 2020



POINTWISE STRESS CONTROL 155

Q(x, j) is compactly contained inside ωk
N and we apply the corrector theory given in (36) to easily

deduce that

∇wε, j,N
m (y) + em = Pε,k,N (y)em + rε, j,k,N , (6.10)

where

rε, j,k,N → 0 (6.11)

in mean square over Q(x, j). For y in Q(x, j), the corrector matrix is given by

Pε,k,N (y) = χε,N
1 (y)R(γ k

N )
1(θ1
k
N )RT (γ k

N ) + χε,N
2 (y)R(γ k

N )
2(θ1
k
N )RT (γ k

N ). (6.12)

From (6.9) to (6.12) one sees that

Mi,N (x) = lim
j→∞ lim

ε→0

1

|Q(x, j)|
∫

Q(x, j)
χε,N

i,t (y)χε,N
i (y)Qi (BN ) dy1 dy2, i = 1, 2,

where Qi (B), i = 1, 2, are given by (2.8) and (2.9).
In order to facilitate the exposition we provide an explicit formula for the characteristic functions

χε,N
i in terms of the local layer normal and volume fraction. Let a be a number in [0, 1] and define

periodic functions on [0, 1] denoted by χ1(a, s) and χ2(a, s) such that χ1(a, s) = 1 for 0 � s < a,
χ1(a, s) = 0 for a � s � 1 and χ2(a, s) = 1 − χ1(a, s). Then for x in ωk

N one writes χε,N
i =

χi (θ
k
1 , nk · x/ε). We apply Hölder’s inequality to deduce that

Mi,N (x)∇φN (x) · ∇φN (x) � lim
j→∞ lim

ε→0

1

|Q(x, j)|
∫

Q(x, j)
χε,N

i,t (y) dy1 dy2

× esssup
0�s�1

{
χi (θ1

k
N , s)Qi (BN )∇φN (x) · ∇φN (x)

}

= θ N
i,t (x) fi (BN , ∇φN (x)), (6.13)

where

θ N
i,t (x) = lim

j→∞ lim
ε→0

1

|Q(x, j)|
∫

Q(x, j)
χε,N

i,t (y) dy1 dy2 (6.14)

holds for almost every point in ω and fi (BN , v) are the macrostress modulations defined by (2.10)
and (2.11).

The inequality (6.8) together with (6.13) delivers the homogenization constraint

θ N
i,t (x)

(
fi (BN , ∇φN ) − t2

)
� 0, i = 1, 2, (6.15)

for t > 0 and almost every x in ω.
In what follows we will denote the measure (area) of a set G by |G|. The set of points in ω for

which θ N
i,t (x) > 0 is denoted by {θ N

i,t > 0} and the set of points in ω for which fi (BN , ∇φN ) � t2

is denoted by { fi � t2}. From (6.15) it is evident that almost every point in {θ N
i,t > 0} also belongs

to { fi � t2} so

|{θ N
i,t > 0}| � |{ fi � t2}|. (6.16)

It follows that

lim
ε→0

λε,N
i (t, ω) =

∫
ω

θ N
i,t dx1 dx2 � |{θ N

i,t > 0}| (6.17)
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156 R. LIPTON AND M. STUEBNER

and from (6.16) we deduce that

lim
ε→0

λε,N
i (t, ω) � |{ fi � t2}| (6.18)

and it is clear that

lim
ε→0

λε,N
i (t, ω) = 0 (6.19)

if

fi (BN , ∇φN ) < t2 for all points x in ω; (6.20)

Theorem 6.2 is proved.

In order to expedite the presentation we call any partition Pτ M of the shaft into M subdomains
with M > N a refinement of Pτ N if τN � τM , and if every set in the partition Pτ M is a subset of a
set belonging to Pτ N . Now for a given partition Pτ N consider a sequence of refinements {P

τ
N j }∞j=1

such that P
τ

N j+1 is a refinement of P
τ

N j with Pτ N1 = Pτ N . Here τ N j → 0 as j → ∞. The sets
belonging to P

τ
N j are denoted by ωk

N j
, k = 1 . . . , N j .

Recall the optimal design B̂ and let BN j denote the piecewise constant design vector taking values
(θk

N j
, γ k

N j
) determined by the averages

θ̂k
1 N j

= 1

Area of ωk
N j

∫
ωk

N j

θ̂1(x) dx1 dx2, γ̂ k
N j

= 1

Area of ωk
N j

∫
ωk

N j

γ̂ (x) dx1 dx2.

Associated with BN j is the piecewise constant compliance tensor SE (BN j ) and stress potential φN j

that vanishes on the boundary of the cross-section and satisfies

− div
(
SE (BN j )∇φN j

) = 1. (6.21)

We consider the intersection of the set of Lebesgue points for each of the functions θ̂1 and γ̂ . On
this set BN j → B̂ as j → ∞. This delivers the convergence

lim
j→∞ SE (BN j ) = SE (B̂) for almost every x in �. (6.22)

Define θ̂2 = 1 − θ̂1 and for almost every point for which θ̂i (x) > 0 one has that

lim
j→∞ fi (BN j (x), v) = fi (B̂(x), v), (6.23)

otherwise over almost every point for which θ̂i (x) = 0 one has

lim
j→∞ fi (BN j (x), v) � fi (B̂(x), v) = 0. (6.24)

It follows immediately from the theory of homogenization (35, 36) that {φN j }∞j=1 converges

weakly in W 1,2
0 to φ̂H and

lim
j→∞

∫
�

φN j dx1 dx2 =
∫

�
φ̂H dx1 dx2. (6.25)

Moreover since the sequence of tensors {SE (BN j )}∞j=1 converge pointwise to SE (B̂), standard

arguments show that the sequence {∇φN j }∞j=1 converges in mean square to ∇φ̂H . On passing
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POINTWISE STRESS CONTROL 157

to a subsequence if necessary one may assume that the sequence {∇φN j }∞j=1 converges almost

everywhere to ∇φ̂H .
We partition the set S into two subsets S0

i and S+
i where θ̂i = 0 on S0

i and θ̂i > 0 on S+
i .

Collecting observations one readily sees that

lim
j→∞ fi (BN j (x), ∇φN j (x)) = fi (B̂(x), ∇φ̂H (x)) (6.26)

for almost every x in S+
i and

lim
j→∞ fi (BN j (x), ∇φN j (x)) � fi (B̂(x), ∇φ̂H (x)) = 0 (6.27)

for almost every x in S0
i .

Next consider the sequence of piecewise locally layered microstructures associated with SE (BN j )
constructed according to the hypotheses of Theorem 6.2. The sequence of stress potentials for these
microstructures is denoted by {φε,N j }∞j=1. From Theorem 6.2 and (6.25) it follows immediately that

lim
j→∞ lim

ε→0

∫
�

φε,N j dx1 dx2 =
∫

�
φ̂H dx1 dx2 = R(B̂). (6.28)

Standard arguments show that for any subset C of �

lim
j→∞ lim

ε→0

∫
C

χ
ε,N j
i dx1 dx2 = lim

j→∞

∫
C

θ
N j
i dx1 dx2 =

∫
C

θ̂i dx1 dx2. (6.29)

In order to finish the proof of Theorem 2.2, it remains to show that for t > T the associated
sequence of distribution functions λ

ε,N j
i (t,S) satisfies

lim
j→∞ lim

ε→0
λ

ε,N j
i (t,S) = 0, i = 1, 2. (6.30)

We write S = S0
i ∪ S+

i and note that

lim
j→∞ lim

ε→0
λ

ε,N j
i (t,S) = lim

j→∞ lim
ε→0

λ
ε,N j
i (t,S0

i ) + lim
j→∞ lim

ε→0
λ

ε,N j
i (t,S+

i ), i = 1, 2.

We then observe that the inequality χ
ε,N j
i,t � χ

ε,N j
i together with (6.29) gives

lim
j→∞ lim

ε→0
λ

ε,N j
i (t,S0

i ) = 0. (6.31)

We choose τ so that T < τ < t . Setting

Aτ
N j

= {x in S+
i ; fi (BN j (x), ∇φN j (x)) > τ 2} (6.32)

it is evident from (6.26) and

fi (B̂(x), ∇φ̂H (x)) � T 2 for i = 1, 2 (6.33)
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that lim j→∞ |Aτ
N j

| = 0 for τ > T . The points in S+
i not in Aτ

N j
are denoted by S+

i \Aτ
N j

. On this

set fi (BN j (x), ∇φN j (x)) � τ 2 and from Theorem 6.2 we deduce that

lim
ε→0

λ
ε,N j
i (t,S+

i \ Aτ
N j

) = 0. (6.34)

Lastly it is evident that λ
ε,N j
i (t, Aτ

N j
) � |Aτ

N j
| and (6.30) follows after taking limits, since

λ
ε,N j
i (t,S+

i ) = λ
ε,N j
i (t, Aτ

N j
) + λ

ε,N j
i (t,S+

i \ Aτ
N j

) (6.35)

and Theorem 2.2 is established.

REMARK 6.3 The proof of Theorem 2.2 contains the algorithm for selecting the partition used in the
construction of a locally layered microstructure that satisfies the design requirements given by (2.18)
to (2.20). Indeed one can choose any initial partition denoted by Pτ N and consider the sequence of
refinements {P

τ
N j }∞j=1, where Pτ N1 = Pτ N and lim j→∞ τ N j = 0. For given tolerances t > T and

δ > 0 it follows from (6.28) to (6.30) that there exist a sufficiently refined partition P
τ

N
ĵ

for which
one can choose a locally layered microstructure on a sufficiently fine length scale ε0 that satisfies
the design requirements (2.18) to (2.20).

7. Conclusion

The inverse homogenization design method provides a means to construct a locally layered material
with desired strength and stiffness properties with layer thicknesses on a sufficiently small length
scale ε0 > 0. However this methodology does not give a priori information on what this length scale
should be. To fix ideas we identify some of the relevant quantities influencing the length scale for
the simple case of a smooth domain containing a uniform microgeometry. We consider a smooth
domain � containing a layered material with the scale of the layers being ε. The associated stress
potential is denoted by φε and the homogenized stress potential is denoted by φH . The distribution
function λε

i (t) gives the measure of the set inside the i th material, where |∇φε| > t . We suppose
that it is known that fi (B, ∇φH ) � T 2 in �. For this case one can apply well-known results in
corrector theory (38) to deduce a bound on the distribution function given by

λε
i (τ + εh) �

√
ε

(
C1 max

x in �

{|∇∇φH (x)|}+ B1 max
x in �

{|∇φH (x)|})
τ − T

for τ > T , where h = C2 maxx in �

{|∇∇φH (x)|} + B2 maxx in �

{|∇φH (x)|} and where C1, C2,
B1 and B2 depend on the area fraction and shear moduli of each of the materials and ε independent
norms of boundary-layer functions. From this estimate it is clear that the homogenized stress and
stress gradient ∇∇φH together with boundary layers play a strong role in determining the length
scale ε0 of the microstructured material possessing the desired properties. Future work will focus
on a priori estimates for this length scale for graded composite materials while keeping in mind the
singularity strength associated with reentrant corners and the wavelength of the loading.

The numerical method presented here can be applied to the design of locally layered microstruc-
tures for fully three-dimensional linear elastic problems. This can be justified following the meth-
ods developed in this paper. The only technical modification necessary to justify the method for the
three-dimensional case is to replace the convergence result described by (6.10) and (6.11) with the
analogous one suitable for the system of linear elasticity. Such a convergence result follows directly
from the work of (39).
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