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ABSTRACT

NEW BOUNDS on the elastic and electric polarization tensors are found for grains of arbitrary shape or
connectivity. For a grain shape specified by the characteristic function x{x). the bounds are given explicitiy
in terms of the geometric function |%(k)]*. For electric polarizations one of the bounds may be interpreted

as the polarization of 4 homogeneous ellipsoidal inclusion with axes determined by |%(k})|". The other
bound corresponds to a convex sum of polarization tensors for plate-like inclusions. Here the plate normals
and weights are specified by [j(k)|°. These bounds are used to predict the range of effective transport
praperties for hicrarchical random suspensions and aggregales that realize the Effective Medium Approxi-
mation. The inequalities also provide rigorous bounds for the effective properties of dilute statistically
anisotropic random suspensions.

I. INTRODUCTION

CONSIDER AN inclusion of a given conductivity ¢, immersed in an infinite medium of
a different conductivity ¢,. We subject the system to a homogeneous electric field (.
The ‘average electric polarization induced inside the inclusion is given by the linear
relation

average electric polarization = (¢, —¢,)P.(. (L1)

Here the tensor (6,—0,)P, is commonly known as the polarization tensor of the
inclusion. The tensor P. depends upon the shape of the inclusion and transforms the
electric field at infinity into the average field inside the inclusion. Similarly, consider
an inclusion of elasticity C. immersed in an infinite medium of elasticity C,. subjected
to a homogeneous strain ¢. The average elastic polarization induced inside the
inclusion is given by

average elastic polarization = (C,—C,)T.e¢. (1.2)

The elastic polarization tensor is defined by (C,—C,)T, and the tensor T is referred
to as the Wu strain tensor. see WU (1966). This tensor transforms the elastic field at
infinity into the average field inside the inclusion.
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For ellipsoidal inclusions explicit formulas for the electric polarization are known
(see for example STRATTON. 1941). Explicit formulas for the elastic polarization tensor
of ellipsoidal inclusions can be found in the work of ESHELBY (1957).

In this analysis we do not restrict ourselves to cases where the inclusion is simply
connected or even connected. To fix ideas we label material 2 as the inclusion material
and material | as the matrix. The generalized inclusions treated here can be viewed
as an archipelago of finite diameter immersed in an unbroken sea of material |. The
archipelago is made up of grains of material 2 separated by material I, see Fig. 1. The
only constraint placed on the generalized inclusions is that their diameter be finite.

We consider a generalized inclusion of conductivity ¢, immersed in a matrix of
conductivity ¢,. The geometry of the inclusion is described mathematically by the
characteristic function y, of the inclusion, i.e. y, = | in material 2, %, = 0 outside.
Partial information on the geometry of the inclusion is contained in the function
%2(k)1*. Here |

1
Lalk) = G L‘e" “y.(x)dx

is the Fourier transform of y.(x) at wave vector k. When the inclusion is more
conducting than the matrix. i.e. 7. > ¢,, we show that the electric polarization tensor

SN

F1G. I. A generalized nciusion is viewed as an archipelago of material 2 immersed in an unbroken sea of
matenal .
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1s bounded below by the polarization tensor of a homogeneous ellipsoidal inclusion
with axes explicitly determined by the geometric function [%2(k)12 see Section 3.
The upper bound for the polarization tensor is given by a convex combination of
polarization tensors associated with plate-like inclusions of conductivity ¢,. The plate
normals and weights appearing in the convex sum are also determined by the geometry
of the inclusions through the function [Z2(k)|*, see Section 3. When the inclusion i
less conducting the bounds switch. and the upper bound becomes the polarization of
4 homogeneous ellipsoidal inclusion and the lower bound corresponds to the convex
sum of plate-like polarization tensors.

For the case of a generalized elastic inclusion embedded in a matrix of a second
elasticity we obtain upper and lower bounds on the Wu strain tensor of the inclusion.
These bounds are also given in terms of the geometric function |3,(k)|%. To fix ideas
we consider a generalized inclusion of elasticity C, embedded in a matrix of C, and
we suppose that C, > C,. For this case we are able to show that the upper bound on
the elastic polarization is a convex sum of polarization tensors associated with plate-
like inclusions. The weights and plate normals appearing in the sum are determined
by |%.(k)|*, see Section 4. The lower bound on the polarization is given by (2.48).
Due to the higher-order tensorial nature of the elastic problem it is not as easy to
associate the lower bound on the polarization tensor with a polarization tensor of a
homogeneous ellipsoidal inclusion s in the case of conductivity. It is conjectured that
one can do 5o and progress is being made in this direction. Nevertheless, it is possible
Lo derive a lower bound on the polarization tensor that is insensitive to the geometry
of the generalized inclusion. see (5.11). It is easy to see that this lower bound cor-
responds to the elastic polarization of a spherical inclusion. We show, as one would
expect, that the geometry independent lower bound lies below all geometry dependent
lower bounds given by (2.48). This easily follows from the convexity property of the
lower bound with respect 1o the geometric function [X2(k)[% see (4.6). For the case
€, < C, the bounds switch and the upper bound is given by (2.48) whereas the lower
bound is given by (2.49).

The bounds on the elastic and electric polarization tensors stated here follow from
the low volume asympiotics of the Hashin-Shtrikman second-order bounds. see
Section 2. The interpretation of various bounds as polarization tensors of homo-
geneous ellipsoidal inclusions follows from topological degree methods. see Section
3. and the Appendix.

We apply these results 1o modeling the effective lransport properties for random
composites. We consider the Symmetric Effective Medium Approximation (EMA)
also known as the Coherent Potential Approximation (CPA), see LANDAUER (1978).
These approximations are well known in the physics and continuum mechanics litera-
ture as they tend to do well in approximating the overall properties of random
composites (see LANDAUER. 1978 : CHRISTENSEN, 1990). The EMA was originally
developed in the electrostatics context by BRUGGEMAN (1935). The application of
EMA 1o elasticity was made by KRONER (1958). "

Recently, it has been shown that for every EMA one can construct a composite for
which the EMA gives the actual eflective transport properties. This was observed by
MILTON (1985) for the EMA in the context of multiphase conducting composites. At
about the same time NoORRis (1985} introduced a generalized differential effective
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medium scheme to show the realizability of the EMA for multiphase isotropic elastic
composites. More recently, AVELLANEDA (1987) applied the mathematically precise
notion of G-convergence to prove the realizability of the EMA for multiphase aniso-
tropic elastic composites, and establish power law convergence for the differential
scheme.

In view of the previous remarks we see that EMA, while providing estimates for
random aggregates and suspensions are also exact effective properties for a class of
hierarchical random models. In this article we characterize the range of efiective
transport properties for these hierarchical models. The well-known bounds on effective
properties provided by the Hashin-Shtrikman variational principle (HasHIN and
SHTRIKMAN, 1963), the translation method (TARTAR, 1985; LURIE and CHERKAEV.
1984), and the analytic continuation method (BERGMAN, 1978: MiLTON. 1981 :
GOLDEN and PAPANICOLAOU, 1983) are too wide to predict accurately the range of
transport properties for these models. Here we apply techniques based upon differ-
ential inequalities to understand the range of effective properties for the class of
hierarchical micromechanical models that realize the EMA. see Sections 5 and 6.

In this treatment we consider the EMA associated with isotropic two phase elastic
and conducting mixtures. Bounds on the polarization and Wu tensors are used 1o
obtain inequalities on the effective properties for an EMA associated with a hier-
archical mixture of two clastic or conducting grains.

For EMAs associated with two phase conductors and prescribed grain shape we
show that there exist extremal EMAs associated with ellipsoidal and plate-like grains
that bound the EMA above and below. see Section 5. In fact it is possible to charac-
terize the set of all effective conductivities for the hierarchical models. sce Section 6.
We show that this set can be realized by just considering hierarchical models of
spheroidal inclusions. For EMAs associated with a hierarchical mixture of two elastic
grains it is shown that the EMA is bounded above and below by extremal EMAs
associated with spherical and plate-like grains. sec Theorem 5.A. We note that these
bounds are the absolute lower and upper bounds for all EMAs as one considers all
grain shapes.

A second application of the bounds on electric and elastic polarizations is to the
study of dilute anisotropic random suspensions. We apply our results to find bounds
on the effective properties of dilute anisotropic random suspensions valid to second
order in the volume fraction. see Section 7. For the special case of isotropic random
suspensions we show that Maxwell’s result (MaxweLL. 1873) for suspensions of
conducting spheres provides optimal bounds on the effective properties of isotropic
dilute suspensions of particles of arbitrary shape.

2. ESTIMATES FOR POLARIZATION AND WU STRAIN TENSORS

We consider electrically conducting the elastic composites made {rom two isotropic
phases. The electrical conductivities for phases [ and 2 are given by ¢,, i = 1.2. The
elastic properties of the two phases are described by Lamé shear moduli y,. i = 1.2
and bulk moduli x,. i = 1.2. The elasticities are assumed to be well ordered. i.e.
i < My Ky < K,. and without loss of generality we take o, < ¢.. The composite is
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treated as a periodic material with a square period cell Q, of edge length R. This
hypothesis is general provided the length scale of the inhomogeneities is much smaller
than unity, see GoLDEN and PapPaNICOLAOU (1983). The phase geometry is given
exactly by the characteristic functions of materials 1 and 2.

I if x is in materia] 2
Y%= 2.0
- 0 otherwise for xe Ox,
X =1-y5,
where
xFdx =g, ! x5dx = 0.
[Qrl Jo, 1@kl Jo, & i

The conductivity and elasticity tensors of the composite are defined by the piecewise
constant tensors

o(x) = (x¥o,+xf0,)1 (2.2)
and
Cx) = xfC, +x%C.,. (2.3)
respectively. Here
Co=2ul+k,~u)I® I = 1.2, (2.4)

where I is the identity on 3 x 3 symmetric matrices and / is the 3 x 3 identity matrix.

We suppose that the average electric field in a period cell of the composite is given
by the 3 vector ¢. The local field is given by Vo +{, where ¢ is the Qr-periodic potential
field. The local electric field solves

div(a(x)[Vo+{]) =0 in Ox (2.5)

and the effective conductivity tensor is defined by

oir= L f o(X) Vo + (] dx. (2.6)
,QR, Or

Similarly, suppose the average strain in a period cell is given by the 3 x 3 symmetric
matrix ¢. The local strain is given by e(u) +¢, where u is the Qx-periodic displacement
field and

The local strain solves
div(C(x)[e(u)+g]) =0 in Q,, (2.8)

and the effective elastic fensor C¢ is defined by
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C:¢

= 1 J "C(x)(e(u) +¢) : (e(u) +¢&) dx. (2.9
10zl Jo.

We introduce the spaces €% and #* of Qg-periodic square integrable mean zero
gradient fields and strain fields respectively. The space #* of strain fields can be
written as the sum of two orthogonal subspaces £ and £, ie. #% = 7@ .77 (cf.
MIiLTON and KoHN, 1988). Here #7 is the set of strain fields in #® that are derived
from a Q-periodic strain field v that itself is the gradient of some scalar potential,
and .#% is the set of trace free strain fields. We define the operators 'z, [y 2. sz 1O
be the projections onto &%, #F and ¥ respectively. We define the following operators
for.conductivity

1

bh=—=Tg =12, (2.10)
o
and elasticity
_ 3/2 1
= ————— — | = 2
R 3k'+4#, r;,_R + 2#’ rs_R, 14 l, 2 (...1 1)

It follows from KOHN and MiLToN (1986) that the upper and lower Hashin-
Shtrikman second-order bounds for the effective electrical conductivity are given by

¢ <o <o (2.12)
where
-1
o= 0’1+9:(U:—'6|)[1+(1 —62)"1‘" (J (5ALS d-‘)(az—dl))} (2.13)
‘QR' (1}
and

Gu=0'|+0:(0':—0'|)|:1“03"1_' (J‘ xf/\ixfdx)(o‘:—o,)] . (2.14)
!QRl {49

The upper and lower bounds for the effective elasticity are given by
e (2.15)
where

c = C|+62(C1—C1)|:1+(1_92)“'1"' (j (X?T)zxgd-Y)(C:—Cu)>:|_ (2.16)
L 10r!\ Jox

and

-1
‘C"=Cx+0:(C:-Cl)[1—9:—l—-<J (x'fozx'fd«\‘)(C:—Cl)ﬂ . (217
lQRi [

Here the resulting composites may be anisotropic so that the inequalities (2.12) and
(2.15) hold in the sense of quadratic forms.
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Bounds on the Wu strain tensor and polarization tensor are obtained by expanding
the effective properties and Hashin-Shtrikman bounds in low volume fraction expan-
sions. It s easily seen that the low volume fraction limit may be realized by taking
the period cell Q to be infinite. We consider a suspension of inclusions E, of material
2 within a matrix of material 1. Passing to the R = oo limit in (2.6) gives the low
volume fraction expansion for the effective conductivity

6° = 0,+0:(02—0,)Py(0,,0,)+0(63). (2.18)
Here (o,—0,) P, is the polarization tensor of the inclusion £, and
1
Py(oy,0,) = ——f (Vo™ + 1) dx, (2.19)
[Eal Je,

where the potentials ¢ = (¢ . ¢7.07), i = 1,2,3 solve

div(e(x)(Vo?* +¢')) = 0, (2.20)
f VoI < oo, (2.21)
and
o(x) = xio,+x3oa. (2.22)
Here 33 = 1 for xin E, and zero outside (x; = 1 —y%). The vectorse’, i = 1,2, 3 are

unit vectors along the three coordinate axes (cf. AVELLANEDA. 1987). The polarization
ts seen to depend upon the shape of the inclusion E,. and upon the conductivities
01,0, Analogously one has the low volume fraction expansion for the effective
elasticity given by

C*=C,+0:(C,—C,)T,(C,,C,)+ O(03). (2.23)
Here T is the Wu strain tensor of the inclusion E, and
1
T. = j (e(u*)+T)dx, (2.24)
[Ea| Je,

where the displacement fields u™ = u*" i, j = 1,2, 3 solve

div (C(x)(e(u™ )Y +ei-ef)) = 0, ‘ (2.25)
J le(u™ ) dx < oz, (2.26)

and
Clx) =7 C +y¥Cs. (2.27)

The matricese'- ¢’ are defined by (¢' ® ¢’ +e’ ® €)/2. The polarization and Wu tensors
map the homogeneous electric and strain fields at infinity to the average electric and
strain fields inside the inclusion E.. If one considers suspensions of inclusions E,
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within a matrix of material 2 the associated low volume fraction expansions are given
by

0" =0;+6,(6,—0;)P (0},0,)+0(6?) (2.28)
and
C=C,+0,(C, —CZ)T,(C,,CZ)-!-O(Hf). (2.29)

Here (6, —0,)P, and T, are the polarization and Wuy strain tensors associated with
the inclusion E,.

To fix ideas we show how to obtain bounds on the Wu strain tensor T,. For
sufficiently small values of inclusion volume fraction ¢, we may expand the Hashin—
Shtrikman upper bound (2.17) to obtain

Qr

Here R is sufficiently large and «, = |ORI/(ESL|E,]) with

IE:I-—'.J‘ %2 dx, |E||=J X1 dx.
Qr Qg

A straightforward calculation shows that

J X Taxf dx = f x5Thyf dx. (2.31)
Q x

r

Now as [gim (IE1l/IQgl) = 1 one finds [using methods found in AVELLANEDA (1988).
LipToN (1990)] that

. k] l b
lim <1R f X3TRrxS dx) == | x¥Txx5dx, (2.32)
Qn IE:‘ R

R—=z

where X7 is the shape function of the grain ; indeed,

X3 =1lin E,, x¥ =0 outside. (2.33)
Here the tensor T? is defined for all 7, in L*(R%)**? such that for £ = k/lk|.

(T, 6)(x) = f e~ * " T (K)ik) dk, (2.34)

R}
where
T (k)yik) = 3/2—1‘“ (k)i(k) + ! F..B)ik), i=1.2 2.35)
b4 T - 3k,+4ll, hox T 2#, 5. T( )v r=1,4, ('-'

and

Chx (B)E(k) = 26 (VK ) ® F, (2.36)
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L\ (B)E(k) = (200K) ® £+ ® (£(k)E) = 2(2(k)K, K)E ® . (2.37)
From Parseval’s identity we obtain
o I o
IT2y%d =——J (3 (k)|2T2 (k) dk 2.38
IEZIL*X‘ X5 A = o SIE QALY (2.38)
and
1 . 5 ,
= z . 2.39
|E.| (27[)3L‘lx_ (k)1* dk (2.39)
In view of (2.38) and (2.39) we write
1 2 l - ™~ -
j X3 Taxydx= ——j 3 (k)1°T3 (k) dk, (2.40)
1Es| Jrs W JR?

where w, = [o: |53 (k)] dk.
The low volume fraction expansion of the Hashin-Shtrikman upper bound is
written

C'=C, +9:<C:—c')[l— }(f 5 (01 T2 (k) dk)(C:—C.)]w(ei).
Ya \ Jr?

(2.41)

Similar arguments show that the lower bounds for low volume fraction suspensions
of identical inclusions of material 2 is given by

-1
C'=C, +9:(C:—C.>[I+ -‘-1"- <J X5 (k)T (K) dk)(«::—m] +0(63).
2 R}

(2.42)

We now rewrite the low volume fraction Hashin-Shtrikman upper bound (2.41) in a
more symmetric form. Indeed, we note that the tensor

! PP l sy - .
I= - <L;I(XS(I")"T;~ (k)dk)(C:—Cu) = FL‘(I— T35 (kNC,=C))ixa(k)* dk

. (2.43)
and calculation shows that
I-T5 (k)C.~C)) = I+ T (F)C.=C))] . (2.44)

Thus C* may be written as
1 PR
"=¢:.+(cg—c,);—f [+ T, E)C.—CD] (k)2 dk.  (2.45)
2 R_'(

Introducing the measure
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11
M?*dn) = [W_Z.[ . [X3 (sm) |2 ds] dn (2.46)

defined on the unit sphere S? it follows from (2.41), (2.42), (2.45) and (2.46) that the
Wu tensor T, for grain E, is bounded by

(€,-C))L, < (C,-C )T, < (C,~C)U, (2.47)
where
L,= [1+L T. (n)Mz(dn)(Cz—C,):]-l (2.48)
and -
U, =L [+ TL(n)(Cy—C )] ' M3 (dn). (2.49)

Similar arguments show that if the inclusion grain £, is softer than the matrix (i.e.
Ky <Ky, 4 < u,) then the bounds switch and

(€.~C)U, < (C,-C))T, < (C,—C))L,. (2.50)

Bounds on the polarization tensor (6:—0,)P, are obtained in the same way and
are given by

(02=0)0: < (6:~0,)P, < (0,— 0\ ),, (2.51)
where
[ = [1+J;:f\,‘,_(n)Mz(dn)(az—al)]- ], (2.52)
U, = L U+A% (n) (0 —0,)])" ' M (dn) (2.53)
and
Al(n) = a—', n® n. ‘ (2.54)

The bounds switch when the inclusion grain £, is less conducting than the matrix.

3. INEQUALITIES FOR THE POLARIZATION TENSOR

In this section we examine the bounds for the polarization (6:—0,)P, of a gener-
alized inclusion E, of arbitrary shape y} embedded in an infinite matrix of con-
ductivity o,. We show that the lower bound is precisely the polarization tensor of an
ellipsoid with orientation and axes determined by the function [ (k)I*. The upper
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bound is shown to be a convex combination of polarization tensors associated with
plate like inclusions.

We first examine the lower bound on the polarization tensor. To this end we
introduce the polarization tensor for an ellipsoidal grain of conductivity ¢, embedded
in an infinite matrix of o, material. Let 1 +m,, 14+m,, 1 +m,, (m; > 0) be the half
lengths of the principal axes and let e,, e,, e, be the coordinate axes. The ellipsoidal
axes are related to the coordinate axes through the rotation matrix Q. We define the
diagonal matrix L

L,
L,

such that L, i = 1,2, 3 are the depolarizing factors given by (cf. STRATTON, 1941),
3
VI+m;
i

i= x ds
Liim,,my,m;) = ) J: , (3.2)

3

(s+m) [T](s+m)

i=]

where
Li+L,+Ly=1 and L;20, i=1,23. (3.3)
The polarization (¢;,—0,) P§ of the ellipsoid is given by
-1
(6:-01)P3 = (a:—al)[HQLQ-'%] : (34)
) 1

We note that QLQ "' is positive definite and tr (QLQ~ ") = 1. We now consider the
lower bound /,. It follows from (2.52) and (2.54) that /, is of the form

— -t
Q=P+A“ “}, (3.5)

0,

where the geometric tensor 4 is given by
A =Jzn®nM2(dn). (3.6)
S

It is evident that 4 is positive definite and trace 4 = 1. The assertion that the lower
bound (¢,—0,)/, is the polarization tensor (6:—0,)P% for an ellipsoid follows
immediately from Theorem (3.A).

Theorem (3.4)

Given any grain shape function ¥ (x) there exists an ellipsoid with axes 1+m,.
1 +m,, 1 +m; and orientation Q such that
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.QLQ'l = A. (3.7)

The proof is somewhat technical and is provided in the Appendix.

We now consider the upper bound (6:—0,)%; on the polarization tensor to show
that it is given by a convex combination of polarizations for plate-like inclusions. We
observe that a plate-like inclusion is obtained by letting one of the ellipsoidal axes
specified by the unit vector n go to zero. It follows from the work of WALPOLE (1967)
and KINOsHITA and MURA (1971) that the polarization of a plate conductivity o,
embedded in an infinite matrix of ¢, conductor is given by '

(ol—a,)Pz=(az—al)[l—n®n(a_za—,m)} (3.8)

Noting that

g3

[I+A'!c (mM(o.—0)] ' = [I—n ®n (02_,6')],
the upper bound (¢,—¢ )%, given in (2.51) can be written using (2.53) and (3.6) as

(02—0)), = (a:—al)[l—A (‘%_‘-"3] (3.9)

We denote the set of 3 x 3 positive definite matrices with unit trace by S™. It is
easily seen that S*" forms a convex polyhedron with rank one matrices as vertices.
Since ‘4 defined by (3.6) has trace 1 and is positive definite it is an element of S,
Therefore there exists at most six rank-one matrices »' ®n',i=1,...,6such that

6

A=Y pn'®@n’, p'>0, Yp=1 (3.10)
i=1 i=1

Therefore it is immediate from (3.8). (3.9) and (3.10) that the upper bound (g, — o )%

can be written as a convex combination of polarizations for plate-like inclusions.

4. ESTIMATES OF THE WU STRAIN TENSOR USING PLATE-LIKE INCLUSIONS AND
CONVEXITY PROPERTIES OF BOUNDS

Because of the higher-order tensorial nature of the Wu strain tensor for elasticity
the lower bounds (2.48) on T, have not yet been identified with Wu tensors associated
with ellipsoidal inclusions. However. work is in progress along this direction. In
contrast it is relatively easy to argue as before that the upper bound (2.49) on T, is
associated with convex combinations of Wu tensors for plate-like geometries. It
follows from the work of WaLPOLE (1967) and KiNosHITA and MURA (1971) that the.
Wau strain tensor for a plate-like inclusion of elasticity C, with **n” being the direction
vector of the vanishingly small axes is given by

T.=[/+T"'(n(C,—C)] ", (4.1)
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where 7' (n) is given by (2.35) for i = 1. Calculation shows that T, is also given by
the expression

T, = I-T*@n)(C,-C)), (4.2)

where T%(n) is given by (2.35), for i = 2.
The upper bound U, given by (2.47) can be written as

U, =1-A%*C,-C)), 4.3)

where

A= f T2 (m)M*(dn). (4.4)

We observe that (4.4) amounts to a convex combination of tensors T?(#). The set
of tensors T (1) for /i S* constitute a surface in the 14- dimensional vector space of
totally symmetric tensors. It is evident from (4.4) that A? lies within the convex hull
of the surface. It follows immediately that extreme points on the hull are of the form
T3(n) for ne S*. Thus from Carathedory’s theorem we see that A? can be expressed
as a convex combination of at most 15 extreme points.

Indeed, there exist at most 15 directions n', i = I,...,7< 15 and weights p, > 0

J
such that ) p, =1 and
i=1

A= ¥ o). (4.3)

It follows immediately from these arguments and (4.3) that the upper bound U, can
be written as a convex combination of Wu strain tensors for plate-like inclusions.

We state here for future use a convexity property of the lower bound in terms of
the geometnc measure M *. Indeed, given the parameter 0 < p < | and two measures
M }(dn), MZ(dn) associated with two shape functions ¥%,., x5, we have

(cz—m[n {p f TL)MiAm+(1 —p)ﬁ T;(n)Mf(dn)}(cz—C.)]_
S - Al
sp(cz—c,>[1+ L 2 T;(")Ms(d”)(cz—cl)jl-

+(1—P)(C2—C1)[1+J T;(H)Mf(dn)(fz-—fﬁl)il_ . (4.6)
5?2

We remark that the lower bound for the polarization tensor exhibits an identical
convexity property in terms of the geometric measure M 2(dn).
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5. INEQUALITIES FOR EMA
5.1. Generalized DEM theories and the EM A attractor

The generalized DEM theory provides an incremental process under which a hier-
archical aggregate of different elastic or conducting phases is constructed over an
infinite number of scales. For grains of ellipsoidal shape the resulting overall properties
are given by explicit algebraic equations. These equations are precisely those given by
the EMA (cf. Norris. 1985 BRUGGEMAN, 1935). For grains other than ellipsoidal.
one still obtains formulas which agree with the EMA equations. However, the field
equations associated with the EMA must now be solved numerically.

To fix ideas we consider a two phase hierarchical aggregate of grains with elasticity
C, and C,. We describe the construction process for the generalized DEM theory
developed by NoRRIs (1985). We consider a volume of space ¥, in which the composite
is to be constructed. The volume V4 is initially composed of an anisotropic elastic
“backbone™ material with elasticity specified by C,. Grains of materials | and 2 are
“embedded ™ into the volume ¥, by removing an infinitesimal volume fraction of the
backbone material. The resulting composite has a new overall or effective elasticity
C°. The volume fractions of the backbone and materials | and 2 are given by ¢,. ¢,.
@2 such that ¢,+¢,+ ¢~ = |. The insertion removal process continues by removing
the present material and replacing it with inclusions of materials | and 2. However.
the replacement grains are always an order of magnitude greater in size than those at
the previous removal replacement step. This insures that at each step the material in

o 1s homogencous. (For 1solropic composites we assume in addition that at each
step the grains are dispersed with random orientation.) This process may be para-
meterized by the variable 7 so that the volume fractions and effective elasticity are of
the form ¢, = ¢,(1). ¢, = ¢:(1). C° = C*(1). The process continues until there is no
backbone material left. For a composite containing volume fractions #, and 0, of
materials | and 2 respectively ; we have

hm(p|(1) =6] and ©Im (p:([)=03
11— 1—x
We introduce the parameters v1(f) and ¢1(2) that measure the total volumes of
materials 1 and 2 added during the construction process. It follows that ¢, and ¢, are
both positive as materials 1 and 2 are always added not taken out. The construction

process can be described by a path in the (ry,r,) plane.
Given an admissible path in the (¢, c,) plane such that

lime,(r) =0, and llim ©a(1) = 46,,
the generalized DEM of NORRIS (1985) states that the effectjve elasticity C¥(7) satisfies

the initial value problem.

d < - ¢ eff lf' < eff l:; -
dlC(f)—(C;—CKTn >‘V';+(C:—C)<T:>V . (3.1

0

Here T{" and T¢" are the Wu strain tensors for a single grain of material 1 and for a
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grain of material 2 embedded in an infinite matrix of elasticity C°, respectively. The
symbol {-)> denotes averaging over all prescribed grain orientations. NORRIS (1985)

showed that in the limit as 7 goes to oo the resulting C*(r) converges to C* where C*
solves the EMA equations

8,(C, —C) (TS +0,(C, — C) (T = 0. (5.3)

Here T¢" and T¥ are the Wu strain tensors for grains of material 1 and of material 2
specified by shape functions %7, x5 embedded in an infinite matrix of elasticity C*.

AVELLANEDA (1987) showed that C°(¢) converges to the attractor é‘ as a power of
the residual volume fraction ¢, independently of grain shape.

5.2. Inequalities for EM A theories for hierarchical elastic aggregates and suspensions
using spheres and plate-like grains

In this section we obtain upper and lower bounds on EMAs for isotropic hier-
archical elastic composites made from two “well ordered” matenals C, > C,. These
bounds depend only on volume fraction and are insensitive to further details of the
geometry of the grains. We show that these bounds are the best possible bounds given
this limited information. Indeed. we show that the bounds correspond to EMAs made
from spheres and randomly oriented plates. '

We first recall the lower bound on the Wu strain tensor appearing in (2.47) for a
grain E, of elasticity C, given by

(C,-C)L, £ (C,-C))T,. (5.4)

Averaging (5.4) over all orientations gives

(C,=C)}L,> < (C,-C)(T>>, (5.5)
where (L) is written as
<L:>=L03Q®Q[I+A3(Cz—02,)]“Q®QdQ (5.6)
and A’ is given by
A= L: T! (mM*(dn). (5.7)

Here 0 ® OFQO ® Q = F1y0:n0,,0:0Q), denotes the rotation of any symmetric
fourth-order tensor F and dQ is the Haar measure for SO*. Applying the convexity
property (4.6) to (5.6) yields the inequality

(C,—CHL, < (C,-C (L, (5.8)

where
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-1
L= [I+<Lﬂ © ®QA2Q®QdQ)(Cz—C.))J : (5.9)
The group average of A2 over SO? is given by

6u, + 3k, uy + 3k, )
- I®1)=8§,,
Sui(Bk, +4pu,) U5p,(3k, +4u,)) :

LOJQ®QA2Q®QdQ=(

(5.10)

and L, becomes I, = [[+S,(C,—-C))]"". We note from (5.9) and (5.10) that L, is
independent of inclusion shape. Thus the shape independent lower bound (C,-C))L,
on the averaged Wu tensor is given by

(€;=C)L, < (C,—C\)(Ly € (C,=C\)<T,). (5.1D)

As S, =SC;! where S is Eshelby’s fourth-order tensor (cf. Wu, 1966), one readily
verifies that L, is also the Wu strain tensor for spherical inclusions of elasticity C,
embedded in an infinite matrix of elasticity C, (cf. WiLLIs, 1982). In this way we see
that the lower bound given by (C,—C,)L, is the best possible lower bound on the
orientation averaged Wu strain tensor.

A similar shape independent upper bound on the average Wu tensor (T,) for a
grain £, embedded in a matrix of C, is given by

(C,—Cy)<T,> < (C,-C,)T,. (5.12)
Here
U, =[1+S,(C,-C,)]" ", (5.13)
where
612+ 3k, pa+ 3k, )
= - L I®1). .
5 <5uz(3kz+4uz) 150203k, + 405 - @ S

Here S, = SC5! where S is Eshelby's tensor. One readily verifies that U, is the Wu
strain tensor for spherical inclusions of elasticity C, embedded in an infinite matrix
of elasticity C, (cf WiLLIs, 1982).

We introduce the EMA for two special isotropic aggregates: we first consider an
isotropic aggregate of spherical grains £, and the plate like grains £, in the con-
" centrations §, and 6, respectively, and denote its effective tensor by €. We also
consider the EMA for the dual isotropic aggregate made of plate like grains £, and
spherical grains £, in the concentrations 6, and 0, respectively, and denote its effective
tensor by C. We now show that the EMAs for these two special aggregates place
upper and lower bounds on all EMAs independent of grain shape.

Theorem (5.4). Inequalities for an isotropic two phase elastic EM A

All isotropic EMAs ée defined by (5.54) for arbitrary grains £, and E, in the
proportions 6, and 6, are bounded below by the EMA, C, with grains £ spherical
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and £, plate-like and bounded above by the EMA, €, with grains E, plate-like and
E, spherical, 1.e.

c<C<C. (5.15)

The proof of the theorem follows immediately from Section 4 and the inequalities
(2.47), (2.50), (5.11) and (5.12). Indeed for the homogenization path (v, »,) associated
with the initial value problem (5.1) we have that C and C given in the hypothesis are
the EMA attractors for the initial value problems

dcCs - ; - i,
g = (Ci—CNCTT 2 (€, —CTT 2, (5.16)
{ Uy Uy
C=C, (5.17)
and
dce ' h
1= (€= ORI 2 +(C, - TTH 2, (5.18)
t Uy Uy
¢ =C,, (5.19)

respectively. Here (75"} is the average Wu tensor for a spherical grain E, embedded
in an effective elastic medium C° and T is the average Wu tensor for a plate-like
grain £, embedded in the effective medium C-. Similarly (T5"> is the average Wu
tensor of a plate-like grain £, embedded in an effective medium and (T is the
average Wu tensor corresponding to a spherical grain embedded in an effective elastic
medium C°. Denoting the right-hand sides of (5.1), (5.16), (5.18) by f(1,C*), £(1,C%),
and f (¢, C°) respectively, it now follows from the inequalities (2.47), (2.50), (5.11)
and (5.12) that

S,C) < f(1,€) < f(1.C), (5.20)

and the theorem is proved by noting that the above inequality holds for all time.

5.3. Inequalities for EM A theory for hierarchical random conductivity models

We consider the EMA for an isotropic hierarchical composite made up of two
grains £, and £, of isotropically conducting materials ¢, and ¢, such that 0 < ¢, < G
We suppose that the grains have shapes given by x7, x5 and occur in the proportions
8. 6,, and denote the isotropic effective conductivity by ¢°.

We now introduce the EMA for two special aggregates: the first is an isotropic
hierarchical aggregate composed of ellipsoidal grains E, of material 2 and plate-like
grains £, of material 1. The depolarizing factors for the ellipsoidal grain are denoted
by L, i=1,2,3 and the effective conductivity is denoted by ¢. The second isotropic
hierarchical aggregate is composed of ellipsoidal grains £, of material 1 and plate-
like grains £, of material 2 and we denote the associated effective conductivity by g.
The depolarizing factors for the ellipsoidal grain are denoted by [, i = 1,2, 3,
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Lastly, we introduce the geometric tensors 4 and 4 associated with grains E, and
E, defined by

/Y:J' n®nM,(dn) and A4 =f n @ nM,(dn). (5.21)
2 — 2

Here M' and M? are the measures associated with shape functions 7, X3 respec-
tively. Letting A, and Z, (i = 1,2, 3) represent the eigenvalues of the tensors Aand 4
respectively, we have the following theorem.

Theorem (5.B) Inequalities for an isotropic two phase electrically conducting EM A

Given the isotropic EMA ¢° for arbitrary grains E, and E, of shape 17 and ¥
respectively in the proportions 6, and 0,, there exists an EMA of conductivity g with
grains E, ellipsoidal and E, plate-like with volume fractions 8,,8, and an EMA of
conductivity ¢ with grains £, ellipsoidal and E, plate-like with volume fractions 6,,0,
such that

<8 <4, (5.22)

where the depolarizing factors of the ellipsoidal grains £, and E, are determined by
the geometric tensors 4 and A through the equations

Li=1, i=123, (5.23)
and

L

I
h
8
~

]

1,2,3, . (5.24)

respectively.

The proof of theorem is analogous to the proof of Theorem 5.A and follows from
the inequalities (2.51).

We now fix the grain shapes E,, £, and allow the volume fraction 8, to vary from
zero to one. We consider the associated family #(E,, E,) of EMAs with homo-
genization paths terminating at 6, and 9, = 1—8,. For 8, in [0, 1] we denote any
EMA in this family by &¢(8,). Analogously we define the families F(E, E,) and
F(E\, E>). Here F(E,, E,) is the family of EMASs associated with ellipsoidal grains
E, of material 1 and plate like grains £, of material 2, and F(E,, E») is the family
associated with plate-like grains £, of material 1 and ellipsoidal grains E, of material
2. The EMAGs associated with the families F(E\,E,) and # (E,, E,) are denoted by
¢(6,) and ¢(8,) respectively. _

We observe that the estimates given by (2.51) are independent of volume fraction
and depend only upon the grain shapes E, and E,, therefore it follows that we have
bounds on EMAs with prescribed grain shape. Indeed, given the family & (E,, E,) of
EMAs there exist extremal families ZF(E\, E,) and & (E\, E,) such that



Inequalities for polarization tensors 827

a(8,) < 5°(8,) < 6(8,) (5.25)

for 0 < 82 < 1.
Here the depolarizing factors of the ellipsoidal grains £, and E, are determined by
the geometric tensors 4 and A4 through the equations

Ei /:-ia i= 1,2, 3’ (5'26)

and
L=, i=123, (5.27)

respectively.
It is interesting to plot the upper and lower bounds given by (5.25). For very rotund
grains the associated upper and lower bounds are far apart as in Fig. 2. As one or

50 f T T T I
>
2
o
3
°
b=
o
O
Q
=z
B
L
=
0 .5 1
Volume Fraction
FiG. 2. Isoperimetric bounds are plotted for ¢, = | and ¢y = 50. The dashed lines represent the Hashin—

Shtrikman upper and lower bounds. The solid curves represent the geometry independent bounds on the
EMA. The upper solid curve corresponds to spheres of ¢, and plate-like inclusions of ¢,. The lower solid
curve corresponds 1o spheres of ¢, and plate-like inclusions of s,. The curves - — . — - indicate geometry
dependent bounds on the effective conductivity. These upper bounds correspond to ellipsoidal inclusions
of o, with depolarizations L, = 0.125, L, = 0.25, L 3 = 0.625, and plates of ¢, ; the lower bounds correspond
to ellipsoidal inclusions of ¢, with depolarizations L, = 0.125, L,=10.375, L, =0.3. and plates of 5,.
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both of the grains become flat the upper and lower bounds approach each other as
in Fig. 3. The upper and lower bounds converge and agree in the limiting case of
plate-like grains. It is evident that these bounds gauge the rotundness of the grain
shape. We remark that the EMAs appearing in Figs 2 and 3 were found by computing
the attractors of the generalized DEM of NORRIS (1985) for homogenization paths
(@1(D). (@2(0) given by ¢, = 1, @, = 16,/(1-8,), for 0 < t < 1-6,.

6. A DESCRIPTION OF THE SET OF EFFECTIVE CONDUCTIVITIES PREDICTED BY
THE EMA

Here we describe the set of effective conductivities that the EMA is capable of
modeling as we consider all possible grain shapes with Lipschitz boundaries. In this

Effective Conduclivity

Volume Fraction

FiG. 3. In Fig. 3 the upper bounds are those for ellipsoids of &, with polarizations L, = 0.1, Ly=0.1.
L;=08 and L, =001, L, =001, L, = 0.98. respectively. The lower bounds are those for ellipsoids of
¢, with polarizations L, = 0.1, L;=0.1,L;=08,and L, = 0.01, L, = 0.01, Ly = 0.98, respectively.
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way we find the set of all effective conductivities of the hierarchical models realizing
the EMA.

We start by describing the boundary of the set. We introduce two extremal families
of EMA. The first family comprises those constructed from spherical grains £, of
material 1 and plate-like grains £, of material 2. The associated EMAs are para-
meterized by volume fraction 6, only, and are given by 6*°(6,) for 0 < 6, < 1. The
second class of EMAs are those constructed from plate-like grains E, of material |
and spherical grains E, of material 2. The associated EMAs are denoted by g*(6,)
for0g8,<1.

It follows immediately from the convexity properties of the bounds on the electric
polarization tensors noted in Section 4, that :

a%(62) < 6°(6,) < 57(6,) (6.1)

for any effective tensor ¢°(f,) associated with an EMA made from grains E, and E,
in the proportions | - @, and 6, respectively.

We see that this places upper and lower bounds on all EMAs independent of grain
shape. We plot the bounds ¢**(8,) and 6*°(6,) for conductivities g,=1and g,= 50
in Fig. 2. We see that these bounds are narrower than the well-known Hashin-
Shtrikman bounds also plotted in Fig. 2.

We consider the region lying between two functions a"(8,) and &*(6,) for
0 < 0, < 1. In the following we show that every point in this region is the effective
conductivity for a hierarchical EMA made from spheroidal grains. In this way we
show that the set of effective conductivities modeled by the EMA may be realized by
only considering those for spheroidal grains! This gives us some feel for the robustness -
of the EMA with regard to grain shape.

To show that every point is realized, we fix 6, and show that the interval
[6™(6,),6%(8,)] is swept out by EMAs associated with spheroidal grains. Indeed, for
an admissible homogenization path such that

limo,(1) =0, “m @) = 6,,

the EMA “6°(8.. 4)" is defined as the attractor for the initial value problem given by

I 1,0, a), (6.2)
dr
Here, 0 < 4 < land f(t.6°. 4) is given by
e _ (GI _O.t) c.A ljl (t) (UZ —ac) . A lz]([)
f(l.tf.A)——*3 (PSS v +T<P2 >To, (6.4)

where (6, —0¢°){(P$*> and (6:—0°){P5*> are the orientation averaged polarization
tensors for spheroidal grains with depolarizing factors given by

Ll =L2=A, L;= 1—2A, and L| =(%—A), L3=('_%_A),
and L; = ({+24)
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respectively. One readily checks that 6°(6,,0) = g**(6,) and &°(,,1) = G (8,).
Therefore, to show that every point between g*(6,) and 6°°(6,) is attained we prove
that ¢°(8,, 4) is continuous in the parameter 4. We observe from the result of
AVELLANEDA (1987) that ¢°(1,6,, A) converges to the attractor 7°(6,, A) as a power
of the residual volume independently of the parameter 4. Next, we observe for
0<1<0,0<4<4,and 6, < ¢° <o, that the right-hand side £z, 0%, A) is con-
tinuous in £,6° and A, and locally Lipshitzian in ¢° independently of 4. Thus for
0 < 7 < oo the solution ¢°(t, 8, A) is continuous in 4. Continuity of the EMA

(65, 4) = lim6°(¢, §,, A)
[5ad
now follows immediately from the remarks given above and from the estimate
|6°(82, 4) =G°(82, A7) < 16°(62, A) = 51,0, A)| +|5°(1. 62, A7) —G°(1, 0, A)|

+16°(t, 60, A)—G%(6,, A7)|.  (6.5)

Here A’ lies in [0, 1] and is sufficiently close to A.

7. BOUNDs ON Low VOLUME EXPANSIONS FOR ANISOTROPIC CONDUCTING
AND Erastic COMPOSITES

The low volume expansion for the effective conductivity of a dilute random sus-
pension of particles of conductivity ¢, in a matrix of ¢, is given by

6 =0,1+0,(0.—0,){(Py(0,,0,))+0(63). (7.1)

Here the effective conductivity may be anisotropic. The single grain polarization
tensor (0.—¢)P1(0,,0,) is defined by (2.19). The average polarization tensor of the
suspension is {P»(g,,0,)) where the average is taken over prescribed grain shape and
orientation distributions. We now exhibit upper and lower bounds on ¢° valid up to
second order in the volume fraction. Indeed, it follows immediately from the inequalit-
ies on single grain polarization tensors given in (2.51) that there exists a low volume
fraction expansion of conductivity ¢ of plate-like inclusions of material 2 and a low
volume expansion of conductivity ¢ of ellipsoidal inclusions of material 2 for which
the inequality

7< o <6 (7.2)

holds to second order in the volume fraction 8,. A similar inequality holds to second
order for the effective conductivity of a suspension of a ¢, inclusion in a ¢, matrix
with the convention ¢, > ¢,. Here the upper bound is given by a suspension of
ellipsoids and the lower bound corresponds to a suspension of plate-like inclusions.
It now follows that for isotropic suspensions of material 2 grains in a matrix of
material | with ¢, > o, that the low volume fraction expansion of MAXWELL (1873)
for isotropic suspensions of spheres.
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0,3(g,—0))0,

o=0
¥ 0,420,

, (7.3)

is to second order (in 8,), a lower bound on the effective conductivity of isotropic
suspensions of arbitrary particle shape. If 6, < &, it is an upper bound. In this way
we see that random isotropic dilute suspensions of spheres have extremal effective
conducting properties. Arguing in the same fashion we see for C, > C,, that the
effective elastic tensor C° of a random low volume fraction suspension of particles of
elasticity C, embedded in a matrix C, is bounded to second order in the volume
fraction 6, by

Ci+6:(Cy—C){L;) < C < C,+0,(C,—C,)U,). (7.4

Here L, and U, are given by (2.48) and (2.49) respectively and the average ¢(-) is
taken over the prescribed grain shape and orientation distributions appearing in the
suspension. We remark that for the case C, > C, the bounds are reversed.

For isotropic suspensions of material 2 grains in a matrix of material 1 with
C, > C,, it follows that the low volume fraction expansion for an isotropic suspension
of spheres given by

€ = €, +05(C.—C,)I+S,(C,—C,)}~" (7.5)

[where S, is given by (5.10)]. is to second order, a lower bound on the effective
elasticity of isotropic suspensions of arbitrary particle shape. If C. < C,, it is upper
bound.
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APPENDIX

Here we establish Theorem (3.A). It follows from the positive definiteness of 4 and tr 4 = |
that it is sufficient to show that for any point (¢1,ay,a3) on the polyhedron A = {a,,a,,a,;
a+ax+a; =1, a, > 0} there exist points m = (m,, m,,m) in R®. such that

L =a,. (A1)

Proof. We define the vector m~'in RY by m~' = (m7',m5 "', m3') and let B(m) = L,(m™"),
Ly(m™"), Ly(m™"). Clearly B lies on the polyhedron A. We show that B attains every point on
A as m ranges over R2. This will establish (A.1).

To prove this we introduce the auxiliary function T(m) given by

T(m) = (Z mk>§(m). Aa2)

We state the following
Lemma A.1. Given any point Pin R} there exists a point (my,my,ms3) in R? such that
T(m) = P. (A.3)

It follows from Lemma A.1 that B(m) attains all points on A. To see this consider any point
4= (a,,a;,a;) on A. We form ja where / is in R, . From Lemma A.1 there exists an m in
R? such that .

I(m) = ‘a. (A.4)

We see immediately from (3.9) and (3.11) that
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3 3
Y Tl =Y (m)=1 (A.5)
k=1 k=1
and therefore
B(m) = a. (A.6)

The proof of Lemma A.1 follows from an application of topological degree theory. Given
any point P in R we show that T='(P) is a compact subset of R2. To see this we note that
m; = 0 implies 7, = 0 and m; — o implies T(m) — co. Therefore there exists a positive number
R and a set

3
Bp = {(m,,mz,ml) Y m <R, meRi}

i=]

such that 7~ '(P) < B, and T~ '(P) does not intersect the boundary of B,. We now apply
the topological degree to the bounded set B,. We consider the homotopy
h(t,m) = tI(m)+ (1 —1)T(m). Here I(m) is the identity transform. One readily verifies that
P¢h(1,8B), and thus homotopy invariance of the degree implies d(T{(m), B, P) = 1, and
Lemma A.1 is proved.



