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Abstract

A generic class of metamaterials is introduced and is shown to exhibit frequency
dependent double negative effective properties. We develop a rigorous method for
calculating the frequency intervals where either double negative or double positive
effective properties appear and show how these intervals imply the existence of
propagating Bloch waves inside sub-wavelength structures. The branches of the
dispersion relation associated with Bloch modes are shown to be explicitly deter-
mined by the Dirichlet spectrum of the high dielectric phase and the generalized
electrostatic spectra of the complement.

1. Introduction

Metamaterials are new class of engineered materials that exhibit electromag-
netic properties not readily found in nature. The novelty is that unconventional
electromagnetic properties can be created by carefully chosen sub-wavelength con-
figurations of conventional materials. The distinctive properties of metamaterials
are derived from geometrically induced resonances localized to specific frequen-
cies. These resonances are used to control propagating modes with wavelengths
longer than the characteristic length scale of the material. Metamaterials are en-
visaged for several application areas ranging from telecommunication and solar
energy harvesting to the electromagnetic cloaking of material objects.

A generic metamaterial comes most often in the form of a crystal made from a
periodic array of scatterers embedded within a host medium. The physical notions
of frequency dependent effective magnetic permeability and dielectric permittiv-
ity are used to describe the behavior of propagating modes at wavelengths larger
than the length scale of the metamaterial crystal. The past decade has witnessed
the development and identification of new sub-wavelength geometries for novel
metamaterial properties. These include the simultaneous appearance of negative
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effective dielectric permittivity and magnetic permeability. Such “left-handed me-
dia” are predicted to exhibit negative group velocity, inverse Doppler effect, and
an inverted Snell’s law [41]. The first metamaterial configurations imparted elec-
tromagnetic properties consistent with the appearance of a negative bulk dielectric
constant [37]. Subsequently electromagnetic behavior associated with negative ef-
fective magnetic permeability at microwave frequencies were derived from peri-
odic arrays of non-magnetic metallic split ring resonators [36]. Double negative or
left-handed metamaterials with simultaneous negative bulk permeability and per-
mittivity at microwave frequencies have been verified for arrays of metallic posts
and split ring resonators [46]. Subsequent work has delivered several new designs
using different configurations of metallic resonators for double negative behavior
[15,18,26,45,50,51,53].

Current state of the art metallic resonators do not perform well at optical fre-
quencies and alternate strategies are contemplated employing the use of both metals
and dielectric materials for optical frequencies [44]. For higher frequencies in the
infrared and optical range new strategies for generating double negative response
rely on Mie resonances generated inside coated rods consisting of a high dielec-
tric core coated with a dielectric exhibiting plasmonic or Drude type frequency
response at optical frequencies [47–49]. A second strategy for generating double
negative response employs dielectric resonances associated with small rods or par-
ticles made from dielectric materials with large permittivity [27,38,42]. Alternate
strategies for generating negative permeability at infrared and optical frequencies
use special configurations of plasmonic nanoparticles [1,31,39]. The list of meta-
material systems is rapidly growing and comprehensive reviews of the subject can
be found in [43,44].

Despite the large number of physically based strategies for generating uncon-
ventional properties the theory lacks mathematical frameworks that:

1. Provide the explicit relationship connecting the leading order influence of double
negative behavior to the existence of Bloch wave modes inside metamaterials.

2. Provide a systematic identification of the underlying spectral problems related
to the crystal geometry that control the location of stop bands and propagation
bands for metamaterial crystals.

In this article we provide such a framework for a generic class of metamaterial
crystals made from non-magnetic constituents. The crystal is given by a periodic
array of two aligned non-magnetic rods, one of which possesses a large frequency
independent dielectric constant while the other is characterized by a frequency
dependent dielectric response. In this treatment the frequency dependent dielectric
response εP is associated with plasmonic or Drude behavior at optical frequencies
given by [47,48]

εP(ω
2) = 1 − ω2

p

ω2 , (1)

where ω is the frequency and ωp is the plasma frequency [6]. Here we develop a
rigorous method for calculating the frequency intervals where either double nega-
tive or double positive bulk properties appear and show how these intervals imply
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the existence of Bloch wave modes in the dynamic regime away from the quasi-
static limit (see Theorems 5 and 6). It is shown that these frequency intervals are
explicitly determined by two distinct spectra. These are the Dirichlet spectrum of
the Laplacian associated with the high dielectric rod and the electrostatic spectrum
of a three phase high contrast medium obtained by sending the dielectric constant
inside the high dielectric rod to ∞. The electrostatic spectra is introduced in The-
orem 1 and discussed in Section 5. The methods are illustrated for εP given by
(1); however, they apply to dielectrics characterized by single oscillator or multiple
oscillator models that include dissipation and are of the form

εP(ω) = 1 +
N∑

j=1

ω2
p

ω2
j − ω2 − iγ jω

, (2)

where ω j are resonant frequencies, and γ j are damping factors.
We start with a metamaterial crystal characterized by a period cell containing

two parallel, infinitely long cylindrical rods. The rods are parallel to the x3 axis and
are periodically arranged within a square lattice over the transverse x = (x1, x2)

plane. The period of the lattice is denoted by d. There is no constraint placed on
the shape of the rod cross sections other than they have smooth boundaries and are
simply connected. The objective is to characterize the branches of the dispersion
relation for H -polarized Bloch waves inside the crystal. For this case the magnetic
field is aligned with the rods and the electric field lies in the transverse plane. The
direction of propagation is described by the unit vector κ̂ = (κ1, κ2) and k = 2π/λ
is the wave number for a wave of length λ and the fields are of the form

H3 = H3(x)ei(kκ̂·x−tω), E1 = E1(x)ei(kκ̂·x−tω), E2 = E2(x)ei(kκ̂·x−tω) (3)

where H3(x), E1(x), and E2(x) are d-periodic for x in R
2. In the sequel c will denote

the speed of light in free space. We denote the unit vector pointing along the x3
direction by e3, and the periodic dielectric permittivity and magnetic permeability
are denoted by ad and μ, respectively. The electric field component E = (E1, E2)

of the wave is determined by

E = − ic

ωad
e3 × ∇H3.

The materials are assumed non-magnetic; hence, the magnetic permeability
μ is set to unity inside the rods and host. The oscillating dielectric permittivity
for the crystal is a d periodic function in the transverse plane and is described by
ad = ad(x/d) where ad(y) is the unit periodic dielectric function taking the values

ad(y) =

⎧
⎪⎨

⎪⎩

εH in the host material,

εP = εP(ω) in the frequency dependent “plasmonic” rod,

εR = εr/d2 in the high dielectric rod.

(4)

This choice of high dielectric constant εR follows that of [9] where εr has
dimensions of area. Setting hd(x) = H3(x)ei(kκ̂·x) the Maxwell equations take the
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Fig. 1. Cross section of unit cell

form of the Helmholtz equation given by

− ∇x ·
(

a−1
d

( x
d

)
∇xhd(x)

)
= ω2

c2 hd in R
2. (5)

The band structure is given by the Bloch eigenvalues ω2

c2 which is a subset of the

parameter space {ω2

c2 ,−2π � k1 � 2π,−2π � k2 � 2π}, with k = (k2
1 + k2

2)
1/2

and κ̂i = ki/k. This constitutes the first Brillouin Zone for this problem.
We set x = dy for y inside the unit period Y = [0, 1]2, put β = dkκ̂ and write

u(y) = H3(dy). The dependent variable is written ud(y) = hd(dy) = u(y) expiβ·y,
and we recover the equivalent problem over the unit period cell given by

− ∇y ·
(

a−1
d (y)∇yud

)
= d2ω2

c2 ud in Y. (6)

To proceed we work with the dimensionless ratioρ = d/
√
εr , wave number τ =√

εr k and square frequency ξ = εr
ω2

c2 . The dimensionless parameter measuring
the departure away from the quasistatic regime is given by the ratio of period
size to wavelength η = dk = ρτ � 0. The regime η > 0 describes dynamic
wave propagation while the infinite wavelength or quasistatic limit is recovered
for η = 0. Metamaterials by definition are structured materials operating in the
sub-wavelength regime 0 < η < 1 away from the quasistatic limit [36]. For these

parameters the dielectric permittivity takes the values εP = 1 − εrω
2
p/c

2

ξ
, εR =

1
ρ2 , εH = 1, and is denoted by aρ(y) for y in Y and (6) is given by

− ∇y ·
(

a−1
ρ (y)∇yud(y)

)
= ρ2ξud(y) in Y. (7)

The unit period cell for the generic metamaterial system is represented in Fig. 1. In
what follows R represents the rod cross section containing high dielectric material,
P the cross section containing the plasmonic material and H denotes the connected
host material region.



Resonance and Double Negative Behavior in Metamaterials 839

It is shown in Theorem 4 that the band structure for the metamaterial is char-
acterized by a power series in η and is governed by two distinct types of spectra
determined by the shape and configuration of the rods inside the period cells. The
series delivers the explicit relationship connecting the leading order influence of
quasistatic behavior, as mediated by effective magnetic permeability and dielec-
tric permittivity, to the propagation of Bloch wave solutions inside metamaterial
crystals made from sub-wavelength 1 > η > 0 structures (see Theorems 4–6).

The relevant spectra for this problem is found to be given by the Dirichlet
spectra for the Laplacian over the rod cross sections R together with a generalized
electrostatic spectra associated with the infinite connected region exterior to the
rods. These spectra provide two distinct criteria that taken together are sufficient
for the existence of power series solutions see, Theorem 5. In what follows the
power series is developed in terms of a hierarchy of boundary value problems
posed separately over the domain R and the domain exterior to the high dielectric
rod Y \ R. The existence of solutions for the boundary value problems inside the
high dielectric rod R is controlled by the Dirichlet spectra see, Section 3. Existence
of solutions for boundary value problems exterior to R are determined by the
generalized electrostatic spectrum see, Theorems 1 and 2. The electrostatic spectra
is identified and is shown to be given by the eigenvalues of a compact operator
acting on an appropriate Sobolev space of periodic functions see, the discussion in
Section 5 and Theorem 7.

The generic class of double negative metamaterials introduced here appears to
be new. The motivation behind their construction draws from earlier investigations.
The influence of electrostatic resonances on the effective dielectric tensor associ-
ated with crystals made from a single frequency dependent dielectric inclusion is
developed in the pioneering work of [5,32,34] see also the more recent work [39]
in the context of metamaterials. These resonances are responsible for negative ef-
fective dielectric permittivity. In this context we point out that the sub-wavelength
geometry introduced here is a three phase medium and the categorization of all
possible electrostatic resonances requires a different approach see Section 5. On
the other hand Dirichlet resonances generate negative effective permeability inside
high contrast non-dispersive dielectric inclusions, this phenomena is discovered in
[9,10,16,17,35], see also the mathematically related investigations of [12,25,29,
52,35]. Motivated by these observations, we have constructed a hybrid compos-
ite crystal that combines both high dielectric inclusions and frequency dependent
inclusions for generating double negative response from non-magnetic materials.

The power series approach to sub-wavelength η < 1 analysis has been devel-
oped in [23] for characterizing the dynamic dispersion relations for Bloch waves
inside plasmonic crystals. It has also been applied to assess the influence of effec-
tive negative permeability on the propagation of Bloch waves inside high contrast
dielectrics [24], the generation of negative permeability inside metallic-dielectric
resonators [40], and for concentric coated cylinder assemblages generating a double
negative media [11].

We conclude noting that earlier related work introduces the use of high contrast
structures for opening band gaps in photonic crystals; this is developed in [19–21].
For two phase high contrast media integral equation methods are applied to recover
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dispersion relations about frequencies corresponding to Dirichlet eigenvalues [3,4].
The connection between high contrast interfaces and negative effective magnetic
permeability for time harmonic waves is made in [30]. More recently two-scale ho-
mogenization theory has been developed for three dimensional split ring structures
that deliver negative effective magnetic permeability [8,13]. For periodic arrays
made from metal fibers a homogenization theory delivering negative effective di-
electric constant [7] is established. A novel method for creating metamaterials with
prescribed effective dielectric permittivity and effective magnetic permeability at
a fixed frequency is developed in [33].

2. Background, Basic Theory, and Generalized Electrostatic Resonances

In this section we outline the steps in the power series development of Bloch
waves and establish the mathematical foundations for establishing existence of
power series solutions. We introduce the function space H1

per(Y ) defined to be
all Y -periodic, complex valued square integrable functions with square integrable
derivatives with the usual inner product and norm given by

(u, v)Y =
∫

Y
(∇u · ∇v + uv) dy and ‖u‖Y = (u, u)1/2Y . (8)

We also introduce the space H1
per(Y \ R) given by all Y -periodic, complex valued

square integrable functions with square integrable derivatives and the inner product
and seminorm

(u, v) =
∫

Y\R
∇u · ∇v dy and ‖u‖ = (u, u)1/2. (9)

The variational form of (7) is given by
∫

Y
a−1
ρ ∇ud · ∇ ¯̃v =

∫

Y

ρ2ξ

c2 ud ¯̃v (10)

for any ṽ = v(y)ei κ̂·τρy , where v ∈ H1
per(Y ). On writing ud = u(y)ei κ̂·τρy and

setting η = τρ we transform (10) into
∫

H
τ 2

(
ξ−εr

ω2
p

c2

)
(∇+iηκ̂)u · (∇ + iηκ̂)v +

∫

P
τ 2ξ(∇ + iηκ̂)u · (∇ + iηκ̂)v

+
∫

R
η2

(
ξ − εr

ω2
p

c2

)
(∇ + iηκ̂)u · (∇ + iηκ̂)v =

∫

Y
η2ξ

(
ξ − εr

ω2
p

c2

)
uv

(11)

We introduce the power series

u =
∞∑

m=0

ηmum (12)

ξ =
∞∑

m=0

ηmξm (13)
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where um belongs to H1
per(Y ). In view of the algebra it is convenient to write

um = imu0ψm where u0 is an arbitrary constant factor.
We now describe the underlying variational structure associated with the power

series solution. Set

z = ε−1
P (ξ0) =

(
1 − εrω

2
p/c

2

ξ0

)−1

and for u, v belonging to H1
per(Y ) we introduce the sesquilinear form

Bz(u, v) =
∫

H
∇u · ∇v dy +

∫

P
z∇u · ∇v dy. (14)

Here Y \ R = H ∪ P and the form Bz(u, v) is well defined for functions in
H1

per(Y \ R). Substitution of the series into the system (11) and equating like powers
of η, produces the infinite set of coupled equations for m = 0, 1, 2 . . . given by

τ 2 Bz(ψm, v)+ ξ−1
0 ε−1

p (ξ0)τ
2
∫

Y\R

[
m−1∑

l=1

(−i)lξl∇ψm−l · ∇v

+κ̂ ·
m−1∑

l=0

(−i)lξl(ψm−1−l∇v − ∇ψm−1−lv)−
m−2∑

l=0

(−i)lξlψm−2−lv

]

−ξ−1
0 ε−1

p (ξ0)τ
2εr

ω2
p

c2

∫

H
[κ̂ · (ψm−1∇v − ∇ψm−1v)− ψm−2v]

−ξ−1
0 ε−1

p (ξ0)

∫

R

[
m−2∑

l=0

(−i)lξl∇ψm−2−l · ∇v

+κ̂
m−3∑

l=0

(−i)lξl(ψm−3−l∇v − ∇ψm−3−lv)−
m−4∑

l=0

(−i)lξlψm−4−lv

]

+ξ−1
0 ε−1

p (ξ0)

∫

R
εr
ω2

p

c2 [∇ψm−2 · ∇v + κ̂(ψm−3∇v − ∇ψm−3v)+ ψm−4v]

−ξ−1
0 ε−1

p (ξ0)

∫

Y

[
m−2∑

l=0

l∑

n=0

ξm−2−lξnψl−nil−n−mv

+εr
ω2

p

c2

m−2∑

l=0

(−i)lξlψm−2−lv

]
= 0, for all v in H1

per(Y ). (15)

Here the convention is ψm = 0 for m < 0.
The determination of {ψm}∞m=0 proceeds iteratively. We start by determiningψ0

on Y \ R, this function is used as boundary data to determineψ0 in R from which we
determine ψ1 on Y \ R and the full sequence is determined on iterating this cycle.
The elements ξm are recovered from solvability conditions obtained by setting
v = 1 in (15) and proceeding iteratively. The complete algorithm together with
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explicit boundary value problems necessary for the determination of the sequences
{ψm}∞m=0, {ξm}∞m=0 is described in Section 3 and Theorem 3.

The existence theory for the solution of the sequence of boundary value prob-
lems is based on the sesquilinear form Bz(u, v) defined for functions u and v
belonging to H1

per(Y \ R)/C. Here H1
per(Y \ R)/C is the subspace of functions u

belonging to H1
per(Y \ R) with zero mean

∫
Y\R u dy = 0. This space is a Hilbert

space with inner product (9). Although in this treatment εP is given by (1) we are
motivated by the general case (2) and proceed in full generality allowing for the
possibility that z can lie anywhere on the complex plane C including the negative
real axis. Thus, for each z in C we are required to characterize the range of the map
u �→ Bz(u, ·) viewed as a linear transformation Tz mapping u into the space of
bounded skew linear functionals on H1

per(Y \ R)/C. This is linked to the following

eigenvalue problem characterizing all pairs λ in C, ψ in H1
per(Y \ R)/C that solve

− 1

2

∫

P
∇ψ · ∇v dy + 1

2

∫

H
∇ψ · ∇v dy = (λψ, v), (16)

for every v in H1
per(Y \ R)/C. Inspection shows that for z = (λ+ 1/2)/(λ− 1/2)

that Bz(ψ, v) = 0, for every v in H1
per(Y \ R)/C. In other words the kernel of the

operator Tz is nonempty for z = (λ + 1/2)/(λ − 1/2). The eigenvalues λ will be
referred to as generalized electrostatic resonances. In what follows we show that
Tz is a one to one and onto map from H1

per(Y \ R)/C into the dual space provided
that z 
= (λ+ 1/2)/(λ− 1/2).

The generalized electrostatic resonances are characterized by introducing a
suitable orthogonal decomposition of H1

per(Y \ R)/C. We introduce the subspace

H1
0 (P) given by the closure in the H1 norm of smooth functions v with compact

support on P and the subspace H1
0,per(H) given by the closure in the H1 norm of all

periodic continuously differentiable functions with support outside P . Extending
elements of H1

0,per(H) by zero to Y \ R delivers W1 ⊂ H1
per(Y \ R), extending

elements of H1
0 (P) by zero to Y \ R delvers W2 ⊂ H1

per(Y \ R). Define W3 to be

all functions w in H1
per(Y \ R) for which the boundary integral

∫
∂P w dS vanishes

and that belong to the orthogonal complement of W1 ∪ W2 with respect to the inner
product (9). It is easily verified that W1,W2, and W3 are pairwise orthogonal with
respect to the inner product (9) and

H1
per(Y \ R)/C = W1 ⊕ W2 ⊕ W3 ⊕ C, (17)

where the constant part of a function u belonging to this space is uniquely deter-
mined by the condition

∫
Y\R u dy = 0.

The following theorem describing all eigenvalue-eigenfunction pairs is estab-
lished in Section 5.

Theorem 1. The eigenvalues for (16) are real and constitute a denumerable set
contained inside [−1/2, 1/2] with the only accumulation point being zero. The
eigenspaces associated with λ = 1/2 and λ = −1/2 are W1 and W2, respec-
tively. Eigenspaces associated with distinct eigenvalues in (−1/2, 1/2)are pairwise
orthogonal, and their union spans the subspace W3.
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We denote the denumerable set of eigenvalues for (16) by the sequence {λi }∞i=1.
Here we put λ1 = 0. The orthogonal projections onto W1 and W2 are denoted by P1
and P2. The orthogonal projections associated with λi in (−1/2, 1/2) are denoted
by Pλi . For z 
= (λi + 1/2)/(λi − 1/2) the following existence theorem holds.

Theorem 2. Suppose z 
= (λi + 1/2)/(λi − 1/2) for λi ∈ [− 1
2 ,

1
2 ] then

– For any F ∈ [H1
per(Y \ R)/C]∗ such that F(v) = 0 for constant v, there exists a

unique solution u ∈ H1
per(Y \ R)/C of the variational problem Bz(u, v) = F(v)

for all v ∈ H1
per(Y \ R)/C.

– The transformation Tz from H1
per(Y \ R)/C onto itself has the representation

formula given by

Tz = P1 + zP2 +
∑

− 1
2<λn<

1
2

(
1 + (z − 1)

(
1

2
− λn

))
Pλn , (18)

with inverse

T −1
z = P1 + z−1P2 +

∑

− 1
2<λn<

1
2

(
1 + (z − 1)

(
1

2
− λn

))−1

Pλn , (19)

and Bz(u, v) = (Tzu, v) for all u, v in H1
per(Y \ R)/C.

This theorem is proved in Section 6.
In the following sections we present the sequence of boundary value problems

for determiningψm in Y \ R and R together with the sequence of solvability condi-
tions characterizing ξm . In this section we use the complete orthonormal systems of
eigenfunctions associated with electrostatic resonances and Dirichlet eigenvalues
to explicitly solve for fieldsψ0 in Y andψ1 in Y \ R and provide an explicit formula
for ξ0. In the following section the boundary value problems used to determine ψm

in Y \ R,m � 2 and ψm in R for m � 1 together with solvability conditions for ξm

for m � 1 are shown to be a well posed infinite system of equations see Theorem 3.
Applying the conventionψm = 0 for m < 0 in (15) shows thatψ0 is the solution

of

Bz(ψ0, v) = 0, for all v in H1(Y \ R). (20)

From Theorem 1 and (17) we have the dichotomy:

1. ξ0 satisfies ε−1
P (ξ0) = (λi + 1/2)/(λi − 1/2) and ψ0 is an eigenfunction for

(16).
2. ξ0 satisfies ε−1

P (ξ0) 
= (λi + 1/2)/(λi − 1/2), i = 1, 2, . . . and ψ0 = constant .

In this article we assume the second alternative. Subsequent work will investigate
the case when the first alternative is applied. For future reference the condition
ε−1

P (ξ0) 
= (λi + 1/2)/(λi − 1/2) is equivalent to

ξ0 
= ζi , ζi ≡
(
λi + 1

2

)
εrω

2
p

c2 , 0 � ζi �
εrω

2
p

c2 i = 1, 2, . . . . (21)
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Restricting to test functions v with support in R in (15) we get
∫

R
(∇ψ0 · ∇v − ξ0ψ0v) dy = 0. (22)

From continuity we have the boundary condition forψ0 on R given byψ0 = const.
We denote the Dirichlet eigenvalues for R by ν j , j = 1, 2, . . .. Here we have the
alternative:

1. If ξ0 is a Dirichlet eigenvalue νi of −� in R then ψ0(y) = 0 for y in Y \ R.
2. If ξ0 
= νi , i = 1, 2, . . . thenψ0 is the unique solution of the Helmholtz equation

(22) and ψ0 = const. in Y \ R.

In this treatment we will choose the second alternative ξ0 
= νi . The case when the
first alternative is chosen will be taken up in future investigation. Since u0 = u0ψ0
where u0 is an arbitrary constant we can, without loss of generality, make the
choice ψ0 = 1 for y in Y \ R. Since ξ0 
= νi , i = 1, . . . and ψ0 = 1 in Y \ R a
straight forward calculation gives ψ0 in R in terms of the complete set of Dirichlet
eigenfunctions and eigenvalues:

ψ0 =
∞∑

n=1

μn〈φn〉R

μn − ξ0
φn, in R. (23)

Note here that μn denote the Dirichlet eigenvalues of −� in R whose eigenfunc-
tions φn have nonzero mean, 〈φn〉R = ∫

R φn(y) dy 
= 0. The Dirichlet eigenval-
ues associated with zero mean eigenfunctions are denoted by μ′

n and {νn}∞n=1 =
{μn}∞n=1 ∪ {μ′

n}∞n=1.
To find ψ1 in Y \ R, we appeal to (15) with ψ0 = 1 in Y \ R to discover

Bz(ψ1, v) = −
∫

H
κ̂ · ∇v −

∫

P
ε−1

P (ξ0)κ̂ · ∇v ∀v ∈ H1
per(Y ) (24)

It follows from Theorem 2 that the problem has a unique solution subject to the
mean-zero condition:

∫
Y\R ψ1 = 0 provided that ξ0 
= ζi , i = 1, 2, . . .. We apply

the decomposition of H1
per(Y \ R)/C given by (17) and represent ψ1 in terms

of the complete set of orthonormal eigenfunctions {ψλn } ⊂ W3 associated with
−1/2 < λn < 1/2 together with the complete orthonormal sets of functions for
W1 and W2, denoted by {ψ1

n }∞n=1 and {ψ2
n }∞n=1, respectively. A straight forward

calculation gives the representation for ψ1 in Y \ R

ψ1 = −
∑

− 1
2<λn<

1
2

(
(α1
λn

+ ε−1
P (ξ0)α

2
λn
)

1 + (ε−1
P (ξ0)− 1)(1 − λn)

)
ψλn +

∞∑

n=1

α1,nψ
1
n , in Y \ R

(25)

with

α1
λn

= κ̂ ·
∫

H
∇ψλn dy, α2

λn
= κ̂ ·

∫

P
∇ψλn dy, and α1,n = κ̂ ·

∫

H
∇ψ1

n dy.

(26)
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Setting v = 1 and m = 2 in (15) we recover the solvability condition given by

τ 2
∫

H∪P
[−κ̂ · ξ0∇ψ1 + ξ0] − τ 2εr

ω2
p

c2

∫

H
(−κ̂∇ψ1 + 1)

=
∫

Y

(
ξ2

0ψ0 − εr
ω2

p

c2 ξ0ψ0

)
(27)

Substitution of the spectral representations for ψ1 and ψ0 given by (23) and (25)
into (27) delivers the quasistatic dispersion relation

ξ0 = τ 2n−2
eff (ξ0), (28)

where the effective index of diffraction n2
eff depends upon the direction of propa-

gation κ̂ and is written

n2
eff(ξ0) = μeff(ξ0)/ε

−1
eff (ξ0)κ̂ · κ̂ . (29)

The frequency dependent effective magnetic permeabilityμeff and effective dielec-
tric permittivity εeff are given by

μeff(ξ0) =
∫

Y
ψ0 = θH + θP +

∞∑

n=1

μn〈φn〉2
R

μn − ξ0
(30)

and

ε−1
eff (ξ0)κ̂ · κ̂ =

∫

H
(I − P)κ̂ · κ̂ dy + ξ0

ξ0 − εrω2
p

c2

θP

−
∑

− 1
2<λh<

1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(
ξ0 − εrω

2
p

c2

)
|α(1)λh

|2+2
εrω

2
p

c2 α
(1)
λh
α
(2)
λh

+
(
εrω2

p
c2

)2

ξ0− εrω2
p

c2

|α(2)λh
|2

ξ0 − sh

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where θH and θP are the areas occupied by regions H and P , respectively. The
first term on the right hand side of (31) is positive and frequency independent. It is
written in terms of the spectral projection P of square integrable vector fields over H
onto the subspace of gradients of potentialsψ in H1

0,per(H). Here
∫

H Pκ̂ ·κ̂ dy < θH

and Pσ = ∑∞
n=1

(∫
H ∇ψ1

n · σ dy
)∇ψ1

n with
∑∞

n=1 |α1,n|2 = ∫
H Pκ̂ · κ̂ dy. The

poles sh are the subset of values ζh for which at least one of the weights α(1)λh
and

α
(2)
λh

are nonzero. The values of ζh for which both weights vanish are denoted by s′
h

and {ζh}∞h=1 = {sh}∞h=1 ∪ {s′
h}∞h=1. The graphs of μeff and ε−1

eff κ̂ · κ̂ as functions of
ξ0 are displayed in Figs. 2 and 3. Here the intervals a′ < ξ0 < b′ and a′′ < ξ0 < b′′
are the same in all graphs.
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Fig. 2. The relation between μeff and ξ0

Fig. 3. The relation between ε−1
eff κ̂ · κ̂ and ξ0

For future reference is convenient to write the dispersion relation explicitly in
terms of μeff and εeff and

μeff(ξ0)ξ0 = τ 2ε−1
eff (ξ0)κ̂ · κ̂ . (32)

The branches of the quasistatic dispersion relation (τ, κ̂) �→ ξ0 are controlled by
the poles and zeros of μeff and ε−1

eff explicitly determined through the Dirichlet
spectra and generalized electrostatic resonances.

3. Solution of Higher Order Problems

Having determined ψ0 in Y, ψ1 in Y \ R, and ξ0 we now provide the algorithm
for determining the rest of the elements in the sequences {ψm}∞m=0, {ξm}∞m=0. The
algorithm is summarized in Theorem 3.

Step I. Solution of ψm in R for m � 1.

We restrict the trial space to test functions v with support in R and put m �→
m + 2 in (15). We decompose ψm according to

ψm = ψ̃m + (−i)mξmψ∗ (33)

and substitute into (15). This decomposition is chosen such that ψ̃m depends on ξn

and ψn inside R for n � m − 1. The function ψ∗ depends only upon ξ0 and ψ0 in
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R. The function ψ̃m solves the Dirichlet boundary value problem with ψ̃m |∂R− =
ψm |∂R+ and

∫

R

(
∇ψ̃m · ∇v − ξ0ψ̃mv

)
dy =

∫

R
F · ∇v dy +

∫

R
Gv dy, (34)

where

F = −ξ−1
0 ε−1

p (ξ0)

[
m−1∑

l=1

(−i)lξl∇ψm−l + κ̂

(
m−1∑

l=0

(−i)lξlψm−1−l

)]

+ξ−1
0 ε−1

p (ξ0)εr
ω2

p

c2 κ̂ψm−1, (35)

and

G = ξ−1
0 ε−1

p (ξ0)

(
κ̂ ·

m−1∑

l=0

(−i)lξl∇ψm−1−l +
m−2∑

l=0

(−i)lξlψm−2−l

)

−ξ−1
0 ε−1

p (ξ0)(κ̂ · ∇ψm−1 + ψm−2)

+ξ−1
0 ε−1

p (ξ0)

[
m−1∑

l=1

l∑

n=0

ξm−lξnψl−nil−n−m − εr
ω2

p

c2

m−1∑

l=1

(−i)lξlψm−l

+ξ0

m−1∑

n=1

ξnψm−ni−n

]
. (36)

This boundary value problem has a unique solution for ξ0 
= νi , i = 1, . . .. The
function ψ∗ is the solution of

{∫
R(−∇ψ∗ · ∇v + ξ0ψ∗v)+ ∫

R ψ0v = 0

ψ∗|∂R− = 0
(37)

The explicit representation forψ∗ is obtained using the Dirichlet eigenfunctions on
R and is given by,

ψ∗ =
∞∑

n=1

μn〈φn〉R

(μn − ξ0)2
φn in R. (38)

Step II. Solution of ψm in Y \ R for m � 2

We decompose ψm

ψm = ψ ′
m + (−i)m−1ξm−1ψ̂ (39)

and substitute into (15). This decomposition is chosen such that ψ ′
m depends on

ξn for 0 � n � m − 2, the functions ψn, n � m − 1 in Y \ R and the functions
ψn, n � m − 2 in R. The function ψ̂ depends only on ξ0 and ψ1 in Y \ R.
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For m � 2, ψ ′
m in Y \ R subject to the mean zero condition

∫
Y\R ψ

′
m dy = 0 is

the solution of

τ 2 Bz(ψ
′
m, v) =

∫

Y\R
(F1 · ∇v + G1v) dy

+
∫

R
(F2 · ∇v + G2v) dy, for all v in H1

per(Y ), (40)

where

F1 = ξ−1
0 ε−1

p (ξ0)τ
2

[
m−2∑

l=1

(−i)lξl∇ψm−l +
(

m−2∑

l=0

(−i)lξlψm−1−l

)
κ̂

]

−ξ−1
0 ε−1

p (ξ0)τ
2εr

ω2
p

c2 χHκ̂ψm−1, (41)

G1 = ξ−1
0 ε−1

p (ξ0)τ
2

[
κ̂ ·

m−2∑

l=0

(−i)lξl(−∇ψm−1−l)−
m−2∑

l=0

(−i)lξlψm−2−l

]

−ξ−1
0 ε−1

p (ξ0)τ
2εr

ω2
p

c2 χH[κ̂ · (−∇ψm−1)− ψm−2]

+ξ−1
0 ε−1

p (ξ0)

[
m−2∑

l=0

l∑

n=0

ξm−2−lξnψl−nil−n−m

−εr
ω2

p

c2

m−2∑

l=0

(−i)lξlψm−2−l

]
, (42)

F2 = −ξ−1
0 ε−1

p (ξ0)

[
m−2∑

l=0

(−i)lξl∇ψm−2−l + κ̂(

m−3∑

l=0

(−i)lξlψm−3−l)

]

+ξ−1
0 ε−1

p (ξ0)εr
ω2

p

c2 [∇ψm−2 + κ̂(ψm−3)], (43)

and

G2 = −ξ−1
0 ε−1

p (ξ0)

[
+κ̂(

m−3∑

l=0

(−i)lξl(−∇ψm−3−l))

−
m−4∑

l=0

(−i)lξlψm−4−l

]
+ ξ−1

0 ε−1
p (ξ0)εr

ω2
p

c2 [κ̂ · (−∇ψm−3)+ ψm−4]

+ξ−1
0 ε−1

p (ξ0)

[
m−2∑

l=0

l∑

n=0

ξm−2−lξnψl−nil−n−mv

−εr
ω2

p

c2

m−2∑

l=0

(−i)lξlψm−2−lv

]
, (44)
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where χH is the indicator function of the host domain H taking 1 inside and zero
outside. Here we have used the identity ψ0(y) = 1, for y ∈ Y \ R in determining
the formulas for the right hand side of (40).

Setting v = 1 in (40) delivers the solvability condition
∫

Y\R
G1 dy +

∫

R
G2 dy = 0. (45)

The condition

− ∇ · F2 + G2 = 0 for y in R (46)

follows from the solution of Step I see, (33), (34) and (37). Integration by parts on
the right hand side of (40) together with (46) transforms (40) into the equivalent
Neumann boundary value problem for ψ ′

m,m � 2, given by

τ 2 Bz(ψ
′
m, v) =

∫

Y\R
(F1 · ∇v + G1v) dy

+
∫

∂R
F2 · nv ds, for all v in H1

per(Y \ R), (47)

where n is the outward directed unit normal to ∂R. Finally we observe that the
solvability condition for the Neumann problem (47) given by

∫

Y\R
G1 dy +

∫

∂R
F2 · n ds = 0, (48)

follows immediately from (45) and (46). This Neumann problem satisfies the hy-
potheses of Theorem 2 and we assert the existence of a solution ψ ′

m for (47),
uniquely determined by the condition

∫
Y\R ψ

′
m dy = 0, provided that ξ0 
= ζi , 0 �

ζi � εrω
2
P

c2 , i = 1, 2, . . ..

The field ψ̂ solves
{

Bz(ψ̂, v) = −ξ−1
0 ε−1

p (ξ0)
∫

Y\R(∇ψ1 + κ̂) · ∇v,
∫

Y\R ψ̂ = 0,
(49)

for all trials v ∈ H1
per(Y \ R). The solution ψ̂ is represented explicitly in terms of

the eigenvectors associated with the generalized electrostatic resonances. A straight
forward calculation gives

ψ̂ =
∑

− 1
2<λn<

1
2

ψλn

ξ0 − ( 1
2 + λn

) εrω2
p

c2

×

⎛

⎜⎜⎜⎜⎜⎝
−(α1

λn
+ α2

λn
)+

(
ξ0 − εrω

2
p

c2

)(
α1
λn

+ α2
λn

(
ξ0

ξ0− εrω2
p

c2

))

ξ0 − sn

⎞

⎟⎟⎟⎟⎟⎠
. (50)
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Step III. Solution of ξm for m � 1.

We apply the decomposition (33) to ψm−2 in R and (39) to ψm−1 in Y \ R.
Substitution of the decompositions into the solvability condition (45) and applying
the explicit spectral representations (38), (50) forψ∗ and ψ̂ we obtain the recursion
relation for determining ξ1, ξ2, . . . given by

ξm−2G(ξ0) = τ 2
∫

Y\R

[
κ̂ ·

(
m−3∑

l=1

(−i)lξl∇ψm−1−l + ξ0∇ψ ′
m−1

)

+
m−3∑

l=0

(−i)lξlψm−2−l

]

−τ 2
∫

H
εr
ω2

p

c2 (κ̂ · ∇ψ ′
m−1 + ψm−2)

−
∫

R

[
κ̂ ·

m−3∑

l=0

(−i)lξl∇ψm−3−l +
m−4∑

l=0

(−i)lξlψm−4−l

]

−
∫

Y

[
m−3∑

l=1

l∑

n=0

i l−n−mξm−2−lξnψl−n −
m−3∑

l=1

(−i)lξ0ξlψm−2−l

]

−
∫

R
ξ2

0 ψ̃m−2 −
∫

Y\R
ξ2

0ψm−2 +
∫

Y
εr
ω2

p

c2

m−3∑

l=1

(−i)lξlψm−2−l

+
∫

R
εr
ω2

p

c2 ξ0ψ̃m−2 +
∫

Y\R
εr
ω2

p

c2 ξ0ψm−2. (51)

Noting that (33) and (39) can also be applied to the lower order terms on the right
hand side of (51) we see that (51) determines ξm−2 from ξn, ψn in Y \ R, and ψn

in R with 0 � n � m − 3. Here the “solvability matrix,” G depends explicitly on
ξ0 and is given by

G(ξ0) = θH + θP

+τ 2

[∫

H
Pκ̂ · κ̂ dy −

∞∑

n=1

(g2
n(ξ0)|α1

λn
+ ε−1

P (ξ0)α
2
λn

|2)

+2gn(ξ0)(α
1
λn

+ α2
λn
)(α1

λn
+ ε−1

P (ξ0)α
2
λn
)
]

−2

(
ξ0 + εrω

2
p

c2

)
μeff(ξ0)+ ξ0

(
ξ0 − εrω

2
p

c2

) ∞∑

n=1

μn〈φn〉2
R

(μn − ξ0)2
, (52)

where gn(ξ0) = (ξ0 − εrω
2
p

c2 )/(ξ0 − sn) and ε−1
P (ξ0) = ξ0/(ξ0 − εrω

2
p

c2 ). The set of
poles and zeros for G(ξ0) are explicitly controlled by the generalized electrostatic
resonances and Dirichlet spectra. The zeros of G are denoted by γn, n = 1, . . .. It is
now evident that the recursion relation (51) holds provided that ξ0 
= νn, ξ0 
= ζn ,
and ξ0 
= γn .
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Denote the union of the Dirichlet spectra, the electrostatic resonances, and zeros
of G by

U ≡ {ν j }∞j=1 ∪ {ζ j }∞j=1 ∪ {γ j }∞j=1 (53)

where {ν j }∞j=1 ⊂ R
+, {γ j }∞j=1 ⊂ R

+, and {ζ j }∞j=1 ⊂ [0, εrω
2
p

c2 ]. We collect results
and state the following theorem.

Theorem 3. If ξ0 belongs to R
+ \ U then the sequences {ψm}∞m=0 ⊂ H1

per(Y ),
{ξm}∞m=0 ⊂ C exist and are uniquely determined.

Proof. The functionsψ0 in H1(Y ) andψ1 in H1(Y \ R)with
∫

Y\R ψ1 dy = 0 exist

as does ξ0. Application of Step I uniquely determines ψ̃1 in R. Application of Step
II uniquely determines ψ ′

2 in Y \ R. Step III uniquely determines ξ1 and we apply
(33) and (39) to recover ψ1 in H1(Y ) and ψ2 in H1(Y \ R) with

∫
Y\R ψ2 dy = 0.

We now adopt the induction hypotheses Hn, n � 2:
There exist

1. ψn ∈ H1
per(Y \ R) with

∫
Y\R ψn = 0;

2. ψ j ∈ H1
per(Y ) for 0 � j � n − 1 with

∫
Y\R ψ j = 0, 1 � j � n − 1;

3. ξn−1 ∈ C.

Application of Step I uniquely determines ψ̃n in R. Application of Step II uniquely
determines ψ ′

n+1 in Y \ R. Step III uniquely determines ξn and we apply (33)
and (39) to recoverψn in H1(Y ) andψn+1 in H1(Y \R)with

∫
Y\R ψn+1 dy = 0. ��

4. Band Structure for the Metamaterial Crystal

In this section we present explicit formulas describing the band structure for
the metamaterial crystal in the dynamic, sub-wavelength regime 1 > η > 0. The
formulas show that the frequency intervals associated with pass bands and stop
bands are governed by the poles and zeros of the effective magnetic permittivity and
dielectric permittivity tensors. The poles and zeros are explicitly determined by the
Dirichlet spectra of R and the generalized electrostatic resonances of Y \ R (see (30)
and (31)). For the general class of parallel rod configurations treated here the pass
bands and stop bands can exhibit anisotropy, that is, dependence on the direction of
propagation described by κ̂ . The anisotropy is governed by the projection of κ̂ onto
the eigenfunctions associated with the generalized electrostatic resonances given
by (26). In what follows, pass bands are explicitly linked to frequency intervals
and propagation directions for which both the effective magnetic permittivity and
dielectric permeability have the same sign. This includes frequency intervals where
effective tensors are either simultaneously positive or negative.

We begin by identifying the locations of the branches for the dispersion
relation associated with the metamaterial crystal. We introduce the union of open
intervals

⋃
n On on the positive real axis R

+ obtained by removing the points
{ζ j }∞j=1, {ν j }∞j=1, {γ j }∞j=1, {s∗

j }∞j=1 and {μ∗
j }∞j=1. Here s∗

j is the zero of ε−1
eff (ξ0)κ̂ · κ̂
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between s j and s j+1 and μ∗
j is the zero of μeff(ξ0) between μ j and μ j+1. The

leading order dispersion relation (32) implicitly defines the map (τ, κ̂) �→ ξ0. We
denote the branch associated with On by ξn

0 = ξ
(n)
0 (τ, κ̂). Let In be an open in-

terval strictly contained inside On . For this choice In ⊂ On does not intersect the
union of the Dirichlet spectra, generalized electrostatic spectra and the zeros of the
solvability matrix G (see (53)).

The band structure for the metamaterial in the dynamic sub-wavelength regime
1 > η > 0 is given by the following theorem.

Theorem 4. The dispersion relation for the metamaterial crystal contains an in-
finite sequence of branches with leading order behavior given by the functions
ξn

0 = ξn
0 (τ, κ̂). For τ such that ξn

0 belongs to In, there exists a constant R depend-
ing only on In such that for 0 < ρ < R, the branch of the dispersion relation for
the metamaterial crystal is given by

ξ = ξn
0 (τ, κ̂)+

∞∑

l=1

(ρτ)lξn
l , (54)

for

{−2π � τρκ̂1 � 2π,−2π � τρκ̂2 � 2π}. (55)

Here the higher order terms ξn
l are real and are uniquely determined by ξn

0 accord-
ing to Theorem 3.

The power series representation for the transverse magnetic Bloch wave (3) is
given by the following theorem.

Theorem 5. For In and R as in Theorem 4 and for τ such that ξn
0 belongs to In

there exist transverse magnetic Bloch waves given by the expansion

H3 = u0

(
ψ0(x/d)+

∞∑

l=1

(ρτ)l i lψl(x/d)

)
exp{i(kκ̂ · x − tω)}, (56)

where the series

ψ0(y)+
∞∑

l=1

(ρτ)l i lψl(y) (57)

is summable in H1(Y ) for 0 � ρ < R and ω
c =

√
ξ
εr

.

Theorem 4 explicitly shows that the leading order behavior determines the
existence of pass bands or stop bands when ρ = d/

√
εr is sufficiently small. With

this in mind we can appeal to (32) and state the following theorem.

Theorem 6. For ρ > 0 sufficiently small:

– There exist propagating Bloch wave solutions along directions κ̂ over intervals
In for which μeff(ξ

n
0 ) and ε−1

eff (ξ
n
0 )κ̂ · κ̂ have the same sign.
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Fig. 4. The leading order dispersion relation over two selected intervals In′ and In′′

– Intervals In for whichμeff(ξ
n
0 ) and ε−1

eff (ξ
n
0 )κ̂ · κ̂ have the opposite sign lie within

stop bands.

Leading order behavior for pass bands associated with double negative and
double positive behavior are illustrated in Fig. 4 for two intervals In′ and In′′ . Here
the effective properties are both negative over the interval In′ while they are both
positive over In′′ .

5. Generalized Electrostatic Spectra

In this section we establish Theorem 1 and characterize all pairs (λ, ψ) in
C× H1

per(Y \ R) satisfying (16). We start by recalling the bilinear form in (16) and
forming the quotient

Q(u) = − 1
2

∫
P |∇u|2 dx + 1

2

∫
H |∇u|2 dx

(u, u)
. (58)

From (58) it is evident that λ lies inside [−1/2, 1/2]. It is easily seen that the
solutions (λ, ψ) of (16) for the choices λ = 1

2 and λ = − 1
2 correspond to ψ in W1

and W2, respectively. Only the 0 element of W3 satisfies (16) for the choices λ = 1
2

and λ = − 1
2 .

We now investigate solutions (λ, ψ) for ψ belonging to W3. The bilinear form
(16) defines a map T from W3 into the space of skew linear functionals on W3.
Here W3 is a Hilbert space and

(T u, v) = −1

2

∫

P
∇u · ∇v dy + 1

2

∫

H
∇u · ∇v dy, (59)

for u and v in W3. In what follows we show that T is a compact map from W3 onto
W3 with eigenvalues contained inside the open interval (−1/2, 1/2). We do this by
providing an explicit representation for T given in terms of a composition of single
and double layer potentials.
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Set D = ∪n∈Z2((Y \ R)+ n) and introduce the Green’s function G(x, y) on D

such that: G is separately periodic in x and y with period Y,G is C2 in each of the
variables x and y for x 
= y, and

�xG(x, y) =
∑

n∈Z2

δ(x − y + n)− 1 in D,

∂nx G(x, y) = |R|
|∂R| , for x ∈ ∪n∈Z2(∂R + n),

(60)

where δx is the Dirac delta function located at x and |R| and |∂R| are the area and
arc-length of R and ∂R, respectively. We can find G(x, y) as a sum of the periodic
free space Green’s function F for the Laplacian and a corrector φ∗: G(x, y) =
F(x, y)+ φ∗(x, y) , where

F(x, y) = −
∑

n∈Z2\{0}

ei2πn·(x−y)

4π2|n|2 , (61)

φ∗(x, y) is periodic in x and y with period Y,C2 in x, y, and solves

�xφ
∗(x, y) = 0 for x, y in D,

∂nxφ
∗(x, y)|+∂R

= −∂nx F(x, y)|+∂R
+ |R|

|∂R| , for x on ∂R, (62)

and
∫

∂R
φ∗(x, y) dSx = 0.

Here the subscript ∂R+, indicates traces of functions on ∂R taken from the outside
of R.

The space of mean zero square integrable functions defined on ∂P is denoted
by L2

0(∂P) and for φ in L2
0(∂P) we introduce the single layer potential S̃P given

by

S̃P(φ) =
∫

∂P
G(x, y)φ(y) dSy, (63)

and the modified single layer potential SP mapping L2
0(∂P) into W3 given by

SP(φ) = S̃P(φ)− |∂P|−1
∫

∂P
S̃P(φ)(y) dSy. (64)

On restricting SP(φ)(x) to x on ∂P , one readily verifies that SP is self-adjoint
with respect to the L2(∂P) inner product and is a bounded one to one linear map
from L2

0(∂P) onto H1/2(∂P)∩L2
0(∂P). The inverse denoted by S−1

∂P : H1/2(∂P)∩
L2

0(∂P) → L2
0(∂P) is linear and continuous. We introduce the trace operator γ

mapping W3 into H1/2(∂P)∩L2
0(∂P), this map is bounded and onto [2]. Collecting

results we have the following

Lemma 1. Sp is a one to one, bounded linear transformation from L2
0(∂P) onto

W3 with S−1
P : W3 → L2

0(∂P) linear and continuous given by S−1
P = S−1

∂Pγ .
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Proof. Given u in W3 consider its trace on ∂P given by γ u = u|∂P and u|∂P belongs
to H1/2(∂P) ∩ L2

0(∂P). For x in Y \ R set w(x) = SP(S
−1
∂P (u|∂P ))(x). Since w

belongs to W3 the difference w − u also belongs to W3. Noting further that the
traces of w and u agree on ∂P we conclude that w − u also belongs to W1 ⊕ W2.
However, since W3 = (W1 ⊕ W2)

⊥ it is evident that w − u = 0 and we conclude
that S−1

P = S−1
∂Pγ. ��

The outward pointing normal derivative of a quantity q on ∂P is denoted by
∂q
∂nx

and the jump relations satisfied by the single layer potential are given by

SP(φ)|+∂P
= SP(φ)|−∂P

, on ∂P,
∂SP(φ)

∂nx
|
∂P

+− = ±1

2
φ + K ∗

P(φ), on ∂P (65)

where the double layer K ∗
P is a bounded linear operator mapping L2

0(∂P) into
L2

0(∂P) defined by

K ∗
P(φ) =

∫

∂P

∂G(x, y)
∂nx

φ(y) dSy, (66)

and the subscripts + and − indicate traces from the outside and inside of P , re-
spectively. Here ∂G

∂nx
is a continuous kernel of order zero and it follows [22,14]

that K ∗
P is a compact operator mapping L2

0(∂P) into L2
0(∂P). Now we identify the

transform T defined by (59).

Theorem 7. The linear map T : W3 → W3 defined by the sesquilinear form (59)
is given by

T = SP K ∗
P S−1

P , (67)

and is a compact bounded self-adjoint operator on W3 with eigenvalues lying inside
(−1/2, 1/2).

Since T is self-adjoint, bounded, and compact: the spectrum is discrete with only
zero as an accumulation point, the eigenspaces associated with distinct eigenvalues
are pairwise orthogonal, finite dimensional, and their union together with the null
space of T is W3. Theorem 1 follows immediately from Theorem 7 noting that the
choices λ = 1/2, λ = −1/2 in (16) correspond to φ belonging to W1 and W2,
respectively.

We now prove Theorem 7.

Proof. StepI .
We establish (67). For u, v, consider

(SP K ∗
p S−1

P (u), v) =
∫

Y\R
∇SP K ∗

p S−1
P (u) · ∇v dx . (68)

Integration by parts gives

(SP K ∗
p S−1

P (u), v) =
∫

∂P

[
∂(SP K ∗

p S−1
P (u))

∂nx

]−

+
v dS, (69)
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where [q]−+ = q|∂P− − q|∂P+ . Applying the jump condition (65) we get

(SP K ∗
p S−1

P (u), v) = −
∫

∂P
K ∗

p S−1
P (u)v dS, (70)

applying (65) again gives

K ∗
p S−1

P (u) = 1

2

∂SP S−1
P (u)

∂nx

∣∣∣∣∣∂P− + 1

2

∂SP S−1
P (u)

∂nx

∣∣∣∣∣
∂P+

= 1

2

∂u

∂nx

∣∣∣∣∂P− + 1

2

∂u

∂nx

∣∣∣∣
∂P+

. (71)

Step I now follows on substitution of (71) into (70) and integration by parts.
StepI I . The remaining properties of the operator T follow directly from the rep-
resentation T = SP K ∗

P S−1
P and the properties of SP and K ∗

P . ��
We conclude noting that the spectrum of T is the same as the spectrum of K ∗

P .
This is stated in the following lemma.

Lemma 2. T u = λu if and only if λ corresponds to an eigenvalue of K ∗
P .

Proof. If a pair (λ, u) belonging to (−1/2, 1/2) × W3 satisfies T u = λu then
SP K ∗

P S−1
P u = λu. Multiplication of both sides by S−1

P shows that S−1
P u is an eigen-

function for K ∗
P associated withλ. Suppose the pair (λ,w)belongs to (−1/2, 1/2)×

L2
0(∂P) and satisfies K ∗

Pw = λw. Since the trace map from W3 to H1/2(∂P) ∩
L2

0(∂P) is onto then there is a u in W3 for whichw = S−1
P u and K ∗

P S−1
P u = λS−1

P u.
Multiplication of this identity by SP shows that u is an eigenfunction for T associ-
ated with λ. ��

6. Existence for Exterior Problems with a Dielectric Permittivity in C

In this section we establish Theorem 2. Recall that any element u of H1
per(Y \

R)/C can be written as

u = P1u + P2u +
∑

− 1
2<λn<

1
2

Pλn u + d. (72)

where d is chosen such that
∫

Y\R u dy = 0. Here Pi are the orthogonal projections
onto Wi , i = 1, 2 and Pλn are the orthogonal projections associated with λn in
(−1/2, 1/2). The orthogonal decomposition (72) is used in the proof of Theorem 2
given below.

Proof. For u, v in H1
per(Y \ R)/C we apply (72) to see that

Bz(u, v) =
2∑

i=1

Bz(Pi u,Piv)+
∑

− 1
2<λn<

1
2

Bz(Pλn u,Pλnv)

= (P1u, v)+ z(P2u, v)+
∑

− 1
2<λn<

1
2

(
1 + (z − 1)

(
1

2
− λn

))
(Pλn u, v)

= (Tzu, v). (73)
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From (73) we conclude that

Tz = P1 + zP2 +
∑

− 1
2<λn<

1
2

(
1 + (z − 1)

(
1

2
− λn

))
Pλn . (74)

It is evident from (74) that for z 
= (λi + 1/2)/(λi − 1/2) that Tz is a bounded one
to one and onto map in H1

per(Y \ R)/C. The formula for T −1
z is given by

T −1
z = P1 + z−1P2 +

∑

− 1
2<λn<

1
2

(
1 + (z − 1)

(
1

2
− λn

))−1

Pλn . (75)

Taking conjugates on both sides of (73) gives Bz(u, v) = (v, Tzu) and choosing
u = T −1

z q for q in H1
per(Y \ R)/C delivers the identity

Bz(T
−1
z q, v) = (v, q). (76)

To complete the proof consider any linear functional F in [H1
per(Y \ R)/C]∗

with F(v) = 0 for v = const. Applying the Reisz representation theorem shows
that there exists a unique solution u in H1

per(Y \ R)/C of

Bz(u, v) = F(v), for all v in H1
per(Y \ R)/C, (77)

and Theorem 2 is proved. ��

7. Convergence of the Power Series

In this section we show that the series (54), (57) identified in Theorems 4 and 5
are convergent. Here the convergence radius R depends upon the branch of the
quasistatic dispersion relation ξn

0 = ξn
0 (τ, κ̂). The methodology applied here uses

generating functions and follows the approach presented in [24].

Step I. A priori estimates.

We establish a priori bounds for the solutions of (34) and (47). Before proceed-
ing recall the Friderich’s inequality and trace estimate satisfied by elements ψ of
H1

per(Y \ R)/C given by

‖ψ‖Y\R =
(∫

Y\R
|∇ψ |2 + |ψ |2 dy

)1/2

� �‖ψ‖ (78)

and

‖ψ‖H1/2(∂R) � A‖ψ‖ (79)



858 Yue Chen & Robert Lipton

where � and A are positive constants depending on R and ‖ψ‖ is the norm on
H1

per(Y \ R)/C defined by (9).

The solutions ψ̃ of (34) solve boundary value problems of the following generic
form. Given ψ ∈ H1

per(Y \ R),G ∈ L2(R) and F ∈ [L2(R)]2 the function ψ̃ is

the H1(R) solution of
{∫

R(∇ψ̃ · ∇v − ξ0ψv) = ∫
R Gv + ∫

R F · ∇v ∀v ∈ H1
0 (R)

ψ̃ |∂R− = ψ |∂R+.
(80)

Decompose ψ̃ according to ψ̃ = ψ0 + ψ1 + ψ2 such that
{∫

R(∇ψ0 · ∇v − ξ0ψ0v)=
∫

R[G+(1+ξ0)ψ1+(1+ξ0)ψ2]v ∀v ∈ H1
0 (R)

ψ0|∂R− = 0,
(81)

{∫
R(∇ψ1 · ∇v + ψ1v) = 0 ∀v ∈ H1

0 (R)

ψ1|∂R− = ψ |∂R+,
(82)

and
{∫

R(∇ψ2 · ∇v + ψ2v) = ∫
R F · ∇v ∀v ∈ H1

0 (R)

ψ2|∂R− = 0.
(83)

Let J = G+(1+ξ0)ψ1+(1+ξ0)ψ2 denote the right hand side for (81). Expanding
ψ0 and J with respect to the complete orthonormal set of Dirichlet eigenfunctions
{φ j }∞j=1, {ν j }∞j=1 gives

‖ψ0‖2
H1(R) =

∞∑

j=1

(1 + ν j )

∣∣∣∣
〈Jψ j 〉R

(ξ0 − ν j )

∣∣∣∣
2

� C2
1,n‖J‖2

L2(R), (84)

where

C1,n = max
ξ0∈In

{
max j

{
(1 + ν j )

1/2

|ξ0 − ν j |
}}
. (85)

Collecting results gives

||ψ1||H1(R) = ||ψ2||H1/2(∂R) � A||ψ ||
||ψ2||H1(R) � ||F ||L2(R)

||ψ0||H1(R) � C1,n||G + (1 + ξ)ψ1 + (1 + ξ)ψ2||L2(R) (86)

and

||ψ̃ ||H1(R) � Bn(||G||L2(R) + ||F ||L2(R) + ||ψ ||), (87)

where

Bn = max
ξ0∈In

{C1,n,C1,n(1 + ξ0), A(C1,n(1 + ξ0)+ 1)}. (88)
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Now we estimate the field ψ∗. The explicit expression (38) for ψ∗ gives

||ψ∗||2H1(R) =
∞∑

n=1

(1 + μn)μ
2
n〈φn〉2

R

(μn − ξ0)4
, (89)

and

||ψ∗||H1(R) � Ln . (90)

where Ln is the maximum of the right hand side of (89) for ξ0(τ, κ̂) ∈ In .
Next we provide an upper bound for the solutions of ψ ′

m of (47). We may
continuously extend elements v in H1

per(Y \ R)/C onto R as H1
per(Y ) functions

such that the extension vext satisfies

‖vext‖Y � C‖v‖. (91)

In what follows we continue to denote these extensions by v and (47) takes the
equivalent form (40). Application of Hölders inequality to the right hand side of
(40) gives

τ 2|Bz(ψ
′
m, v)|

� C(‖F1‖L2(Y\R) + ‖G1‖L2(Y\R) + ‖F2‖L2(R) + ‖G2‖L2(R))‖v‖. (92)

It is evident that Bz(ψ
′
m, v) = (Tzψ

′
m, v) and choosing v = T −1

z ψ ′
m gives

Bz(ψ
′
m, v) = ‖ψ ′

m‖2, ‖v‖ � Gz‖ψ ′
m‖ and delivers the estimate

τ 2‖ψ ′
m‖2 = τ 2|Bz(ψ

′
m, v)|

� C × Gz(‖F1‖L2(Y\R) + ‖G1‖L2(Y\R)

+‖F2‖L2(R) + ‖G2‖L2(R))‖ψ ′
m‖, (93)

with

Gz =
⎛

⎝max{1, |z|−1, sup
− 1

2<λn<
1
2

{|1 + (z − 1)(1/2 − λn)|−1}}
⎞

⎠ . (94)

For z = εp(ξ0) we maximize (94) for ξ0 ∈ In to obtain

τ 2‖ψ ′
m‖ � Gn(‖F1‖L2(Y\R) + ‖G1‖L2(Y\R) + ‖F2‖L2(R) + ‖G2‖L2(R)). (95)

Applying Freidrich’s inequality we arrive at the desired upper bound given by

τ 2‖ψ ′
m‖Y\R � En(‖F1‖L2(Y\R)+‖G1‖L2(Y\R)+‖F2‖L2(R)+‖G2‖L2(R)), (96)

where En denotes a generic constant depending only on In .
The a priori estimate for ψ̂ follows from the representation formula (50) and

‖ψ̂‖Y\R � Hn, (97)

where the constant Hn depends only on In .
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Step II. System of inequalities.

We apply the a priori estimates developed in Step I to the system of Equa-
tions (34), (47), and solvability conditions (51) derived in Section 3. From (40) and
(96), it follows that

τ 2‖ψ ′
m‖Y\R � En

[
τ 2

(
m−2∑

l=1

|ξl |‖ψm−l‖Y\R

+
m−2∑

l=1

|ξl |‖ψm−1−l‖Y\R +
m−2∑

l=1

|ξl |‖ψm−2−l‖Y\R

+ ‖ψm−1‖Y\R + ‖ψm−2‖Y\R

)
+

m−2∑

l=0

|ξl |‖ψm−2−l‖H1(R)

+
m−3∑

l=0

|ξl |‖ψm−3−l‖H1(R)

+
m−4∑

l=1

|ξl |‖ψm−4−l‖H1(R) + ‖ψm−2‖H1(R)

+ ‖ψm−3‖H1(R) + ‖ψm−4‖H1(R)

+
m−2∑

l=0

l∑

n=0

|ξm−2−l ||ξn|(‖ψl−n‖Y\R + ‖ψl−n‖H1(R))

+
m−2∑

l=0

|ξl |(‖ψm−2−1‖Y\R + ‖ψm−2−1‖H1(R))

]
. (98)

From (34) and (87), it follows that

||ψ̃m ||H1(R) � Bn

[
m−1∑

l=1

ξl ||ψm−l ||H1(R)

+
m−1∑

l=0

ξl ||ψm−1−l ||H1(R)

+
m−2∑

l=0

ξl ||ψm−2−l ||H1(R) + ||ψm−1||H1(R) + ||ψm−2||H1(R)

+
m−1∑

l=1

l∑

n=0

ξm−lξn ||ψl−n||H1(R) +
m−1∑

l=1

ξl ||ψm−l ||H1(R) + ||ψm ||Y\R

]

(99)

The solvability constant G in (51) is bounded away from zero and ∞ for ξ0 ∈ In

Put m − 2 �→ m in (51) to obtain the inequality for |ξm |. The inequality is in terms



Resonance and Double Negative Behavior in Metamaterials 861

of a constant Cn depending only on In and is given by

|ξm | � Cn

[
τ 2

(
m−1∑

l=0

|ξl |‖ψm+1−l‖Y\R

+
m−1∑

l=0

|ξl |‖ψm−l‖Y\R + 2‖ψ ′
m+1‖Y\R + ‖ψm‖Y\R

)

+
m−1∑

l=0

|ξl |‖ψm−1−l‖H1(R) +
m−2∑

l=0

|ξl |‖ψm−2−l‖H1(R)

+
m−1∑

l=1

l∑

n=0

|ξm−l ||ξn|(‖ψl−n‖H1(R) + ‖ψl−n‖Y\R)

+ 2
m−1∑

l=1

|ξl |(‖ψm−l‖H1(R) + ‖ψm−l‖Y\R)

+ (‖ψ̃m‖H1(R)+‖ψm‖Y\R)+(‖ψ̃m‖H1(R)+‖ψm‖Y\R)

]
(100)

The decompositions (33), (39) and bounds (90), (97) give

‖ψm‖H1(R) � ‖ψ̃m‖H1(R) + Ln|ξm | and (101)

‖ψm‖Y\R � ‖ψ ′
m‖Y\R + Hn|ξm−1|. (102)

Here the upper bounds (98)–(102) hold for all values of τ for which the branch
of the quasistatic dispersion relation ξ0

n lies in interval In .

Step III. Majorizing sequence and analyticity of generating functions.

We simplify the exposition by introducing

pm = ||τmψm ||Y\R (103)

pm = ||τmψm ||H1(R) (104)

p̃m = ||τmψ̃m ||H1(R) (105)

p′
m = ||τmψ ′

m ||Y\R (106)

sm = |τmξm |, (107)

and show that the corresponding series
∑
ρm pm,

∑
ρm pm,

∑
ρm p̃m,

∑
ρm p′

m ,
and

∑
ρmsm converge. This is sufficient to establish summability and convergence

for the series (57) and (54). Writing (98)–(102) in terms of the new notation gives
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the following system of inequalities. For m � 2 we have:

p′
m � En

[
m−2∑

l=1

sl pm−l

+ τ

m−2∑

l=0

sl pm−1−l + +τ 2
m−2∑

l=0

sl pm−2−l

+ τ pm−1+τ 2 pm−2 +
m−2∑

l=0

sl pm−2−l +τ
m−3∑

l=0

sl pm−3−l + τ 2
m−4∑

l=0

sl pm−4−l

+ pm−2 + τpm−3 + τ 2 pm−4 +
m−2∑

l=0

l∑

n=0

sm−2−l sn(pl−n + pl−n)

+
m−2∑

l=0

sl(pm−2−l + pm−2−l)

]
, (108)

and for m � 1,

p̃m � Bn

[
m−1∑

l=1

sl pm−l

+τ
m−1∑

l=0

sl pm−1−l + τ 2
m−2∑

l=0

sl pm−2−l + τpm−1

+τ 2 pm−2 +
m−1∑

l=1

l∑

n=0

sm−l sn pl−n +
m−1∑

l=1

sl pm−l + pm

]
. (109)

The bounds (100)–(102) yield the following bounds for m � 1:

sm � Cn

[
2τp′

m+1

+ τ

m−1∑

l=1

sl pm+1−l + τ 2
m−1∑

l=0

sl pm−l

+ τ

m−1∑

l=0

sl pm−1−l + τ 2
m−2∑

l=0

sl pm−2−l +
m−3∑

l=0

l∑

n=0

sm−l sn(pl−n + pl−n)

+ 2
m∑

l=1

sl(pm−l + pm−l)+ 2 p̃m + (2 + τ 2)pm

]
, (110)

pm � p̃m + Lnsm, (111)

pm � p′
m + τHnsm−1. (112)

The inequalities presented above hold for all τ for which ξn
0 belongs to In . In what

follows it is convenient to increase the upper bounds by choosing the maximum
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value of τ for ξn
0 in In and absorbing this value into the constants Bn,Cn, En

Additionally any constant factors other than unity that multiply terms in these
upper bounds are absorbed into these constants. With these choices the system is
written:

p′
m � En

[
m−2∑

l=1

sl pm−l

+
m−2∑

l=0

sl pm−1−l + +
m−2∑

l=0

sl pm−2−l

+ pm−1 + pm−2 +
m−2∑

l=0

sl pm−2−l +
m−3∑

l=0

sl pm−3−l +
m−4∑

l=0

sl pm−4−l

+ pm−2 + pm−3 + pm−4 +
m−2∑

l=0

l∑

n=0

sm−2−l sn(pl−n + pl−n)

+
m−2∑

l=0

sl(pm−2−l + pm−2−l)

]
, (113)

p̃m � Bn

[
m−1∑

l=1

sl pm−l

+
m−1∑

l=0

sl pm−1−l +
m−2∑

l=0

sl pm−2−l + pm−1 + pm−2

+
m−1∑

l=1

l∑

n=0

sm−l sn pl−n +
m−1∑

l=1

sl pm−l + pm

]
, (114)

sm � Cn

[
p′

m+1 +
m−1∑

l=1

sl pm+1−l

+
m−1∑

l=0

sl pm−l

+
m−1∑

l=0

sl pm−1−l +
m−2∑

l=0

sl pm−2−l +
m−3∑

l=0

l∑

n=0

sm−l sn(pl−n + pl−n)

+
m∑

l=1

sl(pm−l + pm−l)+ p̃m + pm

]
, (115)

pm � C4( p̃m + sm), (116)

pm � C5(p
′
m + sm−1), (117)

where C4,C5 are positive constants depending only on In and m � 1.
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We now introduce a majorizing sequence {(am, bm, cm, dm, em)}∞m=0 for which

∞∑

n=0

anρ
n = ρa(ρ)+ p0 �

∞∑

n=0

pnρ
n

∞∑

n=1

bnρ
n = b(ρ) �

∞∑

n=1

p̃nρ
n

∞∑

n=0

cnρ
n = c(ρ) �

∞∑

n=0

snρ
n

∞∑

n=0

dnρ
n = d(ρ) �

∞∑

n=0

pnρ
n

∞∑

n=2

enρ
n = ρe(ρ) �

∞∑

n=2

p′
nρ

n, (118)

to show that the generating functions a(ρ), . . . , e(ρ) are analytic in a neighborhood
of the origin ρ = 0.

The majorizing sequence is chosen so that the system of inequalities (113)–
(117) holds with equality for am = pm, bm = p̃m, cm = sm, pm = dm , and
em = p′

m . Indeed, for this choice one observes that pm � am, p̃m � bm , sm �
cm, pm � dm , and p′

m � en . Enforcing equality in (113)–(117), multiplying each
by the appropriate power of ρ and summation delivers the equivalent system for
the generating functions a(ρ), b(ρ), c(ρ), d(ρ), e(ρ) given by:

Ai (a, b, c, d, e, ρ) = 0, i = 1, . . . 5, (119)

where:

A1(a, b, c, d, e, ρ) = p1 − a + C5(e + (c − s0)), (120)

A2(a, b, c, d, e, ρ) = −b + Bn[(c − s0)(d − p0)

+(cd + d)(ρ + ρ2)+ c2d − s2
0 p0 − ρs0s1(p0 + p1)

−s0 p0(c − s0)− s0cd + s0(ρ(s0 p1 + s1 p0)

+s0 p0)+ (c − s0)(d − p0)+ ρa] (121)

A3(a, b, c, d, e, ρ) = −(c − s0)+ Cn[(a − p1)(c − s0)+ e + ρac + ρ(a + cd)

+ρ2cd + c2(ρa + p0)− s0 p0c − s0((ρa

+p0)c − s0 p0)+ (c − s0)(d − p0)+ b

−ρ(ρa + p0)cs1 − ρ2s2(ρa

+p0)c + c2d − s0 p0c − s0(cd − s0 p0)

−ρcd(s1 + ρs2)] (122)

A4(a, b, c, d, e, ρ) = (d − p0)+ C4(b + (c − s0)). (123)

A5(a, b, c, d, e, ρ) = −e + En[(a − p1)(c − s0)

+ρac + ρ(ρa + p0)c + ρa + ρ(ρa + p0)

+(c + 1)d(ρ+ρ2+ρ3)+ρc(c+1)(ρa+ p0+d)] (124)
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One can check A1, A2, A3, A4 and A5 vanish for a = p1 = ‖ψ1‖Y\R, b = 0, c =
s0 = |ξn

0 |, d = p0 = ‖ψ0‖H1(R), e = 0, and ρ = 0. Moreover, the determinant
of the Jacobian matrix with respect to the first five variables at this point, that is,
(a, b, c, d, e, ρ) = (p1, 0, s0, p0, 0, 0), is

det
∂(A1, A2, A3, A4, A5)

∂(a, b, c, d, e)
(p1, 0, s0, p0, 0, 0) = 1. (125)

Thus, the implicit function theorem for functions of several complex variables guar-
antees that the generating functions a, b, c, d, e are analytic within a neighborhood
of ρ = 0 and we conclude that the series on the right hand side of the inequalities
(118) are convergent. Here p0 = ‖ψ0‖Y\R = |Y \ R|1/2 and the initial data p0, p1
are bounded functions of ξn

0 on In . Choosing the maximum values of p0, p1, ξ
n
0 ,

as ξn
0 varies over In delivers a majorizing sequence with radius of convergence R

depending only on In . It now follows that the series (54) converges and that (57) is
summable for 0 � ρ < R.

8. Power Series Solution of Cell Problem

In this section we show that the functions defined by the power series solve
(11). For ξn

0 in In recall the series (12), (13)

u =
∞∑

m=0

ηmum (126)

ξ =
∞∑

m=0

ηmξm (127)

with um = imu0ψm and η = ρτ converges for 0 < ρ < R. For v ∈ H1
per(Y ) and

0 � ρ < R. We define

aη(v) :=
∫

H
τ2

(
ξ − εr

ω2
p

c2

)
(∇y + iηκ̂)u · (∇y + iηκ̂)v

+
∫

P
τ2ξ(∇y + iηκ̂)u · (∇y + iηκ̂)v

+
∫

R
η2

(
ξ − εr

ω2
p

c2

)
(∇y + iηκ̂)u · (∇y +iηκ̂)v−

∫

Y
η2ξ

(
ξ−εr

ω2
p

c2

)
uv.

(128)

First, observe that aη(v) has a convergent power series in η that is obtained by
inserting u and ξ into the above expression and expanding in powers of η. The
coefficients of this expansion are exactly the left hand side of Equation (15). Since
ψm satisfies (15), all coefficients of the power series expansion of aη(v) are zero and
we conclude that aη(v) = 0 for all v ∈ H1

per(Y ), 0 � ρ < R. Thus, we conclude
that the pair (u, ξ) satisfies (11).

Next we record the following property of the sequence {ξm} that follows directly
from the variational formulation of the problem and the power series solution.
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Theorem 8. The functions ξm are real for all m.

Proof. Setting v = u in (11) delivers a quadratic equation for ξ . Since the discrim-
inant greater than zero, we conclude that ξ is real and it follows that ξm,m = 1, . . .,
are real. ��

With these results in hand, Theorems 4 and 5 now follow from the convergence
established in Section 7 together with Theorem 3.
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