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We describe new effects associated with electrical conduction along phase interfaces
for particle reinforced conductors. For particles of general shape we introduce a new
quantity 3; called the ‘surface to volume dissipation’ of a particle. This quantity is
a measure of the particle’s ability to dissipate energy on its surface relative to the
energy dissipated in its interior. It is described mathematically as the minimum value
of a suitably defined Rayleigh quotient and is related to an eigenvalue problem posed
on the particle surface. We consider the overall conductivity of a particle reinforced
conductor when the particle conductivities are less than that of the matrix. It is
shown that the overall conductivity will be increased by the presence of a specific
particle when the particle’s ‘surface to volume dissipation’ lies above a critical value.
We calculate the surface to volume dissipation for a sphere and for starlike particles
we provide a lower bound in terms of particle dimensions. These estimates allow
for the prediction of new particle size effects. Second, we present a new criterion on
the particle size distribution for which the overall conductivity lies below the matrix
conductivity.

Keywords: surface-to-volume dissipation; interfacial surface conductivity

1. Introduction

We consider particle reinforced composite materials. The case when electrical con-
duction occurs along phase interfaces as well as inside the particle and matrix phases
is addressed. The interfacial surface conductivity has dimensions of ‘conductivity x
length’ and is denoted by a. The conductivity of each particle is allowed to be differ-
ent. Both matrix and particles are assumed to have anisotropic conducting properties.
We focus on a specific particle and denote its conductivity tensor by c,. We denote
the matrix conductivity by ¢, and suppose that the conductivity of the particle is
less than the matrix, i.e. ¢, < €. This inequality holds in the sense of quadratic
forms. We identify a new quantity called the ‘surface to volume dissipation’ associ-
ated with the particle. It is shown that the overall conductivity is increased by the
presence of the particle when the particle’s surface to volume dissipation lies above
a critical value. This result holds independently of the location and conductivities
of the other particles in the suspension. The second result presented is a new cri-
terion on the suspension geometry for which the overall conductivity lies below the

Proc. R. Soc. Lond. A (1998) 454, 1371-1382 © 1998 The Royal Society
Printed in Great Britain 1371 . TEX Paper



1372 R. Lipton

conductivity of the matrix material. New results relating the size distribution of a
polydisperse suspension of spheres to its effective conductivity are found.

The composite domain is denoted by 2 and its volume is given by |2|. For a
suspension of NV particles, the conductivity inside the composite is described by c(x)
taking the values ¢, in the ith particle and ¢y, in the matrix. The electric potential in
the composite is denoted by . On the boundary of {2 we suppose that the potential
is given by the linear function F -z, where F is a constant vector. Inside the particle
and matrix phases the current is denoted by 7. The current is related to the potential
by the constituitive law j = ¢(x)Vy and in each phase we have

div(j) = 0. (1.1)

The potential is continuous across phase interfaces and on the matrix-particle
interface we have:

Jm M —Jp 1= —alp. (1.2)
Here A, denotes the surface Laplacian on the interface, the subscripts indicate on
which side of the interface the normal component of the current is evaluated, and n
is the unit normal pointing into the matrix phase.

We observe from (1.2) that the jump in the normal component of the current
produces an interfacial surface charge density that is coupled to the electric potential
through a Poisson equation on the interface. The interface jump condition given by
(1.2) models, to first approximation, the effects of a thin highly conducting interphase
layer between the matrix and particle phases. Indeed one can show rigorously that
(1.2) is obtained in the distinguished limit of vanishing layer thickness and increasing
interphase conductivity (see Pham Huy & Sanchez-Palencia 1974). The effective
conductivity c. is given by

E= IQI‘I/ c(z)Vy - nzds. (1.3)
o9

Here ds is the element of surface area, and the vector n is the exterior unit normal.
We denote the region occupied by the particle phase by A, and the region occupied

by the matrix by Ap,. The interface between the particle and matrix phase is assumed

sufficiently regular in order for the jump condition (1.2) to hold and is denoted by I.
The energy dissipated inside the composite is given by the variational principle:

c.F-FE= gg‘r}{C(Ap, )}, (1.4)
with
Cland) =10 [ ct@Ve-Vodata [ |vefasl, w9
2 r
and
V={¢:/ Vo2 +|o|2?dz <0, ¢=E-x, on 8!2}. (1.6)
2

Here V, is the gradient operator on the interfacial surface and the minimzer of (1.4)
is precisely the electric potential ¢.

The effect of a particular particle on the overall conductivity is considered. The
conductivity of the particle is denoted by ¢, and ¢, < ¢n,. We provide the geometric
criterion that determines the length scale at which interfacial conduction compen-
sates for the lower conductivity of the particle. This criterion is general and applies
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to any particle shape. In order to give the criterion, we introduce the matrix P..
given by
P.=alcm—c) ' . (L7
Here each element of P, has dimensions of length. This quantity provides a mea-
sure of the relative magnitude of the interfacial conductance with respect to the
mismatch between the conductivity tensors of the matrix and particle. Denoting the
domain of the particle by X, we introduce a geometric quantity called the ‘surface to
volume dissipation’ of the particle. The ‘surface to volume dissipation’ is denoted by
B1(ep) and has dimensions of (conductivity x length)~!. It is given by the following

quotient:
[ 1v.gpas
ax

/EchqS-ngd:c.

Here the class of admissable functions is given by

U:{¢ldjv(cpv¢)=0, /62¢ds=0, ¢¢o}.

Bi(ep) = min (1.8)

U

The minimizer of (1.8) is the ‘surface to volume dissipation potential’ denoted by g, .
Taking the first variation of the quotient (1.8) shows that (3, is the first eigenvalue
of the eigenvalue problem on the particle surface given by

— Agpp =PBn-c,Vipg, ondx, (1.9)

where div(c, Vyg) = 0 inside the particle. Since div(e, Vg, ) = 0 inside the particle,
we see that equation (1.9) shows that the surface Laplacian of g, is proportional to
the Dirichlet to Neumann map of the potential g, .

The ‘surface to volume dissipation’ is a measure of the particle’s ability to dissipate
energy on its surface relative to the energy dissipated in its interior. For spherical
particles filled with isotropic material of conductivity ¢, we show in §3 that this
ratio is proportional to the reciprocal of the sphere radius a and is given by §; =
2/(cpa). For more general shapes we provide lower bounds on the ‘surface to volume
dissipation’ in terms of the physical dimensions of the particle (see §3).

For a fixed configuration of particles occupying the region A, we add the new
particle X' of conductivity ¢, to the suspension. We assume that the particle ¥ is
compactly contained in the matrix, (i.e. ¥ C Ay, and 82 N A, = 0). The region
occupied by the particle phase is now given by A, U X' and the associated effective
conductivity tensor is denoted by C.. The principal result given in this paper is the
following criterion on the particle geometry.

Theorem 1.1. (Energy dissipation inequality). Given a reinforcement particle X,
if its ‘surface to volume dissipation’ B; satisfies

P! < epfBiley), (1.10)
then

G > Co. (1.11)

Here (1.10) and (1.11) hold in the sense of quadratic forms. No assumptions on
the topological nature of the particle domain ¥ is made. Indeed it can be a disjoint

Proc. R. Soc. Lond. A (1998)



1374 R. Lipton

union of multiply connected components. We emphasize that this result holds inde-
pendently of the location and conductivities of the other particles in the suspension.
This inequality is established in § 2. The ‘surface to volume dissipation’ of a sphere is
calculated in § 3. For particles that are starlike we provide explicit lower bounds on 3;
in § 3. These observations together with the energy dissipation inequality are applied
in §4 to obtain energy dissipation inequalities in terms of the physical dimensions
of the particle. Such size-effect inequalities predict the existence of a critical particle
dimension below which the particle will always increase the overall conductivity of
the composite. These predictions apply to a wide class of particle shapes. We remark
that the lower bound on (3; given in §3 when applied to a sphere lies strictly below
the actual value. In §5 we provide tighter lower bounds that agree with the actual
value of B; for spherical particles. For more general particle shapes, like sphereoids
or chopped fibres, the tighter bound is not explicitly given by a formula, but can be
computed numerically.

Earlier size effects have been found in the context of isotropic monodisperse sus-
pensions of isotropically conducting spheres in an isotropically conducting matrix.
The conductivities of the matrix and particles are given by the scalars ¢, and ¢, and
the quantity P, reduces to the scalar P, = a(cy — ) . For this case the results
have focused on critical radii for a monodisperse suspension of spheres. Here the
critical radius is precisely 2P, and is that for which the overall conductivity of the
composite equals that of the matrix conductivity. The critical radius was found by
Lipton (1995) and by Torquato & Rintoul (1995) using different methods. In Lipton
(1995), this effect is shown to persist even if the suspension is not isotropic. Moreover,
the electric field is shown to be uniform throughout the composite and is precisely
E (see Lipton 1995). For isotropic monodisperse suspensions of isotropically con-
ducting spheres Torquato & Rintoul (1995) have shown that the overall conductivity
lies above the matrix value when the common sphere radii are below 2P, and that
the overall conductivity is decreased when the radii lie above 2P,... More recently,
results involving the statistics of the size distribution of spheres have been found
in the context of isotropic polydisperse suspensions of spheres (see Lipton 1996a).
There it is shown that if the arithmetic mean of the sphere radii lie below 2F,; then
the effective conductivity lies above the matrix value. It is also shown that if the
harmonic mean of the sphere radii lie above 2P, then the effective conductivity lies
below that of the matrix. In §6 we show that this phenomenon persists even when
the suspension is anisotropic. We conclude the paper with an application to ionic
diffusion in concrete structures.

2. Energy dissipation inequality

‘We establish the energy dissipation inequality given in § 1. For any constant vector
E in R3, we can write the difference § = ¢, E-E —c.,E - E as

6 = C(Ap, &) — ClAp, ) + R(Z, ), (2.1)

where @ is the potential associated with the configuration of particles given by A,U%
and the remainder R(X, @) is given by

R(X,¢) = a/az |Vs@|*ds — /E(cm —¢,)Vp-Vgdsr. (2.2)
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Noting that ¢ is an admissable trial for the variational principle (1.4) we have

C(4p,3) — C(4Ap,¢) 20, (2.3)
thus
6> R(X, Q). (2.4)
From (1.8) it follows that
/ |Vso|?ds — ﬂl/ Vo -Veodz >0, (2.5)
ox £

for every function ¢ such that div(e,V¢) = 0. Comparing the right-hand side of
(2.2) with (2.5), we discover that

620, (2.6)
for

a_l(cm - cp) < cpﬂl (cp)7 (27)
and the energy dissipation inequality follows. We observe that strict inequality in
(2.6) follows from strict inequality in (2.7) provided @ is not identically equal to a
constant in J.

3. The surface to volume dissipation of a sphere and lower bounds on
B for starlike particles

We calculate the surface to volume dissipation for a spherical particle of radius
a filled with material of unit conductivity. Separation of variables in the eigenvalue
problem (1.9) shows that the surface to volume dissipation is given by

pr=2/a. (3.1)

The associated eigenspace is given by the span of the coordinate functions z;, x5, 3
restricted to the surface of the sphere. We remark that separation of variables shows
that the set of eigenvalues for the eigenvalue problem (1.9) is given by n(n + 1)/a
for n =1,2,.... The associated eigenspace for the nth eigenvalue is the span of the
spherical harmonics of order n given by a™e™ P™(cos(d)), m = 1,...,n restricted
to the surface of the sphere. Here P[*(x) are the Legendre functions and w, 8 are
polar coordinates on the unit sphere. For a sphere filled with an isotropic conductor
of conductivity c, we easily obtain that 3 = 2/(c,a).

Next we consider particles X' that are starlike with respect to a point % inside X.
We introduce the quantitiy hm(£) = mingeyx{(x—%)-n}. Here n is the unit outward
normal to the boundary of ¥'. The minimum distance from the point % to a tangent
plane on the boundary is given by h.,(%). Since the domain is starlike with respect to
Z we have hy(£) > 0. The maximum distance from % to a point on the boundary is
given by ryv(Z). We denote the largest eigenvalue of the particle conductivity tensor
¢, by v and state the following inequality.

Theorem 3.1. (A lower bound on the surface to volume dissipation for starlike
particles). If the particle X is starlike with respect to the point &, then

1 1/ -
Ale) > ) (3 n m(:i)/hm(a“f))' (3.2)
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To establish the lower bound we may assume that the particle Y is starlike with
respect to the origin and appeal to the identity

Ol (zr(p)is — zi(Cp)rs — z5(cp)ir)Oiudjut = —2(z - Vu)(div(e, Vu)) + ¢, Vu - Vu-)

' (3.3
Here repeated indices are to be summed. Integration over the particle X' and appli-
cation the Gauss—Green theorem gives

/BE(n ‘x)epVu - Vu —2(x - Vu)(n - ¢, Vu) ds

= —2/2(:1:-Vu)(div(chu)) d:z:-}-/xchu-Vudx. (3.4)

We consider trial functions u such that div(e,V) = 0 inside X' and we decompose
the gradient Vu on the boundary 8% into its normal and tangential parts to obtain

/az (n-x)e,Vsu - Vsuds
- / (eom-n)(n - x)(8,u)’ds — 2/ (epn - n)(z - Vsu)(O,u)ds
8z 8z

-2 /;2 (@ - Vsu)(cpn - Vsu)ds = L%Vu - Vudz. (3.5)

Here we have written the normal derivitave n - Vu as 0,u. Next we apply Cauchy’s
inequality to find

~2(epn - m)(a - Vsu) (Bw) < (epm - m)(¢(@ - Va)? + (10,07, } 65)
~2(a- Vsu)(epn - V) < 2leomal| V.,

and _
(@ - Vow)* < |22 [Veul?. (3.7)

Here ¢ is any positive real number. Applying (3.6) and (3.7), noting that ¢, < I in
the sense of quadratic forms, and |n| =1 we obtain

/chu-Vudm</ 7(2|w|+n-az+§|w|2)[Vsulz—/. 7(n-m—g_1j(8nu)2ds. (3.8)
b ) oz

We have the inequality h,(0) < n -z for  on the boundary of ¥'. Thus we set
~1 = b, (0) to find

/ c,Vu - Vudz < / Y(2lx| + 7 - T + hm(0) " z?)|Vsul? ds. (3.9)
> oz
Lastly we note that n - & < |z|, to obtain
/ cpVu - Vudz < y{3rm(0) + rM(O)z/hm(O)}/ |Vsul? ds. (3.10)
b 3> .

The lower bound on 3; follows noting that (3.10) holds for all functions u such that
div(c,Vu) =00n X.
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4. Novel size effects for particle reinforced composites with
interfacial surface conduction

It follows from the energy dissipation inequality and (3.1) that if ' is a sphere of
radius a filled with isotropic conductor c,, then the following theorem holds.

Theorem 4.1. (Size effect for spheres).
é. = c, (4.1)
if
ol <2a(c,I —em)™t. (4.2)

This inequality holds in the sense of quadratic forms. (i.e. (4.1) holds if a is less
than or equal to the least eigenvalue of the matrix 2a(cpd — ¢m)™2.)

When both matrix and particles have isotropic conductivities specified by ¢, and
Cp, respectively, then we have the following.

Theorem 4.2. (Size effect for an isotropically conducting spherical particle in an
isotropic matrix).
Ce 2 Coy (4.3)
if .
a < 2P; = 20(cm — cp) - (4.4)

More generally, we consider starlike inclusions X. We apply the inequality (3.2)
together with the energy dissipation inequality to obtain the following theorem.

Theorem 4.3. (Size effect for starlike particles). Given that X is starlike with
respect to a point % inside X, then
Ce 2 Co (4.5)
if
{rm(2)(3 + rm(%)/hua(2)) }yep ™ < P (4.6)
We consider an ellipsoidal particle. Here we suppose that the half lengths of the
major and minor axes are specified by a and ¢, respectively. For this case we choose

Z to be the centre of mass for the ellipse and it follows that v = a, Ay = ¢, and we
have the following theorem. :

Theorem 4.4. (Size effect for ellipsoidal reinforcement). Given an ellipsoidal rein-
forcement X with major and minor axes specified by a and c, respectively, then

if
{aB+a/c)}ve,™ < P (4.8)
Next we consider cylindrical inclusions of length £ and radius R and choose Z to be
the centre of mass of the cylinder. If 2£ > R then ryy = ((3£)2 + R?)*/? and h,, = R.

On the other hand if %E < R, then hy = %Z. Such inclusions can be used to model
chopped fiber suspensions. We have the following.

Theorem 4.5. (Size effect for a cylindrical inclusion with ¢ > R).
Ce 2 Ce, (4.9)
Proc. R. Soc. Lond. A (1998)
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if
{3R+ 207 + BV IR + e, ™ < Pa (410)
Theorem 4.6. (Size effect for a cylindrical inclusion with 3¢ < R).
Ce 2 Ce, (4.11)
if
{33+ (107 + B) R/ + Tre,™ < P (412)

We remark that these inequalities may be used to select particle dimensions for
the design of composites with optimal DC conductivity.

5. Tighter lower bounds on the surface to volume dissipation for
isotropically conducting particles

When the particle conductivity is isotropic we obtain lower bounds on the surface
to volume dissipation that agree with the actual value when the particle is a sphere.
For particle shapes such as chopped fibres and ellipsoids these bounds are not given
in terms of explicit formulae, but can be computed numerically. For a particle domain
X starlike with respect to the point % we let 7,(Z) denote the minimum distance
from Z to the boundary. In what follows we drop the explicit reference to the point %
and simply write r,, v, and ky,. The scalar conductivity of the particle is denoted
by c,. The lower bound is given by the following theorem.

Theorem 5.1. (Sharp lower bound on the surface to volume dissipation for
isotropically conducting starlike particles). If the particle X is starlike with respect
to the point &, then

¢ H{(hm — O)r2hm [r3 + 1}

S . 1
Br(co) 2 Og}ghﬂ maxzeas{(m -+ -1 |x/ry — n|?} 1)

When the particle is a sphere of radius ¢ and % is its centre, then rp, = vy = by = @
and the lower bound reduces to

max (¢;*{(a — 6)/a+1})/a. (5.2)

0<é<a

The maximum in (5.2) is obtained for § = 0 and the lower bound is precisely the
value of 3, for a sphere given by 2/(cpa).

Without loss of generality we assume that the particle is starlike with respect
to the origin and establish the lower bound. We return to the analysis in §3 and
consider equation (3.5). Since the particle conductivity is isotropic the fourth term
in (3.5) drops out and we have

/az(n x)epVsu - Vsuds — /02 cp(n - 2)(Opu)*ds — 2/62 cp(® - Vu)(Opu) ds

= / e Vu-Vudz. (5.3)
>
Instead of using the estimate (3.7) we note that n - Vsu = 0 and write
(@ - Veu)? =12 ((x/rm — n) - Vsu)? € 12|z /rm — n)?|Vsul?. (5.4)
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We apply the first inequality given in (3.6) together with (5.4) to find

/ cp|Vult dz + / co(Onu)?(n -z — ¢ M) ds
x ox

< f | Vaul2(n - @ + Cra/re — nf)ds.  (5.5)
oxr

Noting that n - & > hy, on the particle boundary it is evident that
[ elvuds+ (= ¢ [ ep@m?ds
z 8z

<[ alvalasimn-o+(rlla/rm—nf)}. (60

We apply the estimate of Bramble & Payne (1967) as in Lipton (1996b: equa-
tions (2.2) and (3.5)) to the second term of (5.6) to find

2
/ cp(Onu)?ds > &4}%/ [Vul® dz. (5.7)
ax T z

M
We restrict (7! < hy, and substitution of (5.7) into (5.6) gives the inequality:

{(hm )c"r e +1}/ cp|Vu|? dz
x

< / cp|Vsu? ds{max(n - = + (rl |z /rm — n|?)}.  (5.8)
ox I

The lower bound follows upon setting § = (™ and noting that (5.8) holds for all
functions v for which dive,(Vu) = 0.

6. Size effects based on the statistics of the particle size distribution
for anisotropic suspensions of anisotropic conductors

We provide a new criterion on the suspension geometry for which the overall con-
ductivity lies below the conductivity of the matrix material. We consider a suspension
of N particles each having a possibly different conductivity. The domain occupied
by the ith particle is denoted by B; and its conductivity by c' The total volume
occupied by the particle phase is denoted by |Ap| and the fractlon of this occupied
by the ith particle is denoted by 6; = |B;|/| 4| and Z 0; = 1. We write the overall
electric energy dissipation due to a prescribed potentlal ¢ = E - ¢ on the boundary
012 as

c.E-E= g‘ei‘f}{C(Apa 9} (6.1)

where
C(Ap,q5)=|.()|'1< V-V dz— (m—C)V-Vodz+a [Vs¢|2ds)
frmseseart] fimsr)

The energy dissipated in the region {2 when filled with pure matrix conductor is
simply ¢, E - E. Thus substitution of ¢ = E - x into (6.1) gives the estimate

L 14, E), (6.3)

c.kF-E<Lc F-E+
|£2]
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where
N
T(AP,E)E—E/ (cm—cp)E-de-}—a/ |Vs(E - x)|?ds.
=1 B; r

A straightforward computation shows that

N
T4y, B) = {aM - 4] 3 bilca ~ &) } B - B, (6.4
=1
where
M=/{I—n®n}ds=—3/w®n’)-{ds. (6.5)
r r

Here H is the mean curvature of the interface. It is evident that the inequality (6.3)
delivers the following criterion.

Theorem 6.1. (Energy dissipation inequality). If

N N
D bilcn—Cc)E-E>0 and |A|'ME-E<oa™) bi(cn—cl)E-E, (6.56)

i=1 i=1

then
c.E-E<c,E-E. (6.7)
For a polydisperse suspension of IV spheres of radii a,, a,, . . ., axn, calculation shows
that
|Ap|7IM = 2(a 1)1, (6.8)
where (@) is the volume average of the inverse radii given by
N
(a1 = Z 6;a; . (6.9)
i=1
We introduce a similar average for the conductivities given by
N
(o) = bich, (6.10)
=1

Thus for polydisperse suspensions of spheres we have the following.

Theorem 6.2. (Energy dissipation inequality based upon the size distribution of
multi-phase spheres). If

(201)—1(Cm - (%))E B (611)

(em—{cp))E-E>0 and (@) < |E? )

then
c.E-E<Le,E-F. (6.12)

When all particles have the same conductivity given by ¢, with ¢ > ¢ the
previous result reduces to the following theorem.

Theorem 6.3. (Energy dissipation inequality based upon the size distribution of
spheres). If
(2P,)'E-E

B (6.13)

(@) <
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then
cE-E<c,E-E. (6.14)
We denote the smallest eigenvalue of the matrix (2P )~! by A.. It follows imme-
diately from the previous inequality that
If (a™') < A, then c. < ¢, in the sense of quadratic forms. (6.15)

We conclude noting that when both matrix and particle conductors are isotropic
that A; = (cp — ¢p)/(2a) and we have the following.

Theorem 6.4. (Energy dissipation inequality for isotropically conducting spheres
in an isotropic matrix).
200

cm__

Ce < Cy, in the sense of quadratic forms when {a™*)™ > (6.16)

We stress that these results hold for anisotropic suspensions.

7. Conclusions and applications

The balance between the effects of a poorly conducting particle and the influence
of a conducting interface between particle and matrix phase is examined. The rela-
tive influence of these effects is captured by a new quantity that is referred to as the
surface to volume dissipation. This quantity measures the energy dissipated on the
particle surface relative to the energy dissipated inside the particle. When this param-
eter lies above a critical value, determined by the ratio of the interfacial conductivity
to the contrast between particle and matrix conductivities, then the influence of
interfacial conductance compensates for the reduced particle conductivity and the
overall conductivity of the composite is increased. This holds independently of the
conductivities and location of all other particles in the suspension.

The result stated above shows that under the right conditions the presence of
interfacial conducting paths will increase the overall conductivity beyond that of the
matrix phase even below the interfacial percolation threshold. To see this we consider
the conductivity of a container filled with pure matrix material. We compare it to
the overall conductivity of a similar container containing a single particle embedded
in the matrix. We see that if the surface to volume dissipation of the particle is above
the critical value then the overall conductivity of the container filled with matrix and
particle is no less than the pure matrix conductivity. For suspensions with several
particles, it follows from the results of this paper and similar arguments that if every
particle in the suspension has a surface to volume dissipation above the critical value
then the overall conductivity is as least as good as the conductivity of the matrix
material.

One practical application of the physico-mathematical model treated here is the
modelling of ionic diffusion in concrete. This phenomenon is important as ions react
with steel reinforcements in the concrete, corroding them and compromising the over-
all structural properties (Garboczi & Bentz 1996). On the scale of meters concrete
may be treated as consisting of a matrix of cement paste with the particle phase
being fine aggregates (sand) or coarse aggregates (rocks) (see Garboczi & Bentz
1996). It has been shown that the interfacial transition zone separating the cement
paste and the aggregate is a major influence on the overall properties (see Bentz et
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al. 1994). The ionic diffusivity in the interface zone is greater than that of the paste
and aggregate. Both the cement paste and interface zone conduct electricity. In light
of the Nerst—Einstein relation (Atkinson & Nickerson 1984; Garboczi & Bentz 1992)
there is a direct relation between the DC electrical conductivity of concrete and the
ionic diffusivity. Thus in the applications the overall ionic diffusivity is determined
by DC electrical conductivity measurements Garboczi & Bentz (1996). The results
given in this paper predict that for sufficiently small aggregates the overall ionic
diffusivity of concrete will be greater than that of the cement paste even when the
interfacial transition zones do not percolate. On the other hand if the aggregates
are modelled as spheres, the results of §6 give requirements on the aggregate size
distribution for which the overall ionic diffusivity of concrete will be less than that
of the cement paste. This is desirable if one seeks to mitigate the effects of corrosion
in steel reinforced concrete structures.
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