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Abstract. We consider solutions to divergence form partial differential equations that model
steady state heat conduction in random two-phase composites. The coefficient representing the
conductivity takes two scalar values. Optimal bounds on the L2 norm of the gradient of the solution
are found. The optimal upper bound is given in terms of the volume fraction occupied by each
conducting phase. The optimal lower bound is independent of the volume fractions of the component
conductors. The bounds follow from a Stieltjes integral representation for the L2 norm of the gradient.
Maximizing sequences of configurations are found using the corrector theory of homogenization.
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1. Introduction. Consider a bounded region Ω of RN with a sufficiently reg-
ular boundary containing two isotropic conductors subjected to a constant applied
temperature gradient E in RN . Here we consider any dimension N greater than or
equal to 2. The conductivities of the two materials are written as α and β, and the
indicator function of the β phase is denoted by χ, where χ = 1 inside the β phase and
0 otherwise. We suppose that the set occupied by the β phase is Lebesgue measurable
and that β > α. The local conductivity of the two-phase conductor is described by
a(χ) = α(1 − χ) + βχ. The temperature T inside the two-phase conductor is the
solution of

−div (a(χ)∇T ) = 0(1.1)

subject to the boundary condition T = E · x. Since the coefficient a(χ) is bounded
and measurable, the equilibrium equation (1.1) is interpreted in the weak sense. Here
we recall that the weak solution of (1.1) is defined to be the function T in W 1,2(Ω)
that satisfies ∫

Ω

a(χ)∇T · ∇ϕdx = 0(1.2)

for all functions ϕ in W 1,2
0 (Ω).

We suppose that the composite is random in that we specify only the volume
fraction θ of the β phase and consider the ensemble of configurations that satisfy
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this isoperimetric constraint. The set of conductivities associated with this class is
denoted by adθ and is written

adθ =

{
a(χ), where χ satisfies

∫
Ω

χdx = θ ×meas(Ω), 0 ≤ θ ≤ 1

}
.(1.3)

In this paper we address the problem of extremizing

‖∇T‖2
2

∆
=

∫
Ω

|∇T |2 dx(1.4)

over the class adθ. We provide optimal upper and lower bounds on the quantity
‖∇T‖2

2. The upper bound depends explicitly upon the volume fraction occupied by
the β phase. In order to state the bounds we set λ = β

α and introduce the function
f(z) defined by

f(z) =
z(

1
1−λ − z

)2(1.5)

and we give the following optimal inequality.
Theorem 1.1 (optimal inequality for the L2 norm of the gradient). For any

admissible conductivity a(χ) in adθ the associated temperature gradient ∇T satisfies

meas(Ω) × |E|2 ≤ ‖∇T‖2
2 ≤ U(θ,E),(1.6)

where U(θ,E) depends upon the contrast λ and is given by

U(θ,E) = meas(Ω) × (1 + θf(1 − θ)) |E|2 for λ ≤ 2,(1.7)

and for λ ≥ 2

U(θ,E) = meas(Ω) ×
{

(1 + θf(1/(λ− 1))) |E|2 if θ ≤ 1 − 1/(λ− 1),
(1 + θf(1 − θ)) |E|2 if θ ≥ 1 − 1/(λ− 1).

(1.8)

The upper bound is attained by a suitable extremal sequence of configurations in adθ.
The lower bound is attained by a configuration made up of parallel layers of the β
conductor with layer normals orthogonal to E. These results hold for all bounded
domains Ω of RN , N ≥ 2 with Lipschitz boundary.

Extremal sequences of configurations that attain the upper bound are found to
be given by the well-known finite rank laminar microstructures. This class of config-
urations is known to give extremal effective conductivity properties; see [7] and [9].
They also arise in the study of minimization problems for integral functionals of the
form

∫
Ω
W (∇φ) dx with nonconvex energy densities W ; see [1], [3], [4], and [6].

It is shown here that only laminates of the first and second rank appear in extremal
sequences of configurations. In order to describe a second rank laminate we introduce
two characteristic functions, one for each scale of oscillation. We consider the periodic
function χ1(t) defined on the real line with period 0 ≤ t ≤ 1 such that χ1 = 1 for
0 ≤ t ≤ θ1 and χ1 = 0 elsewhere. Similarly we introduce the unit periodic function
χ2 such that χ2 = 1 for 0 ≤ t ≤ θ2 and χ2 = 0 elsewhere. We introduce unit vectors
n1 and n2 representing layer directions and put

χε
L(x) =

(
1 − χ1

(
n1 · x
ε

))(
1 − χ2

(
n2 · x
ε2

))
.(1.9)
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Fig. 1. A laminate of second rank.

The configurations associated with the sequence of characteristic functions {χε
L}ε>0

are referred to as a laminate of the second rank. The conductivities for this sequence
of configurations are given by a(χε

L); see Figure 1. The laminate of first rank has one
less scale of oscillation and is given by

χε
L(x) =

(
1 − χ1

(
n1 · x
ε

))
.(1.10)

The sequence of temperature gradients associated with laminates of rank one or two
is written as {∇T ε

L}ε>0, where

−div (a(χε
L)∇T ε

L) = 0(1.11)

and T ε
L = E · x on the boundary of Ω.

In general, we may consider any sequence of configurations {χε}ε>0 indexed by
ε and the associated sequence of temperature gradients {∇T ε}ε>0 satisfying
−div (a(χε)∇T ε) = 0 and T ε = E · x on the boundary of Ω. A sequence of con-
figurations {χε}ε>0 is said to be a maximizing sequence if

lim
ε→0

‖∇T ε‖2 = U(θ,E).(1.12)

A configuration is said to be minimizing if the associated temperature T satisfies

‖∇T‖2 = meas(Ω) × |E|2.(1.13)

The next result identifies configurations that minimize the L2 norm of the gradi-
ent.

Theorem 1.2 (minimizing configurations for the L2 norm). Given E in RN , a
minimizing configuration is obtained by placing the β conductor in layers oriented so
that the layer normals are orthogonal to E. The number and thickness of the layers
is constrained only by the requirement that the configuration be in adθ.

It is easily shown that the temperature for this configuration is given by T = E ·x
everywhere in Ω; see section 4.

We now identify maximizing sequences of configurations.

Theorem 1.3 (maximizing sequences of configurations for the L2 norm). Given
E in RN
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1. If λ ≤ 2, then a maximizing sequence of configurations is given by a laminate
of the first rank in adθ with layer normal n1 parallel to E and θ1 = 1 − θ.

2. If λ > 2, then
(a) if θ ≤ 1 − 1/(λ − 1), then a maximizing sequence of configurations is

given by a laminate of the second rank in adθ with layer normal n1

parallel to E, layer normal n2 orthogonal to E, θ1 = 1
1+θ(λ−1) , and

θ2 = 1 − θ − ( 1
λ−1 );

(b) if θ ≥ 1 − 1/(λ − 1), then a maximizing sequence of configurations is
given by a laminate of the first rank in adθ with layer normal n1 parallel
to E and θ1 = 1 − θ.

The geometry for minimizing configurations is independent of the volume fraction
of the β phase and the contrast λ. On the other hand, for λ > 2, we see that
the maximizing sequences of configurations change from laminates of rank one to
laminates of rank two when the volume fraction of the β phase drops below 1 − 1

λ−1 .
When this happens the extremal configuration of α and β phases changes topology
and the α phase occupies a connected set, while the β phase is in the form of thin
rectangular inclusions.

In view of the applications, it is important to control the temperature gradient,
as regions containing large temperature gradients are most often the first to suffer
damage during service. Theorem 1.2 provides rigorous rules of thumb for the design
of configurations for minimizing the L2 norm of the temperature gradient, i.e., mini-
mizing configurations are given by layering the two conductors in strips parallel to the
applied field E. On the other hand, the upper bound given in Theorem 1.1 provides
the best possible upper bound on the L2 norm of the temperature gradient when only
the volume fraction of the β phase is known. We point out that the upper bound goes
to infinity with the contrast λ.

The basic idea behind our approach is to encode the constraint given by the equi-
librium condition (1.1) directly into the cost functional ‖∇T‖2

2. To do this we follow
Golden and Papanicolaou [5] and introduce a scattering theory formalism to express
∇T in terms of the solution operator for (1.1). We then substitute the representation
for ∇T into the L2 norm to obtain the desired Stieltjes representation for ‖∇T‖2

2

in terms of a matrix valued measure. Using perturbation theory we see as in [5]
that there are an infinite number of constraints on the matrix valued measure. We
judiciously choose a subset of these constraints associated with the first and second
moments of the measure. Our choice is motivated by the corrector theory of homoge-
nization for laminates of finite rank given by Briane [2]. Subject to these constraints
we extremize the Stietljes representation formula over all associated matrix valued
measures to obtain the bounds given in Theorem 1.1. The attainability of the upper
bound is established by comparing it to the limits of the L2 norms associated with
laminates of rank one or two. The comparison is facilitated using an explicit Stieltjes
integral representation formula for these limits. We are confident that the approach
developed here will be successful for investigating analogous problems in the elasticity
setting.

The paper is organized as follows. In section 2 we review the recent results of
Briane [2] that give the explicit form of corrector matrices for laminates of finite rank.
We apply this theory to write the limit of the L2 norms for finite rank laminates as
Stieltjes functions. In section 3 we develop a Stieltjes representation formula for the
L2 norm of the gradient for any admissible configuration. In section 4 we use the
representation formula to obtain the bounds stated in Theorem 1.1 and to establish
their optimality.
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2. Correctors and the L2 norm for layered materials. In this section we
obtain an explicit formula for

lim
ε→0

‖∇T ε
L‖2

2.

We start by reviewing the notion of H convergence due to Spagnolo [10] and Murat
and Tartar [8]. We consider the sequence of conductivities {a(χε)}ε>0 associated
with the sequence of configurations {χε}ε>0. The sequence {a(χε)}ε>0 is said to H
converge to A if for any function f of H−1(Ω) the solutions uε ∈W 1,2

0 (Ω) of

−div (a(χε)∇uε) = f

satisfy uε → u0 weakly in W 1,2(Ω) and a(χε)∇uε → A∇u0 weakly in L2(Ω; RN ),
where u0 is the solution of −div

(
A∇u0

)
= f and u0 ∈ W 1,2

0 (Ω). In fact more can
be said about the convergence of the sequence {∇uε}ε>0. There exists a matrix field
Pε, called a corrector, for which

∇uε = Pε∇u0 + zε,

where zε → 0 strongly in L1(Ω; RN ). Tartar [11] and Murat and Tartar [8] prove
there always exists such a sequence of correctors Pε.

We choose layering directions n1 and n2 so that they are orthogonal to each other

and put χε
1 = χ1(n1·x

ε ) and χε
2 = χ2(n2·x

ε2 ). We invoke Theorem 2.1 of Briane [2], and
a straightforward calculation shows that the correctors are of the form

Pε = χε
1P

1 + (1 − χε
1)
[
χε

2P
2 + (1 − χε

2)P3
]
,(2.1)

where the constant matrices P1, P2, and P3 are given by

P1 = I + (1 − θ1)

(
(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1 ⊗ n1,(2.2)

P2 = I−θ1
(

(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1⊗n1+(1−θ2)

(
λ− 1

(1 − θ2) + θ2λ

)
n2⊗n2,

(2.3)
and

(2.4)

P3 = I− θ1
(

(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1 ⊗ n1 − θ2

(
λ− 1

(1 − θ2) + θ2λ

)
n2 ⊗ n2,

where I is the N × N identity and n1 ⊗ n1 and n2 ⊗ n2 are the rank one matrices
n1
in

1
j and n2

in
2
j , respectively. The H limit for the sequence {a(χε

L)}ε>0 is a constant

N ×N matrix denoted by AL [7], [8]. For the boundary value problem treated here
we have that

T ε → E · x weakly in W 1,2(Ω) and

a(χε)∇T ε → ALE weakly in L2(Ω; RN ).(2.5)

From the corrector theory we have

∇T ε
L = PεE + zε.(2.6)
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It is evident from the formulas describing Pε that the sequence {Pε}ε>0 is uniformly
bounded in L∞(Ω; RN×N ). Thus we appeal to Theorem 3 of Murat and Tartar [8]
to find that zε → 0 strongly in L2(Ω; RN ). We note that because of the separation
of scales, the sequence of products {χε

1χ
ε
2}ε>0 converges in a weak L∞ star to the

product θ1θ2. Collecting our results and taking limits we find that

lim
ε→0

‖∇T ε
L‖2

2 = CL
ijEiEj ,(2.7)

where the matrix CL is given by

CL = meas(Ω)I

+meas(Ω)(1 − θ1)(1 − θ2)

(
θ1(1 − θ2)

( 1
1−λ − θ1(1 − θ2))2

)
n1 ⊗ n1

+meas(Ω)(1 − θ1)(1 − θ2)

(
θ2

( 1
1−λ − θ2)2

)
n2 ⊗ n2.(2.8)

Here we note that the total volume fraction of the β phase is given by θ = (1−θ1)(1−
θ2), and we can rewrite (2.8) as

CL = C(µL) = meas(Ω) ×
(
I +

∫ 1−θ

0

f(z)µL(dz)

)
,(2.9)

where the matrix valued measure µ is given by

µL(dz) =
(
θδ(z − θ1(1 − θ2))n1 ⊗ n1 + θδ(z − θ2)n2 ⊗ n2

)
dz.(2.10)

Equations (2.9) and (2.10) provide the desired Stieltjes integral formula for the limit
given in (2.7).

3. Stieltjes integral representation formula for the L2 norm. In this
section we develop a representation formula for ‖∇T‖2

2, where T is the solution of (1.1)
and T = E · x on the boundary of Ω. Motivated by perturbation theory we shall first
rewrite the constraint given by (1.1). To this end we introduce the solution operator
(−∆)−1 mapping H−1(Ω) onto W 1,2

0 (Ω) for the problem given by w ∈W 1,2
0 (Ω) and

−∆w = f on Ω.(3.1)

Next we introduce the subspace E of L2(Ω; RN ) defined by

E = {η ∈ L2(Ω; RN ) | η = ∇ϕ, ϕ ∈W 1,2
0 (Ω)},

and we introduce the operator P defined by P = ∂xi(∆)−1∂xj . It is easily checked
that the operator P is a projection from L2(Ω; RN ) into the subspace E . We introduce
the field perturbation φ = T − E · x and rewrite the conductivity a(χ) as a positive
perturbation from the uniform state α, i.e., a(χ) = α + (β − α)χ. Expanding T and
a(χ) in (1.1) gives

−α∆φ = div ((β − α)χ(∇φ+ E)) .(3.2)

Dividing both sides by α, applying (−∆)−1 to both sides, and manipulating gives

∇φ+ E + P [ (λ− 1)χ (∇φ+ E) ] = E(3.3)
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or

[ I + (λ− 1) Λ ]∇T = E,(3.4)

where Λ = Pχ. From this we obtain the desired expression

∇T = [ I + (λ− 1) Λ ]
−1

E.(3.5)

It is clear that the equilibrium constraint (1.1) is now explicitly encoded in the formula
for ∇T as given by (3.5). The next step is to rewrite ‖∇T‖2

2 in a way that exploits
the spectral properties of the operator Λ. To do this we expand the energy dissipation
denoted by Q in two different ways. Here

Q =
1

meas(Ω)

∫
Ω

a(χ)∇T · ∇T dx.(3.6)

Expanding a(χ) as a(χ) = α+ χ(β − α) and substitution into (3.6) gives

Q =
1

meas(Ω)

∫
Ω

α|∇T |2 dx+
(β − α)

meas(Ω)

∫
Ω

χ |∇T |2 dx.(3.7)

We expand ∇T as ∇T = ∇φ+ E in (3.6) to obtain

Q =
1

meas(Ω)

∫
Ω

a(χ)∇T ·E dx

= α|E|2 +
(β − α)

meas(Ω)

∫
Ω

χ∇T ·E dx.(3.8)

Here the first equality in (3.8) follows from (1.2), and the second follows from expan-
sion of a(χ) and

∫
Ω
∇φ ·E dx = 0. Eliminating Q using (3.7) and (3.8) gives

‖∇T‖2
2 = meas(Ω)

(
|E|2 +

(λ− 1)

meas(Ω)

∫
Ω

χ (∇T ·E) dx− (λ− 1)

meas(Ω)

∫
Ω

χ |∇T |2 dx
)
.

(3.9)
For vector fields η and ψ in L2(Ω; RN ) we introduce the bilinear form 〈η, ψ〉 defined
by

〈η, ψ〉 =
1

meas(Ω)

∫
Ω

χ (η · ψ) dx,

and 〈η, ψ〉 is an inner product for the Hilbert space H defined by

H =

{
ψ ∈ L2(Ω; RN ) modulo the equivalence class of elementsψ

such that

∫
Ω

χψ dx = 0

}
.

Substitution of (3.5) into (3.9) gives

‖∇T‖2
2 = meas(Ω)|E|2

+meas(Ω)(λ− 1)
〈

[ I + (λ− 1) Λ ]
−1

E,E
〉

−meas(Ω)(λ− 1)
〈

[ I + (λ− 1) Λ ]
−1

E, [ I + (λ− 1) Λ ]
−1

E
〉
.(3.10)
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It is easily seen that Λ is a positive symmetric operator on H with norm less than or
equal to 1. From spectral theory we immediately obtain the existence of a projection
valued measure R(dz) with support on [0, 1] for which

〈
[ I + (λ− 1) Λ ]

−1
E,E

〉
=

〈∫ 1

0

1

1 + z(λ− 1)
R(dz)E,E

〉
(3.11)

and〈
[ I + (λ− 1) Λ ]

−1
E, [ I + (λ− 1) Λ ]

−1
E
〉

=

〈∫ 1

0

1

(1 + z(λ− 1))2
R(dz)E,E

〉
.

(3.12)
Collecting our results we arrive at the Stieltjes integral representation formula given
by the following theorem.

Theorem 3.1 (Stieltjes integral representation formula).

‖∇T‖2
2 = Cij(µ)EiEj ,(3.13)

where

C(µ) = meas(Ω)

(
I +

∫ 1

0

f(z) µ(dz)

)
(3.14)

and

µij(dz) = 〈R(dz) ei, ej〉.(3.15)

Here ei, i = 1, 2 . . . , N is an orthonormal basis for RN . Moreover, µij = µji, since

R(dz) is symmetric and for all E in RN we have that the measures µ(dz)E · E are
positive.

It is evident from Theorem 3.1 that the geometric information is stored in the
measure µ while the ratio of conductivities is contained in f(z). The extremal behav-
ior of ‖∇T‖2

2 is governed by the global maxima and minima of f on [0, 1].

4. Derivation of the isoperimetric inequalities. In view of the Stieltjes
formula for the gradient we can replace the extremal problems

A = inf
a(χ)∈adθ

{‖∇T‖2
2 ; −div (a(χ)∇T ) = 0, T = E · x on ∂Ω

}
(4.1)

and

B = sup
a(χ)∈adθ

{‖∇T‖2
2 ; −div (a(χ)∇T ) = 0, T = E · x on ∂Ω

}
(4.2)

with the equivalent problems given by

A = inf
µ∈Aθ

{C(µ)E ·E}(4.3)

and

B = sup
µ∈Aθ

{C(µ)E ·E} .(4.4)

Here the set Aθ is the set of measures µ given by (3.15) associated with any configura-
tion of the β phase described by a characteristic function χ subject to the isoperimetric
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constraint
∫
Ω
χdx = θmeas(Ω). Instead of attempting an explicit characterization

of Aθ we introduce a larger set of measures Aθ and compute the lower and upper
bounds

A = inf
µ∈Aθ

{C(µ)E ·E}(4.5)

and

B = sup
µ∈Aθ

{C(µ)E ·E} .(4.6)

The goal here is to find a suitable choice for Aθ that delivers optimal bounds. We
start by examining constraints on the measure µL(dz) associated with laminates of
the second rank defined in (2.10). One readily sees that∫ 1

0

µL(dz) = θI,(4.7)

and since 1 − θ = θ2 + θ1(1 − θ2) we have

TL ∆
=

∫ 1

0

zµL(dz) ≤ (max{θθ1(1 − θ2), θθ2}) × I ≤ θ(1 − θ)I.(4.8)

Next, for comparison, we apply perturbation expansions to look for constraints
on µ(dz). Expansion about λ = 1 gives

[ I + (λ− 1) Λ ]
−1

= I + (1 − λ) Λ + (1 − λ)2 Λ2 + (1 − λ)3 Λ3 + · · ·(4.9)

and

1

1 + z(λ− 1)
= 1 + (1 − λ) z + (1 − λ)2 z2 + (1 − λ)3 z3 + · · · .(4.10)

Substituting these expansions into (3.11) and equating like powers of λ− 1 gives∫ 1

0

zn µij(dz) = 〈Λnei, ej〉, n = 0, 1 . . . .(4.11)

Focusing on the cases n = 0 and n = 1 we have∫ 1

0

µij(dz) = θ Iij(4.12)

and ∫ 1

0

zµij(dz) = 〈Λei, ej〉.(4.13)

We estimate the largest and smallest eigenvalues for the tensor Tij
∆
= 〈Λei, ej〉. We

note that constant vectors lie in the null space of the operator P , and we introduce
χ = χ− θ to find that

0 ≤ TijEiEj =
1

meas(Ω)

∫
Ω

(Pχ)E · χE dx

=
1

meas(Ω)

∫
Ω

(Pχ)E · χE dx

≤ 1

meas(Ω)

∫
Ω

(χ)2 dx|E|2 = θ(1 − θ)|E|2.(4.14)
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Thus the spectrum of the tensor T lies in the interval [0, θ(1−θ)]. Motivated by (4.7),
(4.8), (4.12), and (4.14) we define Aθ to be given by allN×N symmetric matrices with
elements given by finite Borel measures such that for any vector v the measure given
by µ(dz)v · v is positive and the matrix of measures satisfies the moment constraints∫ 1

0

µ(dz) = θ I(4.15)

and ∫ 1

0

zµ(dz) = T,(4.16)

where T is a symmetric N × N matrix with eigenvalues contained in the interval
[0, θ(1− θ)]. Its clear from the definition of Aθ that this set of measures contains Aθ.

For the purpose of computing the bounds A and B we characterize the range of
the map H(µ) given by

H(µ) =

∫ 1

0

f(z) µ(dz)(4.17)

for µ in Aθ. We introduce the set Vθ of vectors (ν1, ν2, . . . , νN ) whose elements are
positive finite Borel measures supported on [0, 1] that satisfy the constraints∫ 1

0

νi(dz) = θ, i = 1, . . . , N,(4.18)

and ∫ 1

0

z νi(dz) = mi, where 0 ≤ mi ≤ θ(1 − θ), i = 1, . . . , N.(4.19)

We now state the following theorem.
Theorem 4.1 (the matrix range of H(µ)). Let R be the image of Aθ under the

map H : Aθ → RN×N . Then R is given by

R =




M ∈ RN×N ; M = ΣN
i=1λie

i ⊗ ei,

where λi =
∫ 1

0
f(z) νi(dz), and (ν1, ν2 . . . νN ) in Vθ,

and ei, i = 1, . . . , N, is any orthonormal basis for RN .


 .(4.20)

Proof. We denote the right-hand side of (4.20) by S and show R = S. One sees

that S ⊂ R by writing M =
∫ 1

0
f(z)P (dz), where P (dz) = Σiνi(dz)e

i ⊗ ei, and
checking (4.15) and (4.16). To show R ⊂ S we consider the matrix M given by M =∫ 1

0
f(z)µ(dz). Since M is symmetric it has an orthonormal system of eigenvectors

vi, i = 1 . . . , N , andM = Σiλiv
i⊗vi. From this one deduces that λi =

∫ 1

0
f(z)µi(dz),

where µi are the positive measures given by µi(dz) = µ(dz)vi · vi. Next we observe
that ∫ 1

0

µi(dz) =

∫ 1

0

µ(dz)vi · vi = θ(4.21)

and

mi =

∫ 1

0

z µi(dz) =

∫ 1

0

zµ(dz)vi · vi ≤ θ(1 − θ)(4.22)
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to discover that (µ1, . . . µN ) lies in Vθ, and the theorem is proved.
We now establish the explicit formulas for the bounds given by the following

theorem.
Theorem 4.2 (bounds on the L2 norm of the gradient).

A = meas(Ω)|E|2 ≤ ‖∇T‖2
2 ≤ B = U(θ,E).(4.23)

Before establishing the theorem we note that the lower bound meas(Ω)|E|2 can
be found directly. Indeed, we can write T = φ+ E · x, where φ = 0 on the boundary
of Ω. Then expanding ‖∇T‖2

2 and noting that
∫
Ω
∇φ ·E dx = 0, we have

‖∇T‖2
2 = meas(Ω)|E|2 +

∫
Ω

|∇φ|2 dx,(4.24)

and the lower bound follows immediately.
Proof of Theorem 4.2. We start by proving A = meas(Ω)|E|2. From Theorem

4.1 it follows that

A = inf
M∈R

{meas(Ω)(I +M)E ·E} .(4.25)

It is evident from (4.25) that for (ν1, . . . , νN ) fixed the minimum occurs when E lies in
the eigenspace of the smallest eigenvalue of M . Without loss of generality we assume

that λ1 =
∫ 1

0
f(z) ν1(dz) is the smallest eigenvalue of M , and we choose e1 = E/|E|

to find that

A = inf
ν1≥0,∫ 1

0
ν1(dz)=θ,

∫ 1

0
zν1(dz)≤θ(1−θ)

{
meas(Ω)

(
1 +

∫ 1

0

f(z) ν1(dz)

)
|E|2

}
.(4.26)

To finish the minimization we note that for λ > 1 the function f(z) is strictly positive
on 0 < z < ∞ with f(0) = 0 and limz→∞ f(z) = 0. Moreover, f(z) has a global

maximum over [0,∞) at z = 1/(λ− 1) with f́(z) ≥ 0 for z ≤ 1/(λ− 1) and f́(z) ≤ 0
for z ≥ 1/(λ− 1). With this in mind we choose ν1(dz) = θδ(z)dz. Since this choice is
admissible we have established that A = meas(Ω)|E|2.

Next we establish the upper bound. From Theorem 4.1 it follows that

B = sup
M∈R

{meas(Ω)(I +M)E ·E} .(4.27)

Here it is evident that for (ν1, . . . , νN ) fixed the maximum occurs when E lies in the
eigenspace of the largest eigenvalue of M . Without loss of generality we assume that

λ1 =
∫ 1

0
f(z) ν1(dz) is the largest eigenvalue of M , and we choose e1 = E/|E| to find

that

B = sup
ν1≥0,∫ 1

0
ν1(dz)=θ,

∫ 1

0
zν1(dz)≤θ(1−θ)

{
meas(Ω)

(
1 +

∫ 1

0

f(z) ν1(dz)

)
|E|2

}
.(4.28)

To proceed we normalize and write ν1(dz) = θp(dz). The extremal problem becomes

B = meas(Ω)

(
|E|2 + θ sup

p∈C

(∫ 1

0

f(z) p(dz)

)
|E|2

)
,(4.29)
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where C is the set of probability measures for which 0 ≤ z̄ =
∫ 1

0
z p(dz) ≤ (1 −

θ). Noting that the function f(z) is strictly concave over an interval that includes
[0, 1/(λ− 1)], strictly increasing on [0, 1/(λ− 1)], and strictly decreasing on (1/(λ−
1),∞), we have for (1 − θ) ≤ 1/(λ− 1) that

∫ 1

0

f(z) p(dz) < f(z̄) ≤ f(1 − θ).(4.30)

It is evident that the best choice is p(dz) = δ(z − (1 − θ)), and we find that

B = meas(Ω) × (1 + θf(1 − θ)) |E|2.(4.31)

We observe that for 1 < λ ≤ 2 we have 1/(λ−1) ≥ 1 and for 0 ≤ θ ≤ 1 we always have
(1−θ) ≤ 1/(λ−1). On the other hand, when (1−θ) ≥ 1/(λ−1) it is evident that the
best choice corresponds to the global maximum of f , i.e., p(dz) = δ(z − 1/(λ − 1)),
and we find that

B = meas(Ω) × (1 + θf(1/(λ− 1))) |E|2,(4.32)

and the theorem follows.
We conclude by proving Theorems 1.2 and 1.3. To prove Theorem 1.2 we show

that the lower bound A is attained by configurations made up of layers of the β phase
with layer normals orthogonal to E. We recall (1.2) and write it in the equivalent
form

α∆T = 0 in the α phase,

β∆T = 0 in the β phase, and

β∇T · n = α∇T · n on the layer interface.(4.33)

When n is perpendicular to E we easily see that the affine function T = E · x is a
solution of (4.33) and optimality follows. To prove Theorem 1.3 we first suppose that
that 1 − θ ≤ 1/(λ− 1) and show that the upper bound B is saturated by a laminate
of rank one. We refer to formulas (2.7), (2.9), and (2.10) and choose n1 parallel to E
and set θ1 = 1 − θ and θ2 = 0 to obtain

lim
ε→0

‖∇T ε
L‖2

2 = B.(4.34)

Last we suppose that 1 − θ ≥ 1/(λ − 1). Here we choose n1 parallel to E and n2

orthogonal to E and choose θ1 = 1
1+θ(λ−1) and θ2 = 1 − θ − ( 1

λ−1 ). This choice gives

θ1(1 − θ2) = 1/(λ− 1), (1 − θ1)(1 − θ2) = θ, and

lim
ε→0

‖∇T ε
L‖2

2 = B(4.35)

follows from (2.7), (2.9), and (2.10).
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