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A Saddle-Point Theorem with Application
to Structural Optimization!

R. LrTON?

Communicated by K. A. Lurie

Abstract. The relaxation for optimal compliance design is indepen-
dent of whether the underlying elastic problem is formulated in terms
of displacements or strains. For the purposes of numerical experimen-
tation and computation, it may be advantageous to formulate optimal
design problems in terms of displacements as is done in Ref. 1. The
relaxed problem delivered by the displacement-based formulation is of
min-min-max type. Because of this, efficient numerical implementation
is hampered by the ordzr of the last two min-max operations. We show
here that the last two min-max operations may be exchanged, facilizat-
ing an efficient numercal algorithm. We remark that the rigorous
results given here corroborate the numerical methods and experiments
given in Ref. 1.

Key Words. Young measures, saddle points, finite-rank laminates,
structurss, optimization.

1. Introduction

It is now well known that optimal design of structures made from two
dissimilar elastic materials may involve zones of composite formed from the
two constituent materials; see Refs. 2-6. This observation motivates exten-
sion of the design space to incorporate the efective elastic properties of
composites; see Refs. 4-6. This extension of the design space is commonly
known as the relaxation of the original problem; cf. Refs. 7 and 8.

In this paper, we shall consider relaxation for problems of compliance
optimization for three-dimensional structures made from two 1sotropic

'"This work supported by NSF Grant DMS-92-051 58.
?Associate Professor, Department of Mathematical Sciences, Worcester Polytechnic Institute,
Worcester, Massachusetts.
549
0022-3239/94/0600-0549507.00/0 T 1994 Plenum Publishing Corporation



)

1994

H jota / vol.81-3/ P279.p02

Page 1

550 JOTA: VOL. 81, NO. 3, JUNE 1994

materials with elasticities specified by shear and bulk moduli U x,i=1,2,
given by

Cl = zﬂlp.r + 3KIPI" (l)

such that u, >y, x,>x,. Here, P, and P, are the projections onto
deviatoric and hydrostatic strains, respectively. The structural domain is
denoted by Q and lies in R®. We remark that all results stated here
immediately carry over to planar elastic problems.

We suppose that the relatively stiff material characterized by C, is more
costly. Therefore, our goal is to minimize the compliance over all material
layouts subject to a constraint on the amount of expensive material. The
underlying elastic problem can be formulated variationally either in terms of
stresses or elastic displacements.

It is easily seen (see Section 2) that the relaxation for this problem is
achieved through the use of the well-known extremal class of effective elastic
tensors corresponding to finite-rank laminar microstructures; see Refs. 7 and
9-14. The relaxation is independent of the formulation of the underlying
elastic problem.

For purposes of numerical experimentation and computation, it may be
advantageous to formulate the optimization problem in terms of displace-
ments. The relaxed variational problem delivered by the displacement-based
approach is of min-min-max type; see Section 2, Eq. (22). Because of this, an
efficient numerical scheme is hampered by the order of the last two min-max
operations. In this paper, we provide 2 saddle-point theorem justifying the
exchange; see Theorem 4.1. The saddle-point theorem is established with the
aid of a convexity property enjoyed by the effective tensors of finite-rank
laminates (see Theorem 3.1) and the use of a tensor-valued family of Young
measures; see Section 4.

Once the exchange is made, the compliance problem is of min-max-min
type and the rightmost minimization reduces to the minimization of a local
energy density at each point in the structural domain. This feature is
computationally attractive, since the minimization of the local energy
density can be done analytically; see Theorem 2.1. The saddle-point theorem
and max-min exchange presented here have been incorporated in the
recently developed numerical methods given in Ref. 1.

We illustrate the relationship between the relaxed Lagrangian for the
displacement problem and its counterpart for the stress-based problem. The
relaxed integrands appearing in both Lagrangians are nonquadratic functions
of their arguments; nevertheless, there exists a duality relation between the
two Lagrangians; see Section 5. We remark that the min-max interchange
theorem easily generalizes to multiload problems. The associated saddle
theorem and relations between relaxed Lagrangians are given in Section 6.
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We remark that a simple change of variables shows that the saddle-
point theorem can be written in terms of H-measures associated with
minimizing sequences of designs; see Theorem 7.1. It follows from this
observation that the relaxed controls are given in terms of the local volume
fraction of the two materials and the H-measure; see Section 7.

To simplify the reading of the text, we list some definitions, vector
spaces, and function spaces used in the presentation. All fourth-order
tensors will be denoted by upper case letters C, T, I, ...: second-order
tensors will be denoted using underlined lower case letters g, 8 ...; vectors
will be denoted simply by lower case letters f g, . . . ; scalar products and
contractions are defined as follows:

3
S+ g is the scalar with value Y fg,;
(=]

3
g : e is the scalar with value ) g e,;
/=1

3
(T, V) is the scalar with value Y T ¥;
1

(k! =

|T] is the scalar with value /(T, T);
Te is the second-order tensor with coefficients (T¢), =Y Tyuur-
k!

The following vector spaces are used

Sy is the space of 3 x 3 symmetric matrices:
F is the space of fourth-order tensors such that Tyt = Ty = Ty
[ is the identity tensor in F, given by

Dt = (12) (0 )y + 5:‘15;1:);

E(a, f) is the set of all T in F such that o/ <t < BI in the sense of
quadratic forms; here, « = min(x, 4,) and g = max(x,, i#,);

J is the set of all T in F such that T is positive definite, i.e., Te:e >0
for all ¢ in S;.

The following function spaces are used throughout this presentation:

L=(Q, F) is the space of tensor-valued functions T(x) defined on Q
such that each element Ty(x) is in L=(Q, R) and T(x) takes values in
F almost everywhere in Q;

L=(Q,[0,1]) is the space of scalar-valued L=-functions mapping Q
into [0, 1];
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L2(Q, S,) is the space of symmetric matrix-valued functions m defined
on Q such that each element my is in L2(Q, R) and m takes values in
S5 almost everywhere:

LY(Q,J) is the space of tensor-valued functions T(x) defined on Q
such that each element Tyuis in LY(Q, R) and T(x) takes values in J
almost everywhere in Q.

2. Mathematical Formulation of the Problem

The compliance or work done in the structural domain against body
forces and boundary tractions by the resulting elastic displacement u is
given by

1(u)=J.f-udx+f g-uds, )}
n en

where f'is the distributed force density in #-'(Q)? and g is the prescribed
boundary traction in H-"3(8Q). The displacement u is an element of
A'(Q)* and satisfies the equilibrium equations

—divg =/, in Q, 3

g-n=g, on ¢, (4)

g = Clx)e(w), )
where ¢(u) is the strain tensor given by

() = (1/2)(uy + ;). (6)

Here, the structural layout is prescribed by the piecewise constant elasticity
tensor C(x) given by

Clx) =1, C, + 722Gy, (N

where 7, is the indicator function of material 1 and g, =1—,.
The choices of body force and boundary tractions are consistent with
the solvability requirement

J.f-vdx—-J' g-vds =0, (8)
0 e
for all ve¥, where

C={v:e) =0}. &)

We consider the problem of minimizing the compliance over all layouts of
materials 1 and 2 subject to a volume constraint on the stiffer and more
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expensive material 2. We note that a particular layout is specified by C(x)
and the volume constraint on material 2 is given by

szf 2 dx. (10)
Q

Here, ¥ is the maximum amount of material 2 allowed in the design and
¥, < vol(Q). The minimum compliance problem takes the form

r&ir)l 1(w), (11a)
st (3)=(6) and (10). ._ (11b)

Here, we may view the above problem as one of distributed-parameter
optimal control, where the control is C(x). Problem (11) can be written
variationally over the space H Q)3 of admissible displacement fields as

min max {2[(11) —f CCe(w) : e(u) dx + A f 12 dx} (12)
n n

C(x) ue ()3

Here, 1 denotes the positive multiplier associated with the volume fraction
constraint. For a thorough treatment of Lagrange multipliers and their use
in optimal design the reader is referred to the work of Kohn and Strang
(Ref. 8). Alternatively, problem (11) may be written variationally over the
space K of admissible stress fields T as

min min {J' CYx)t:zdx +i.J o) dx}. (13)
n N

C(x) 1eK
Here, K is given by

Tin L¥(Q, S,), s.t.—divi=/f inQ,
K=
Ton=g on dQ.

It is well known, from the work of Refs. 2, 4-6, and 8, that problems of
the type given by ( 11)—-(13) are ill posed and require relaxation. This
relaxation is accomplished through the extension of the design space.
Indeed, the set of layouts is extended to include composites formed of the
original constituents. We denote the set of effective elastic tensors associ-
ated with all composites formed using materials C; and C, by G. This set
is most conveniently parameterized by the volume fraction of material 2 in
the composite given by §,, 0 < 8, < 1. For fixed volume fraction 0,, the set
of associated effective elastic tensors is denoted by Gy, -

Although a complete characterization of Gy, is as yet unknown,
certain boundaries of this set have been worked out (Refs. 10-14), and it
follows from the theory of A -convergence (Ref. 5) that it is a closed and
bounded set. Indeed, elementary estimates show that Gy, lies in E(a, B) for
all values of §,. We now extend the design space to include composites.




3

—

jota / voL81.3 / P279.p06

1994

Page 1

554 JOTA: YOL. 81, NO. 3, JUNE 1994

Definition 2.1. A generalized layout is given by a local volume
fraction 6,(x) in L=(Q,[0,1]) and an associated tensor field C(x) in
L*(Q, F) taking values in the set Gi,(»- This set of tensor fields associated
with generalized layouts is denoted by Gy,

It follows from the remarks above that G, L0 lies on bounded subset
of L=(Q, F) for all choices of the local volume fraction 6,(x).
The relaxed versions of problems (12) and (13) are given by

min min  max {ZI(u) +J. [28,(x) — C(x)e(w) : e(w)] dx} (14

026 L2Q0.]) CeGyyxy ueH I3

and

min min min {J. [C'()1 1 1 + 28,(x)] dt}. (15)
§eL=(Q(0,1]) CeG,z(x, 1K a
Problems (14) and (15) are seen to be well posed by applying the argu-
ments given in Murat and Tartar (Ref. 5) to the case of elasticity. We
observe however that, to construct the optimal structural layout either
analytically or numerically, we must possess some additional knowledge
about the set of elastic tensors Gy,. This extra information is provided in
the well-known extremal property of effective tensors of finite-rank laminar
microstructures given in Ref. 13; see also Refs. 11 and 12. Simply put, the
extremal property asserts that, for a prescribed local volume fraction 6,(x)
and strain g(u(x)), the local elastic energy is maximized over all elements of
Go,(x by an effective tensor C in Gy, associated with a finite-rank stiff
laminate, i.e.,
max {Ce(u) : e(u)} = Ce(u) : e(w). (16)
CeGy i
Similarly for a local strain z, the local compliance is minimized over G, 0
by an effective tensor C associated with a stiff laminate, ie.,
min {C-lt:1}=C"'7:1. an

Ce Gg 2(-‘)

Definition 2.2. We denote the set of all elements in G, associated
with stiff finite-rank laminar microstructures by GL,,.

Tt easily follows from the stress-based formulation and the extremal
property (17) that the relaxation is accomplished by extending the design
space to include only effective tensors associated with finite-rank stiff
laminar microstructures. Indeed, denoting by R the common value of (1
through (15), it is evident from the stress-based variational formulation
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given in (15) that o
R= min min min j [C1()z : T + 26,(x)] dx/}/ é '
826 Lo(Q{0,1D 16X CcG.z(x) /o

= min min J l: min {C~(x)z:z} +192(x):| . (18)
8¢ L°(Q0,1]) :¢X o C‘Gﬂg(x)

We observert\imt minimization over G,z(x) may be exchanged with integra-

tion. Once exchanged, the minimization over the control variable C be-

comes pointwise, and from the extremal property (17) we observe that

R= min J\ [H(z, x) + 26,(x)] dx, (19
81¢L =(Q,[0,1D 'GK
where
H(z, x min {C7l!r:¢ 20)
@)= ea?:,z(,,{ b (

and the relaxation using finite-rank laminates follows.

This relaxation is now well known and was first established in two
dimensions in Ref. 10. To see that the same relaxation applies to the
displacement-based formulation (14), we introduce the set of generalized
layouts taking values in GL,..

Definition 2.3. For prescribed local volume fraction 8,(x), the set of
all tensor fields in L*=(Q, F) taking values almost everywhere in GL, RS H
denoted by GL; ()

We now observe from (19) and Definition 2.3 that

R= min min min J' [CYx)z : T + 2,0,(x)] dx )
826l Q01D 1eX CeGlLi,x Ja

= min  min min j [C'X)t : T +136,()] dx}/[ é
N

826 Lo(Q0,1D CeGLj (xy 16K

N

-

= min min  max {21(14) +J [46,(x) — C{x)e(w) : e(u)) dx}.
Q

826 L™Q[0,1D CeGLg,(qy ue H ()3
o2y

Here, the last equality follows from the duality between the stress and
displacement formulations of the elastic compliance. It is evident from (21)
that the relaxation for the displacement formulation is also accomplished
using finite-rank laminates. We collect our observations and write the
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relaxed compliance optimization in displacement formulation as

R= min min  max {21(1:) +f [20,(x) — C(x)e(u) : e(u)] dx}

826L=(Q0.1]) CeTLi,( ue HY(Q)3
(22)
For the purposes of numerical implementation, it is advantageous to

switch the orders of minimization and maximization. Indeed, if the last two
operations are interchanged, the subsequent minimization may be done

analytically; see Ref. 1. In what follows, we show that it is possible to”

exchange the two rightmost operations of min-max; see Theorem 4.1. In
this way, we arrive at the fundamental result of this exposition.

Theorem 2.1. The relaxation for the displacement-based optimal
compliance design problem (12) is given by

min  max {2[(u)+f [182(x) + Fle(w), ¥)] a’x}, (23)

§2e Lo(Q[0,1] ue ()3
where for any constant strain {, we have

F({,x)=— max C(:¢(. (24)
3 Cetlpyy * °

We observe that F({, x) is a nonlinear function of the strain variable
{. Here, F({, x) can be computed analytically or numerically using explicit
formulas for tensors in G—L-h. We remark that F (¢, x) has been calculated
explicitly for the two-dimensional case in Ref, l. Similar strain energy
functions have been computed earlier in the context of three-dimensional
incompressible elasticity and two-dimensional elasticity; see Refs. 10, 11,

and 14. The proof of Theorem 2.1 is given in Section 4.

3. Convexity Properties of Finite-Rank Laminates

The necessary new tool for deducing the saddle-point theorem is a
convexity property enjoyed by the effective elastic tensors for finite-rank
laminar microstructures. Before stating the convexity property, we intro-
duce the formulas for the effective tensors of finite-rank laminar com-
posites. They are given by

C=C—(1-0,)(C,— C,)-' — 67T,] ! (25)
and
C=C+6,[(C,— €)'+ (1 )T ] (26)
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for stiff and compliant composites, respectively. Here, the tensors f‘,,
i=1,2, are of the form

/ -
E=% afin),  1sj<c, 1)
r=]
where
J
pr20 and Z p.=1, (28)
re}

and f,(v) are tensor-valued functions of vectors v defined on the unit

sphere S?, given by np e BT

uOnnop = (U448 Y0 085+ 00,8+ 0,0, +1,,6,.)
+(3/(3x, +24,) - lly,]v,,,v,,v‘,vp, i=1,2 29

These formulas were derived in Ref. 9 and have been rewritten in notation
convenient for this exposition,

We introduce the convex sets of tensors A,, A, formed by considering
all convex combinations T, and T, delivered by formula (27). _To under-
stand the geometry of the sets Ay and A,, we regard [ 1(v) and T, (v) given
by (29) as tensor-valued maps mappi re to
surfaces in the space F of fourth-order tensors. Ti s now evident from (27)
that A, and A, correspond to the closed convex hulls of these surfaces.

We provide here a useful but equivalent definition of the set ﬁgz
given in Section 2.

Definition 3.1. Fixing 8, in [0, 1], the set of tensors GL,, corresponds
to the set of all tensors € delivered by (25) as the tensor 7T, ranges through
Az-

Remark 3.1. It follows from (25) and elementary estimates that € lies
in E(x, f). In this way, we see that GL,, is bounded independently of 6,.

We indicate the dependence of the effective tensors Cand Con 5'1, 7"2,
and 6, by writing

C=C(h,, 0), (30)
C=c, 6,). 31
For any finite set of 3 x 3 symmetric matrices {1, {2 ... ¢! I < oo, we
form
- % ! *
[Ty = Z (C(Tz, 6,){/: ) (32)
=1

the surface of the unit sphere to
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and
L ! *
f(T) =Y (T, 6)0: . (33)
/=1

We now state the following convexity property for laminates.

Theorem 3.1, Convexity Property. For fixed 0, and for f'leAl and
f‘zeAz, the sum of the energies f(f‘z) is concave in 7‘2 and the sum f (f‘l) is
P A
convex in i’,; ie., for f‘z and 73 in A, and ¢ in [0, 1], we have

Pl + (=083 2 (T + (1 — oy, (34)
while for i‘, and 7"; in A; and ¢ in [0, 1], we have
LeTi+ =0y <oty + (1 -y, - (39)

We provide the proof of concavity of e noting that the convexity
of f(T) follows from similar arguments.
Proof. We introduce the function &(9) for ¢ in [0, 1] defined by
80 =7 (T, +(1 - 0Ty, (36)
for ?’2 and 5’5 in A,. We prove the theorem by showing that
87§ <0, for tin [0, 1.

From (25) and (32), we may write
{

E0 =3 {GU:U~(1-6)4 + 17:] RGN (37)
where
A=(C;~C)™'-T; and B=Ty—%, (38)

Differentiation of (37) yields

2R =~—(1~ 6,)2 ZI: (4 +B)-V2p[4 +tB) -/

J=1
(4 +tB]="2B{4 +1B]-'¢! < 0, (39)
and concavity follows. a
Remark 3.2. In the sequel, we shall make use of contractions of the

form (C, B), where B is any positive-definite tensor in the set J, Expanding
B in its eigentensors n,n% ..., n%and eigenvalues 4,, 4,, ..., A¢, we find
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that
- 6 —
CB=3Yc:¢, (40)
I

where

(=, I=1,...,6.
Thus, we have the following corollary.

Corollary 3.1. For fixed 8, and for 7"2, f”z in A, and for any Bin J
and ¢ in [0, 1], we have

Ty + (1~ 0F3), B = 4By, B) + (1 C(T3), B). (41

4. Saddle-Point Theorem
In this section, we establish the following theorem.

Theorem 4.1.  For fixed local volume fraction 8, in L=(Q,[0,1]) and
the Lagrangian (C, u) defined by

L(C, u) =2l(u) + J [462(x) — C(x)e(w) : e(u)] dx, (42)
n
we have
min  max L(C,u) = max min  L(C, u). (43)
CeGLj, (v ue HU(O)3 ueHY M3 CeGL,(y,

We remark that Theorem 2.1 follows immediately from Theorem 4.1
Indeed, we may write

min  L(C, u) = 2l(u) + f [igz(x) — max {C(x)e(u) :e(u)}] dx,
CeGLiyy, n CeGLy
and Theorem 2.1 follows.

The Lagrangian appearing in Theorem 4.1 has arguments in L=(Q, F)
and Q). Thus, the saddle-point theorem is proved using the L=(Q, F)
weak* and weak H'(Q)3 topologies. This theorem is established with the
aid of the Young measures and follows from the convexity property given
in Theorem 3.1.

To proceed further, we introduce the following fourth-order tensor
fields.

AR S A A AL B s a4 o
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Definition 4.1. We define the set D, to be the set of all fourth-order
tensor fields in L2(Q, F) taking values in A, almost everywhere in Q.

_We now give a useful alternative definition of the set of controls given
by GL@'Z(X).

Definition 4.2. For prescribed local volume fraction 8, in
L=(Q,[0, 1], _the set GLj, is defined to be the set of all fourth-order
tensor fields C(T(x), 6,(x)) associated with finite-rank laminar microstruc-
tures given by the formula

C(Ly(x), 6,() = € — (1 = B,(NC, = €)1 — B, () F (9] -1, (44)

where i‘z(x) is an element of D,.

Remark 4.1. Tt follows from Remark 3.1 that EZ;Z(,, is a bounded
subset of L=(Q, F). '

We now use Definition 4.3 to transform the Lagrangian given by (42).
Indeed, writing

D(T,, w) =21(w) + J; [26:(9) = C(T39), B, (0w : ew)] dx, (45)

we see that
. . *
min = max L(C u) = min max D(7;,u) (46)
CeGLy, (xy ue HI(Q)3 T2eDq us H1(Q)3
and
. . *
max min L(C,u)= max min D(T}, u). (47
ve 1 Q)3 CeGly,(y ue H ()3 TyeD,

Thus, Theorem 4.1 is fstablished if we can demonstrate that the trans-
formed Lagrangian D(T5, u) has a saddle point in HY(Q)? x D,.

To obtain that D(f‘z, ) has a saddle point, we may use standard
arguments of the kind given in Ref. 15 [see Propositions 2.1, 2.2, and
(2.24), page 174], provided that the following properties hold:

(P1) D, is convex and sequentially compact in the L*=(Q, F) weak*
topology; .

(P2) for every uin H'(Q)? and 5'2 in D,, the Lagrangian D(7, u) is
convex and lower semicontinuous in T} in the L®(Q, F) weak*
topology; .

(P3) for each T; in D,, D(Ty, u) is concave and upper semicontinu-
ous in u for u in HY(Q)3; .

(P4) there exists i’z in D, such that im, .. D(T,,u) = —c.

\L
it
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We remark that the properties (P3) and (P4) are standard and are easily
established; their proofs are postponed until the end of the section.
Properties (P1) and (P2) are special to this problem. Indeed, standard
saddle-point theorems of the type given in Ref. 15 apply to Lagran-
gians defined over reflexive Banach spaces. However, the Lagrangian
D(T), u) has one of its arguments in a bounded subset of L=(Q, F). Because
of this, we must use the L=(Q, F) weak* topology. Properties (P1) and (P2)
will be established with the aid of the Young measures.

We now establish property (P1).

Lemma 4.1. D, is convex and sequentially compact in the L=(Q, F)
weak* topology.

Proof. We see that the convexity of D, follows from Definition 4.1 and
the fact that A, is convex. To prove compactness, we consider the sequence
3 in D,. Since the set A, is bounded, it follows that 7% is bounded in
L”(Q, F) and there exists a subsequence 7% converging in L*(Q, F) weak*
to T3. We prove compactness by showing that 7% is an element of D,. We
introduce the Jfamily of Young measures {vs(1)}1eq associated with the
sequence. As T% only takes values in 4,, we observe that {(ve(V) }req is a
family of probability measures with support inside A,. Therefore,

i?=f Ydv,(Y). (48)
42

It is evident from the convexity of A, and (48) that f“f 1s an element of D,,
and Lemma 4.1 follows. a

We prove the weak* lower semicontinuity stated in property (P2) with
the aid of the following lemma.

Lemma 4.2, Given a sequence f”{ defined on the set D, converging in
L=(Q, F) weak* to an element T¥ in D,, there exists a subsequence T¥ such
that, for any B(x) in LY(Q, J),

lim f (C(T%, 8,), B) dxsj (C(Tz, 8,)B) dx. (49)
~% in o3 ’

Proof. For the sequence given in the hypothesis of Lemma 4.2, the
associated family of Young measures {Ve(Y)}1en are probability measures
with support contained in 4, and we may represent the weak* limit Tf as

hm=f

A

Yav (Y). (50)
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We observe from (44) that &z, 6,) is a Carathéodory function, in the
sense that C(Y, 8,) is continuous in ¥ for almost all x in Q, and is bounded
and measurable in x for every Y in 4;. Therefore, applying a version of
the fundamental theorem of Young measures [see Eq. 15 of Ref. 1],
there exists a subsequence T % converging weak* L>(Q, F) to T? such
that

K—x

lim f (CA%), 6,(x)), B) dx =J- ( f C(Y, 6,(x)) dvy(1), B) dx.  (51)
[o} o \ Ja,
It follows immediately from Corollary 3.1, Eq. (41), and (50) that

f (f CY, 6,(x)) dv (1), B) dx sf (€A 7(x), ,(x)), B) dx, (52)
o \Ja, 0
and the lemma is proved. a

It follows from Lemma 4.2 that, for fixed u in A ()3 and i"z‘—v f‘;"
weak* in L2(Q, F), there exists a subsequence 7% converging in L=(Q, F)
weak* to TF such that

Jim D(T%,v) > (T2, ), (53)

We also observe from Remark 3.1 that,* for v fixed in HY{()3, the
Lagrangian D(f‘z, u) is bounded below for T, in D,. Therefore, it follows

that, for any sequence 3 converging to a limit TF in L=(Q, F) weak*,

lim inf D(T%, u) > —oo. (59
k—x

In this way, we see that the L=(Q, F) weak* lower semiconti}xuity
for*D(Tz, u) follows from (53) and (54). Lastly, the convexity of D(T%, u)
in T, follows immediately from Theorem 3.1 and property (P2) is estab-
lished.

We conclude the section by noting that property (P3) follows from
inspection and (P4) is a consequence of Korn’s inequality.

5. Relaxed Lagrangians and Duality

The saddle-point Theorem 4.1 is used to provide a duality relation
between partially relaxed Lagrangians appearing in the stress and displace-
ment based optimal compliance design problems (19) and (23).

Indeed, we have the following proposition.



jota/ vol.81-3/ P279,p15

1994

Page 1

JOTA: VOL. 81, NO. 3, JUNE 1994 563

Proposition 5.1. For prescribed volume fracion 6,(x) in
L=(Q,[0, 1],

1ex ue H1(Q)3

e

where H(z, x) and F({, x) are ponli€&itfunctions of  and g and are given
by formulas (20) and (24), respectively.
Explicit formulas for H(z, x) and F ({, x) have been worked out for the
two-dimensional design problem and are given in Refs. 1,@1./ n
Proof.  The proof of Proposition 5.1 follows from the following string
of equalities:

minJ.H(z,x)d*c:min min JC"I:gdx
X o [o!

16K CeGLjy

= min min | C-'r:tdx
CeGLy, 1eX jqo

= ‘min  max {21(11) —f Ce(u) : e(u) dx}
a

CeGLiy(xy ue HI(M)I

= max min {Zl(u) —J Ce(u) : e(u) dx}

ue (3 C(CZ"I(,,

= max {2[(11) +j Fle(u), x) dx}. (56)
ue H ()3 n

The second to the last equality in (56) is an application of Theorem

4.1, ad

We note that the integrands H(z, x) and F({, x) have been portrayed in
the literature as nonlinear constitutive laws for smart elastic materials; see
Refs. 1 and 7. These materials are smart in the sense that they provide the
optimal local elastic response for prescribed stress or displacement fields.
We point out that Proposition $.1 provides dual variational principles for
such materials.

6. Multiload Problems

. Theorem 2.1 and Proposition 5.1 can be easily extended to multiload
optimal compliance design problems. Since the extension is straightforward
and uses the techniques developed in earlier sections, we shall only state the
results,

mian(;, X)dx = max {21(u)+f+j Fle(u), x) dx}, (5%
n 2 Ja D SR I
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We consider N load cases prescribed by the body force densities fTand
boundary tractions g’, i =1,2,..., N. Associated with each load case
(f' g') is a displacement field »* satisfying equilibrium equations of the
kind given by (3)-(6).

We consider minimizing a weighted sum of the compliances

' =ff‘-u‘dx +J g'-u'ds, (57
o [
given by
N
L=3% wlu), (58)
Im}
where
N
w;20,i=1,...,N, and ) w,=1.
(=]

The goal here is to minimize L subject to a volume constraint on the stiff
elastic material characterized by elasticity tensor C;. Defining

U = @VH'(Q)’,

the constrained optimization problem written in terms of displacements has
the variational formulation

N
r?(’,? (u‘.uzT.%i)eUN[,_zl w, {2[ w") —L C(x)e(u") : e(u )dx}+ le:I; (59)

here, V, is the volume of stiff material in the design and 4 is the Lagrange
multiplier associated with the volume constraint. For N independently
chosen constant strains {i=1,...,N, we define the function
JCL ..M ) by
N
JEL LY, ) = —max Y w,CLi (60)
CeGlyyin im1

Then the relaxation is given by the following theorem.

Theorem 6.1. The relaxation for the multiload constrained compli-
ance optimization problem (59) is

N
min max Y 2wliu?)
82(x)eL2QL0,1]) (u'lul,. . .uNeUN =l

+ J Ve, e(w?), . . ., e(u™), x) + 26,(x)] de. (61)
N

/ nec:
Wed
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Theorem 6.1 is the extension of Theorem 2.1 to the multiload case.
Defining
K = @7k,

the constrained optimization problem written in terms of stresses has the
variational formulation

N
min  min w | CTet: ttdx + 1V } 6
e (:'.xl.....xN)emv{i_Zl ‘ J; (z':z A (62)

Arguing as in Ref. 7 or as in Section 2, the relaxation of the compliance
problem given in the stress-based variational formulation is

min min RE,L 2% .., 1Y, X) + 16,(x) dx,
82()e LOQUOID (21.22,... s V) ek N n
(63)
where for any set of constant strains !, ... ¥,
N
R@L 4. .., % %) = min ) w,C-'tt: gt (64)
C‘G’*z(:) {w]

One also has a duality relation between the relaxed Lagrangians for both
formulations.

Proposition 6.1. For prescribed  volume fraction 0,(x) in
L*(Q,[0, 1)),

min f R(=' 2% ... ¥ x) dx
n

Glel i Vekw

= zma.{l) U‘V{N 2w l'(u") +f Je('), ew?d), . .., e(u™), x) dx}. (65)

7. Formulation in Terms of H-Measures

The H-measure introduced independently by Gerard (Ref. 17) and
Tartar (Ref. 18) is a mathematical tool used to record the local anisotropy
of weakly convergent sequences. To see how to interpret Theorems 4.1 in
the context of # -measures, we note from Definition 4.2 that the control f‘z
can be written as

o) = f Fa(v) du, (v), (66)
52
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where ., (v) is a probability measure on the unit sphere for almost all x in
Q. The measure yu,(v) can be interpreted as the H-measure for the weakly
converging sequence

13() — 0,(x) — 0, in L* weak*, (67)

associated with a minimizing sequence y3(x) of layouts. As indicated
earlier, these sequences can always be associated with finite-rank laminar
microstructures. We change variables in the transformed Lagrangian
D(ﬁ, u) given by (45) and define the new Lagrangian D(u,, u) by

Dy, u) = D(J Ta0) dp, (), u)- (68)

Denoting by P the set of all probability measures on the unit sphere, we see
from (45)~(47) and (68) that Theorem 4.1 is equivalent to the following
theorem.

Theorem 7.1. We have
min max D(u,,u) = max min D(y,, u). (69)

Be€P ue ()3 ue HY(Q)3 p e P
Similar statements can be made for the Lagrangians associated with
multiload optimization problems.

In view of Theorem 7.1, we see that the relaxation of the minimum
compliance problem as stated in (12) requires the introduction of two new
relaxed controls associated with chattering sequences {x5(x)}=., of layouts,
namely: the local volume fraction of material 2, given by 8,(x), i.e. the
weak limit of z3; and the H-measure associated with the sequence

17(x) ~ 8y(x), given by u,(v).

8. Conclusions

We remark that in general it is not possible to exchange minimization
over volume fraction 6,(x) and maximization over displacement fields in
(23) or (61), as the resulting integrand may not be quasiconcave in the
displacement. This observation is seen in the numerical results of Jog,
Haber, and Bendsoe (see Ref. 1).
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