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1. Infroduction

An isotropic, incompressible elastic material is characterized by just one para-
meter, its shear modulus. When two such materials are mixed on a fine scale,
an elastic composite results, always incompressible but generally anisotropic.
This effective or homogenized material is described by its stress-strain tensor Ciints
a symmetric linear map on the space of trace-free symmetric matrices, or equiva-
lently by its effective energy quadratic form (CE, ). Our goal is to bound this
quadratic form above and below in terms of the shear moduli u, < 2 of the
two component materials, their relative proportions 6; and 6, =1 — 6, in the
mixture, and the strain tensor & Our conclusion has the form

f (DL, (L.1)

where fi = fu(u1, #2; 01, 0,;&) are explicitly computable functions. These
bounds are in fact optimal, in the sense that no better estimation of (C§, §) is
possible. In other words for any choices of the parameters 0 < u; < g2 <9,
0 < 6, < 1 and any trace-free, symmetric matrix &, there exists a pair of stress-

strain laws C;, C_, each corresponding to a material made by mixing the given
.components in the specified proportions, such that

(C.5,6=f, and (CEH=/. (1.2)

There is a long history to tpe study of the effective moduli of composites, see
e.g. [5, 15, 53]. Among the earliest results for elasticity were PAUL’s bounds [42],
which place C between the harmonic and arithmetic means of 2u; and 2u,:

20y + 10 |6 S (CE B S 2y + b [EF. (D)

In fact, our upper bound is f)recisely PauL’s:

= 2(u,0, #202) ‘512 1.4
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Thus the bound itself is not new, though its opt1mahty (1.2) seems not to have
been noted before. Our lower bound, on the other hand, is new. Proposition 2.3
gives the comparision with (1.3):

fo= 2(,u1"01 + p4510,)71 |E2, with equality exactly when & has rank two.
(1.5)
Thus PauL’s lower bound is optlmal in dlmensmn two, but not in dimensions

three or more. ‘
If the composite in questxon is zsotroplc then it is characterized by a single

parameter, the effective shear modulus: C§ = p& HASHIN & SHTRIKMAN-

gave bounds for the effective shear modulus of an isotropic composite in the early
1960’s [13, 14, 16], and their bounds are now known to be optimal [9, 35, 40].
Unlike HASHIN & SHTRIKMAN we place no restriction of isotropy on the tensor C
in (L.1).

Our work should be viewed in the context of other recent progress in bounding
the effective moduli of anisotropic, two-phase composites. The resurgence of
interest in this topic has been motivated in large part by applications to structural
optimization [23, 30, 31, 38, 48]. Having bounds alone is not enough for these
purposes; it is crucially important that they be optimal. The ultimate goal is to
characterize what is called the G-closure of a given set of materials—in other
words, to specify precisely which effective tensors correspond to composites that
can be made by mixing the available materials in prescribed proportions. This has
been achieved for a number of scalar problems [8, 10, 11, 26-29, 49, 50], and,
by use of essentially the methods of the-present paper, for incompressible elasticity
in two spatial dimensions [25]. Bounds on the effective energy alone, such as (1. 1),
do not determine the G-closure. Nevertheless they are useful for certain structural
optimization problems involving the minimization or maximization of the com-
pliance under a specified load [23]. Before this work, optimal upper and lower
bounds analogous to (1.1) had been proved in the context of plate theory (which
" is essentially isomorphic to two-dimensional linear elasticity) [11]. Afterward,

by building upon the ideas developed here and in [24], M. AVELLANEDA has given
optimal upper and lower bounds not only for the effective energy (CE, &) but also
for any finitc sum of energies X (C§;, &) [1].

Besides their interest for structural optimization, bounds such as (1.1) are also

relevant to the averaging of equatlons for two-phase flow [21]. Indeed, if surface

"tension is ignored then the stationary Stokes equations describing a mixture of
two viscous fluids and equations of incompressible elastostatics are identical.
This suggests that the effective viscosity of such a mixture should satisfy (1.1).
We must acknowledge, however, that it is unclear under what circumstances
surface tension can really be 1gnored since the surface area of the interface in
a fine-scale mixture is generally very large [19].

Now a word about methods. Our proof of the optimal lower bound in (1.1)
is based on the Hashin-Shtrikman variational principle. The key to its use lies in
estimating a certain nonlocal term. From general considerations it is enough to
consider the spatially periodic case, and the nonlocal term is then easily represented
as a Fourier series. The necessary bound follows from a bit of linear algebra in
Fourier space. This is essentially the method of [22]. Several other techniques have
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recently been developed for bounding effective moduli. One, based on compen-
sated compactness, was applied to linear elasticity in [9], and to plate theory in
[11]. We do not know whether or not our lower bound could be proved this
way; an attempt to do so might reasonably use the lower semicontinuous quadratic .
functionals studied in [33]. Another approach, based on analytical continuation,
has been applied to linear elasticity in [18]. That method is known to be linked to
the Hashin-Shtrikman principle, at least for scalar equations [34], so we suppose
that it could be ‘used to give an alternate proof of our bound. However we have
not attempted to carry this through.

Our proof that the bounds are optimal uses sequentially laminated composites,
This fundamental construction, apparently discovered by BRUGGEMAN in the 1930°s
[4], has been used to show the optimality of many different bounds; see, for ex-
ample, [8~11, 25-29, 38, 44, 50] and the review [36]. Our calculations are greatly
simplified by—indeed, could not have been done without—an iterative approach
developed by MURAT & TARTAR for scalar problems [50], and extended to the
case of elasticity by FRANCFORT & MURAT [9].

2. A New Lower Bound on the Effective Energy Quadratic Form

We are interested in bounding the effective energy of a compoesite material
made by mixing two incompressible, isotropic, linearly elastic solids in prescribed
proportions. There are at least three different mathematical models that can be
used to describe such a composite. Easiest to work with but most restrictive is the
class of spatially periodic composites, e.g. [3, 43]. A more general notion is that
of a random, statistically homogeneous composite, e.g. [12, 41]. The most general
viewpoint is based on the theory of G-convergence (also called H-convergence)
of elliptic operators, e.g. [9, 45, 46, 48, 54]. For proving bounds such as (1.1),
however, it is sufficient to consider spatially periodic composites with a cube as the
period cell. Indeed, the effective moduli (and volume fractions) of any composite
can be approximated arbitrarily well by those of a spatially periodic one, so bounds
proved in the periodic context extend to the other models by continuity. (This is
proved in [12] for the random theory, and in [20] using G-convergence.)

We shall work in R” for any n = 2. Though the case of primary physical
interest is n = 3, considering all n = 2 at once serves to clarify the structure
of the arguments. Since the upper bound (1.4) is well known, our attention will be
focused entirely on the lower bound. '

We are considering periodic mixtures of two incompressible, isotropic, linearly
elastic materials, with shear modulj #1 < @z (0 << py, pa < 00). This means that
we are studying the elliptic system

o' ou
eij(x)=%(§j+5;;), tre=90, o - (2.1a)
0if(x) = 2p(x) eﬁ(x) + p(x) 8y, (2.1b)

S boylon, = f;, @19
p _ |
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with a rapidly varying coefficient u(x) of the form

pe(x) = pygi(x/e) + paya(x/e). (2.2)

Here y;(x/e) is the characteristic function of the set occupied by material j (itequals
one on that set and zero elsewhere). Since there are only two components, x, =
1 — %,; and since the structure is presumed periodic, y;(y) is a periodic function
defined on all R* with period cell Q = (0, 1}". The volume fraction of material j
is evidently

b= [ygpdy, J=12. 2.3)
o

The system (2.1a—c) is to be solved in some domain 2 CR”, with a specified
boundary condition (e.g. u = 0 at 2£2). The body load f'is part of the data, but
the pressure p is not—it can be viewed as a Lagrange multiplier for the constraint
of incompressibility. The fundamental convergence theorem of homogenization
says that for any (reasonable) 2 and f, the solution of (2.1a—c) tends as ¢ 0
to that of the constant coefficient system obtained when (2.1b) is replaced by

O'ij(-\’) == kgl Cijkl eu(x) 4 plx) (5ij- (2.1b)*

The tensor Cyy, is the effective Hooke’s law of the mixture. It is independent of £
and £, and it defines a symmetric, positive definite linear operator on the space of
n».n, trace-free, symmetric matrices, equipped with the Hilbert-Schmidt inner
product. It can be characterized through the solutions of various “cell problems”,
or, for our purposes better, variationally by the formula

(C&, &) = vl;nfo Qf 2c(y) |& + elg) * dy, (24)

where ¢ ranges over periodic divergence-free vector fields on R”, e(p) =
1 (Vg + VeT), and c(y) is the periodically varying shear modulus

c(3) = w1 (¥) + pay2(3). (2.5)

For justification of these assertions and further discussion we refer to [3, 7, 39, 43,
47]. (Some of these references consider unconstrained linear elasticity, but the
incompressible case can be treated similarly).

Our task, then, is to establish a lower bound for the quadratic form (2.4) which
depends on u,, is, 0, 0,, and &, but not on the particular form of y, and y,.
Tt is easy to see that the bound can depend on & only through its eigenvalues
&, < ... <&, the “principal strains,” since the class of all possible composites
is invariant under rotations.

2A. The Hashin-Shtrikman variational principle
This approach to bounding the effective moduli of a composite was first

introduced by HASHIN & SHTRIKMAN in [16]. It has since been clarified and applied
by many authors, including HiLL [17] and WiLLis [52]. In the present context the
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principle says this: for any periodic, square-integrable field of symmetric, trace-free
tensors ¢ which vanishes on material 1 (i.e. oy, = 0),

ez | [2(6, £) — 3 (ua — 1)t |0 + 2p, |EP] dy + Qf (o, e(y*)] dy,
Q
‘ ' (2.6)

where ¥ minimizes
[ [2(0, e@)) + 2u1 [e(p)|*1 dy 2.7
Q

among all periodic, divergence-free vector fields v on Q. Notice that p* is char-
acterized by the Euler equation

py Ap* + Vp* = —dive 2.8)
V -p* = 0.

The proof of (2.6) is easy. Let o be as above, and let ¢ be the minimizer of
(2.4). Then

(C£, &) = [ 2c0) &+ elg) |2 dy, 2.9)
Q

and
. o Q) — 2u)' P (& + elg)) — (2c(¥) — 2u) P o =0 (2.10)

a.e. in Q; here we interpret the second term of (2.10) as being zero on material 1,
where c(y) = u, but o= 0. Integrating (2.10) and combining the result w1th
(2.9) gives, after an integration by parts,

(C&, &) — 2u, |E]? +Qf [} (uz — p)~t |o]* — 26, o)} dy
= Qf [2(0, e(9)) + 241 |e@)|*1 dy. 2.11)

The expreséion on the right of (2.11) is the same as (2.7), so it is minimized by
@ = p*. An integration by parts using (2.8) gives .

Qf [2(0, e(w®) + 2u, |e(p®) 1 dy = f (0, e(y™)) dy. (.12

Therefore the left side of (2.11) is bounded by the right side of (2.12). After re-
arrangement, this gives (2.6).
We now make the customary choice of o:

o = Ay (2.13)

for some constant trace-free, symmetric tensor A. The desired lower bound will be
obtained by first estimating the nonlocal term f (o, e(w*)) dy when ¢ has the

: 0
form (2.13), then optimizing over choices of A.




336 R. V. KouN & R. LIPTON

2B. Estimation of the nonlocal term

Since w* is periodic in each variable with period 1, it has a Fourier series re-
presentation

o) = X 9700
kezZn

It is determined only up to an additive constant, so we may take
$*(0) = 0. 2.14)
Representing the pressure p* in (2.8) by
pro)= T prk) &
kez™

and the characteristic function x, by

1200 = X 200 &, (2.15)
kezZn
one easily sees that (2.8) holds if and only if for each k=0,
. (4k, k) .
prk) = — Wx:(k),

Vo0 = e Gl e+ 0 ).

It follows that e* = e(yp*) has Fourier coefficients

(2.16)

. -1, (k) k (k) k- k)
e*(k) = — k ( - »
O = OThr ™ kE kT
where a-b=1(a® b+ b® a) represents the symmetric tensor product of
a pair of vectors in R”. Let us introduce the notation

(k) -k (k) k-k

- 2.17
T ¢

P =
for the expressi“oh on the right in (2.16); it is simply the projection of (k) - k/|k |2

orthogonal to k -k with respect to the Hilbert-Schmidt inner product on symmetric
tensors. By the Plancherel formula and (2.15)-(2.17),

L )
[ (o, ep®) dy = —— X | 22(0)|* (Pe(D), %) -
e} M1 k40

A second application of Plancherel’s theorem gives

Z i?ACZ(k) lvz = Qf(xz — 0,2 = 6_162’

k+0
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in view of the definitions (2.3) of 8; and 0,. Therefore
—1
[ (0, e(p™) dy = —— 6,0, - sup (P(d), 4). (2.18)
0 #1 kezn

Since P.(A) depends on k only through k/|k|, and the unit vectors v = k/|k|
are dense in the sphere S~ (2.18) can be rewritten as

—1
[ (o, e(¥*)) dy = — 0,6, - max_(P,(A), 4). (2.19)
0 M1 pesn—1

The maximum on the right of (2.19) can be computed explicitly by using the
following

Lemma 2.1. For any nXn symmetric matrix A with eigenvalues 2y <=k,
max, || — (v, v)* = 1 (4, — A1)*, (2.20)

vesSh T

1
achieved precisely when v = 7-2: (e1 + e,), where ey is an eigenvector of A with
eigenvalue Ay and e, is an eigenvector of A with eigenvalue 3.
Proof. By the method of Lagrange multipliets, at any critical point v € S§71 of
the function |Av|*> — (v, v)*> there exists c€R such that
Ao — 20w, v) v = cv.

If we choose the eigenvectors of A as a basis for R”, then the components v; =
(v, &) of v satisfy

By, — 2000, 0) Ap;=cv;, 1=j=n.
If v; == 0 for only one (distinct) 4; then v is an eigenvector of 4, and one easily
varifies that |Av|? — (A0, v)®> = O; these are the minima. It cannot occur that
v; == 0 for three (distinct) 4;, since then the quadratic polynomial x* — 2(4v, v) x
— ¢ = 0 would have three distinct roots. Hence at the remaining critical points
there are two distinct eigenvalues, say 4; and 4;, such that

22— 200, 0) & = ¢ = 1} — 2(dv, v) 4;. (2.21)

Adjusting the basis if necessary in the case of multiple eigenvalues, we may
suppose that the only nonzero components of v are »; and v;. From (2.21),

72— 72 =20, ) (h — &);
since %; =% 1; it follows that
2w, v) =4 + 4.
With [o[' =1 this implies that o} = ¢} = 1/2. Thus v = (¢; + e)/2 for some

pa}ir of eigenvectors ¢;, e; (the case v; = ——1/1/2 is included, by replacing ¢;
with —e;). For such v one computes that |Av|? — (Av, v)*> = 3 (4; — A4)?. The
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maximum is clearly achieved precisely when 4; and 4; are the smallest and largest

eigenvalues of 4.
We return to the task for evaluating the right side of (2.19). Since

(B, A) = o] — (o, o)? 2.22)
for any v€ S§"1, (2.19), and (2.20) give

f (o, ey (A — A0)2. ©(2.23)
Assembling (2.6), (2.19), and (2.23), we have established that -
| .6,

(CE, &) = 20,(A, &) — 3 0x(u2 — pa) ™" |AP + 20 [E7 — max, (P, 2)
1 vesSt—

6,0
— 20,0, &) — 4 B2 — ) AP + 2 [EP — =G — 1) 229
1
for any pair of symmetric, trace-free matrices £ and 4, where 4, and 4, are the smal-
lest and largest eigenvalues of A.
2C. Optimization over

Our new lower bound
(C5,8) = /- (2.25)
is obtained by maximizing the right side of (2.24) over 4:

S 0 62
o= max 20,(2,8) — 3 0,(u2 — /‘1)"1 M!z + 2p,4 lflz —— (Z'n — A%, (2.26)

It suffices in (2.26) to cons1der choices of 2 which are simultaneously diagonal with

&, since the maximum of (4, £) over all /'{ with specified spectrum 4, < ... =<4, is
T
B (RRD = 31 2 @27

see e.g. [37]. (Our convention here, as always, is that &, < ... < &, are the eigen-
values of &) Thus we have proved:

Theorem 2.2. Define the set K CR* by
n
K={(}.1,...,l"):21é-..éln, Z}.lzo}, (2.28)
and let

S 0
— — -1 2 __ 4 —1)? 29
w=  max (0508 — G — )t 5 = G ). @2
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Then (2.25) holds with
J- = M 2 [EF (2.30)
To make f_ totally explicit, one must solve the constrained, qﬁadratic maximi-
zation problem (2.29). In principle this is possible for any n; in practice the

answer becomes increasingly unwieldy with n. However, we have these two results:

Proposition 2.3. If & has rank two, and in particular if n =2, then

fo =207 + Ouz )7 EP. (2.31)
If, however, rank(§) = 3 then

fo> 200t + 6pz DT EP. (2.32)

Proposition 2.4. For n=3, define
A=3E50, (——” 2; £ ‘) — (& — &) (2.332)
1

2 Uy

B=—%§201(Iu

)+ & - . (2.33b)

Then . |

A 30:0,(u, — Ml)2 5%
(261 + 1651

20 + O EP + if 4=0,B=0

120,(p, — p1) ME%
duy + 36, (2 — 1)

120,(u, — Uy M&%
4uq + 36, (2 — 1)

(The case A <0, B<<O0 never occurs.)

fo=12u |ER + if 4=0,B<0 @34

if A<<0,B=0.

2 l§|2+

Proof of Proposition 2.3. If £ has rank two, i.e. g, =—& and &= ... =§,,=0
then the. best choice for (2.29) is easily seen to be :

2,“1(,“2 - #1)

pifs + paby (2-33)

A=1tf with1=

It gives (2.31). If, on the other hand, rank £ = 3, then (2.35) is still admissible
for (2.29); therefore

0,
M=2t|g]>—¢? (wz —u) P ))
1
But
' ¢ —ENX S 2AE+ ) < 2|EP,
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SO
M>[2t — (3 (ua— p) ™" + 3ui'0) 21 |EF =t |EF.

This gives (2.32).
Proof of Proposition 2.4. Consider the quadratic form on the right of (2.29):
3 3 6 ’
R R IR D W Al pul R (2.36)
j=1 j=1 (1 :
Its maximum on all R3 is achieved at

T ¢, + £3) (ﬂz - /h) 0, + 251111

A= 2 ’
1 (01M2 + 62/11) (/,L :u'l)

Ay = 2z — ps) &2,

T (§1 + &) (uz — p4) 01 + 28504

Ay = (u2 — ps1).

(0142 + Ozp1)
One verifies that 21 + ZZ + 13 = 0, and that
L=lLeB=0, L=LeAd20,

where 4 and B are defined by (2.33a, b). If 4; =< 1, =< 1, then they are admissible
for (2.29), and M is the value of (2.36) at this point. This is the case 4= 0,
B = 0, and substitution gives the first formula in (2.34). If Za> Ay and 4, < 4,
then the extremum of (2.36) on K is easily seen to be achieved at a point where
A, = A3 = —1,. This is the case 4 =0, B < 0; a one-dimensional maximiza-
tion yields the value of M and, after some calculation, the second formula in (2.34).
The case 12 = 33, Zl > 1,, in other words 4 << 0, B =0, is symmetrical, the
roles of &, and £, being interchanged. Finally, it is impossible for 4 and B both

to be negative, so the case L-< 1< Ay does not occur.

3. Attainability

The bounds (1.1), with £, and £_ given by (1.4) and (2.30), are optimal in the
sense that no better bounds for (CE, &) are possible when &, uy, u,, 04, and 6,
are fixed. To show this, we shall display a pair of microstructures which use the
specified materials in the prescribed proportions, and whose effective moduli C;
and C_ satisfy (C.§, 8 =/f. and (C£ 8 =f.

Our method is that of sequential lamination. This is an iterative construction,
producing microstructures having several different length scales. A laminar
composite of rank 1 is obtained by layering the two initial materials u; and k.,
specifying the proportion of each and the layer direction, and using a small
parameter ¢, as the layer thickness. As ¢, — 0, the elastic behavior is described
by an effective Hooke’s law C,. A laminar composite of rank 2 is obtained by
layering two laminar composites of rank one, again specifying the proportion of
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" each and the layer direction, and using another small parameter &, for the layer
thickness. As €1, 82> 0 with &, < &,, the elastic behavior is described by an
eﬁ‘éctive Hooke’s law C,. This process can clearly be continued any finite number
of times (and even countably many times, using a suitable limiting procedure).
Sich composites have been discussed by many authors, e.g. [1, 2, 8-11, 25-32,
36, 44, 50], and they have been used to prove the attainability of many different
Lounds. Our application is very close to those in [1, 11, 25, 28, 29, 49]. The
“strongest” composite C, is achieved, it turns out, by a rank 1 laminate; the
«weakest” one C_ requires rank n—1 in R".

1t may seem like cheating that we use periodic composites to establish the
bounds, but sequentially laminated ones to attain them. This is, however, perfectly
Iégitimate: the bounds, once established for the periodic case, extend by continuity
to all composites—understood in the sense of G-convergence—including sequential-
ly laminated ones. From another perspective: though sequentially laminated com-
posites are not themselves spatially periodic, their effective tensors can be approx-
imated arbitrarily well by ones associated with periodic microstructures. Ac-
tually, it is quite natural to use the most restrictive possible setting for establishing
bounds, and the most general one for showing that they are achieved.

3A. Effective moduli of a sequentially laminated composite

As discussed above, the general sequentially laminated composite of rank r
is obtained by mixing two arbitrarily chosen laminates of rank r — 1. We shall
consider here only a special case, in which one of these two materials is the iso-
tropic one with shear modulus p, at each successive stage. The resulting micro-
structure (for r > 1) has many small inclusions of material 2 embedded in a
matrix of material 1. An elegant, iterative formula for representing the effective
moduli of such a composite was given in [50] for scalar equations, and generalized
in [9] to (compressible) elasticity. The analogous formula for the incompressible
case can be obtained from that in [9] by passage to the limit x;—oco. For the
sake of completeness, however, we shall repeat the derivation.

The basic building block is a formula for the effective tensor C corresponding
to a layered mixture of material 1 with a general incompressible material B.
Recall that B and C are really symmetric linear maps on the space of trace-free,
symmetric tensors; so is 2u; = 2u,J, where I represents the identity on this space.
We shall assume (for convenience only) that B> 2u,l; this implies that C>
2u.] by the analogue of PauL’s lower bound (1.3), so that B —2u,I and
C — 2uyI are both invertible.

Lemma 3.1. With B and u, as above, consider a layered composite in which the
isotropic material with shear modulus u, occurs with volume fraction 0, and B
with volume fraction gop=1— o,. Let vER" be the unit vector orthogonal
to the layers. Then the effective Hooke's law C is determined by the formula

0s(C — 2Ty A= (B — 2p Iy A +%P,,<A) 3.0
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for any trace-free, symmetric tensor 1, with the notation

P,_,(ﬁ) =) -v— (Av,v)v-v. (3.2)

Proof. The layered structure under consideration is in fact periodic (in a suitable
coordinate system), so it can be treated using the theory sketched at the beginning
of Section 2. But the solutions of the *“‘cell-problems”—or equivalently, of the
analogoues of (2.4)—have piecewise constant stress, strain, and pressure. Therefore,
through arguing as in [9, 50, 511, the calculation of C£ given & is easily reduced to
this algebraic problem: find a pair of trace-free, symmetric matrices £, and &,
(representing the strain in the layers occupied by materials 1 and B respectively)
and a pair of real numbers p, and pp (the pressures in the respective layers) such
that

01é: + e8ép =6, : (3-33)
&g— &, =v-w for some weR", (3.3b)
- Quiéy — Bég)v + (pr — pp) v =0. (3.3¢)

The first relation says that £ is the mean strain; the second is the consistency con-
dition for the existence of a deformation with the specified piecewise constant
strain; and the third represents the continuity of the normal stress at the layer
interface, In terms of these quantities, C£ is determined by

| Cé = 2011585 + 0pBEp, _ (3.3d)

which identifies asit the average deviatoric stress. The solution of (3.3a-d) is
easiest to represent in terms of the variable

A= (C—2uD)¢.
A straightforward if lengthy calculation shows that

5 =05 (B— 2#1-’)_1 A;

: 1
=& —v-w with w=—1[(v,v) v — W];
‘ (57531

P — ps =03 (Av, v).
Substitation yields
(C—2uDtA=¢

=&—qvw
=05'(B—2uD) 1A+ ﬂ—{(lv) cv— (A, v) v -0},
. . 7 _ #18n
which is precisely the desired formula (3.1).

Remark 3.2. We note that the operator P, defined by (3.2) is the same as the ope-
rator P, defined by (2.17), with the identification v = k/|k|. The fact that same
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operator occurs in both the bound—see ¢.g. (2.24)—and the lamination formula
(3.1) is crucial to the success of sequential lamination in achieving the bounds.

Now consider a sequence Co, C,, C,, ... of effective tensors such that

Co = 2u,1
and, for r =1,

C, is obtained by layering material | with C,._; in volume fractions «, and

1 — a, respectively, using the unit vector v, as the layer normal. (3.4)

Evidently, C, represents the effective behavior of a certain sequentially laminated
composite of rank r. The volume fraction of material 1 in C, is

%=1 =10 —a&), r=1; %=0. 3-5)
i1

A formula for C, is easily obtained by iterating (3.1):

1 r—1 i
(l - zr) (Cr - 2{“11)_1 A= :’I’.' (IuZ - :ul)ﬂl A E ZO (Zi—!—l - zi) Pr,-(/') (36)
for any trace-free, symmetric tensor 2. As a consequence, we have
Lemma 3.3. Fix an integer N = 1; unit vectors {vi}ﬁl inB"; real numbers {m; AR
with 0 <m; <1 and X m; = 1; and a real number 0,, 0 < 6, < 1. Then there
is a sequentially laminated composite made by mixing materials 1 and 2 as in (3.4),

with overall volume fractions 0 and 0, = 1 — 01 of materials 1 and 2 respectively,
whose effective Hooke's law tensor C is characterized by

05(C — 2 )7 2 = 3 (up — )1 A+ % ﬁl m;P, (%) 3.7
for every trace-free, symmetric tensor i.
Proof. Clearly (3.7) coincides with (3.6) when
r=N, wy=20;, andsx—x_j=0m, 1=Zi=N.
This is easily achieved by choosing
o =0, xj:tﬁlﬁ:lm,-, I=Z<j<N,

which corresponds through (3.5) to

H;— Hi_
“j:_f_._f_l, I <j<N.
l_%j—l

Notice that 0 < «; = 1 for each r, since O=2,<o; <...=uy=10,<1.
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3B. Optimality of Paul’s upper bound

Let £ be symmetric and trace-free, and let 6, 8, = 1 — 8, be fixed. Consider
the rank-one laminate C, obtained by choosing B = 2u,/[ in (3.1), with ¢, = 0,,
os = 0,, and using any normalized eigenvector of & as the layer normal v. Then
P(&) =0, so (3.1) with 1 =¢§ gives

0:(Cy — 2u, Iy & =% (g — p2) €.
Algebraic manipulation leads to
Cié = 20,y + O22) &,
hence . i
(Cié, &) = 2(0141 + p20>) I5|2-
We have proved: -

Proposition 3.4. In any space dimension, and for any symmetric, trace-free &,
Paul’s upper bound (1.4) is achieved by a layered composite of rank one.

3C. Optimality of the lower bound when & has rank 2

According to Proposition 2.3, our lower bound agrees with PAUL’s (1.3) in
two space dimensions, and also in higher dimensions when & happens to have
rank 2. The proof of optimality is much easier in this case than in general, so we
present it separately. Given a rank-two, trace-free, symmetric tensor £ and volume
fractions 6,, 8, = 1 — 6, consider the rank-one laminate C_ obtained by choos-

ing B = 2u,I in (3.1), with g, = 8,, pp = 0,, and using v = (e; -+ ez)/]/f as
the layer normal, where ¢, and e, are normalized eigenvectors of & with nonzero
eigenvalues. An elementary calculation shows that

Pvf = '%' 5; .
so (3.1), with A =§& gives

0,
02(C. — 2u D)y & =% (po—p)' & +5ﬂ—1§'

Algebraic manipulation leads to

‘ C_& = 2u; "0y + p3 107 &,
hence

| (C_&8) = 20wt + Oz )™ |EP
We have proved:

Proposition 3.5. In two space dimensions, and in higher space dimensions when &
has rank 2, the lower bound (1.3) is achieved by a layered composite of rank one.

(o TN T o
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3D. Optimality of the new lower bound

Let £ be symmetric and trace-free, with eigenvalues &, < ... < &, and fix
f,,0,=1—0;, 0<C0;<C 1. Our goal is to construct a (sequentially laminated)
composite whose effective Hooke’s law C_ satisfies

(CE, &) = f(uy, p2; 04,055 8),

with f_ given by (2.30) or, equivalently, by (2.26). We shall of course use Lem-
ma 3.3. The proper choice of the parameters m; and v; will emerge from the opti-
mality conditions for (2.26).

The first step, then, is derive those optimality conditions. We shall use the
subdifferential calculus; since this technique may be unknown to some readers,
specific references will be given for the key steps. (A more traditional argument,
using the Kuhn-Tucker conditions for (2.29), will be found in [24].)

Lemma 3.6. If A* achieves the maximum of (2.26) then 1* is simultaneously
diagonal with & and

oD ,
E— L — )t 2=t [ PG dm) (3.8)

1 ¢n—1

for some probability measure mon S, Moreover, if E;, and E,,,, are respectively
the eigenspaces of A* with minimum and maximum eigenvalues, then the support of
m lies in

e+ ¢ ,
NO*) = {v:v = VE s €€ Eqin, € € Epay - (3.9)

Proof. We begin by rewriting (2.26) using the first version of (2.24) instead of the
second:

0.0, .
o) (3.10)
1

fo=max 20,(4, &) — $ 0x(uz — p) ™ |22 + 2y E]? — ;

where 1 ranges over trace-free, symmetric matrices and

g(A) = max (P(4), 4). (3.1D)
resS"T

For fixed v€ $"7!, (P(4), 2) is a nonnegative, quadratic, and hence convex func-
tion of A. Therefore g(A) is convex, so that (3.10) gives /. as the maximum value
of a strictly concave function of A. That the unique extremal A* is simultaneously
diagonal with & has already been shown in the course of proving Theorem 2.2.

By the subdifferential calculus ([6, 2.3.1-2.3.3 and Corollary I, §2.3]), the
condition for A* to be extremal is

0€ 20,8 — Ox(u2 — p,)™' 2% — p g(A*), 3.12)

1
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where 0g(A*) is the subdifferential of g at A*. Moreover, g is given by (3.11) as
the maximum of a continuously parametrized family of convex, quadratic func-
tions. For such g, the subdifferential is the convex hull of the gradients V(P,(1),4))
=2P,(1), asvranges over the subset of S~ where the maximum (3.11) is achieved
([6, § 2.8, Corollary 1]). By Lemma 2.1, that subset of S*~1 is precisely N(A%),
o)

ag(A*) ={ f 2P,(A*) dm(v): m is a probability measure } ‘ (3.13)
g1 - on S"! supported on N(7¥)

The desired (3.8) is an immediate consequence of (3.12) and (3.13).

The space of trace-free, symmetric tensors has dimension 4n(n+ 1) — 1.
By Carathéodory’s theorem, any point.in the compact, convex set 0g(A*) is a
convex combination of at most 1 n(n - 1) extreme points. Therefore the measures
m in (3.13) may be assumed to be supported at just 4 n(n + 1) points of N(2%).
However, by using all of the available information we can reduce the number of
points further, to just n — 1:

Lemma 3.7. In the context of Lemma 3.6,
;] n—1
§ =4 — p) T A = 3 miPy(0%) (.14
1i=
Jor some v;€ N(A*) and ni,-, 0m=1, with Tm, = 1.

Proof. Let A and A, be the smallest and largest eigenvalues of 1*; as in

1
Lemma 3.6, En;, and Ep,, are the associated eigenspaces. If v =—={(e + ¢€)
with e€ Epy, € € Eq., then calculation gives ]/2

}‘min

——:ﬁﬂ@%—%“&. (3.15)

P,%y =2

Therefore for any probability measure m supported on N(A*), the matrix of
f P,(A¥) dm(v) relative to the basis of eigenvectors of & is block diagonal:

Alo] 0
fMMM@=@%iﬁOO 01, (3.16)
0|0|—B

The blocks 4 and B correspond to the basis vectors in En;, and E,, respectively;
it is clear from (3.15) that 4 =0, B=0, and trd=1trB=1.

.. Now let us use the additional information that A* is simultaneously diagonal
with £ and satisfies (3.8). Evidently the matrices 4 and B in (3.16) are diagonal:

[ . n
A=Y aee, B= 2 be-e,
=1 Jen—d+1
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where {¢;}i ; are the eigenvectors of £ that lie in Eyn. {¢7 . 4,1 are those that

mins
lie in Enax. and

n

a0 b0, Xa= X b=l (3.17)
i1

J-n—d-1
To prove (3.14) we must show that

n—1
’ !

A—B= 1\;1 mle;, - e, — e, *€;) (3.18)
with 0=Z=m, =1, Ym, =1, 1 =i, ¢, n—d+ 1=/, = n A constructive,
inductive argument is not difficult, but the easiest method is to apply Carathéo-
dory’s theorem again: the set of all tensors

c
Z a;€;* €; —
i1

with a;, b; restricted by (3.17) is a compact, convex subsetof a ¢ +d —2=n— 2

dimensional affine space, so each element is convex combination of at most
¢-+-d—1=n-—1 extreme points. [t is easy to see that the extreme points
are precisely the tensors ¢; - e; — ¢;-¢; with 1 ZiZe, n—d+1<5j<n,
so this yields the desired representation (3.18).

We are ready to prove that our lower bound is optimal.

n

b;e

i€ " €

J
j=n—d+1

Theorem 3.8. In n spatial dimensions the lower bound f__, given by (3.10), is achieved
by a sequentially laminated composite of rank at most n — 1.

Proof. Consider the sequentially laminated composite C_ obtained by using the
parameters {m;, v;} of (3.14) in (3.7): taking A= A% in (3.7) gives

0 n
02Ce = 2wy 2% = 4 Guz = )7 2% + = B miPy (0% = &,
1i=1
using (3.14) in the latter step. Algebraic manipulation yields
(C_&,8) = 2uy |E17 + 0,(0%, &). (3.19)

We claim that the right hand side of (3.19) equals /.. Indeed, substitution of A*
in (3.10) gives

0,0,
S = 202(2%,8) = 4 0alez — o)™ (A% o 2 [ — =209,

1

while taking the inner product of (3.14) with A* yields

0
(& A%) — § (uz — po)™ |A* 2 — #—;g(z*) = 0.

It follows that
f— = z/ul KEIZ "iL' 02(;"*: 5)}
as desired.
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