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1 Introduction.

Consider a two dimensional design domain 2, containing two isotropic dielectric materials. The
dielectric permittivity is specified by £(z) and is piece-wise constant taking the values o and g
where 8 > a > 0. For a prescribed charge density f the associated electric potential ¢ satisfies the
Poisson equation given by

—div (e(2)Ve) = f, (1)

and ¢ = 0 on the boundary of Q. In order to mclude the broadest class of charge densities we
suppose that f lies in W~1%(Q2) and that ¢ is a Wy'>(f) solution of the Poisson equation. The
associated electric field in the domain is —V. We introduce a “target” electric field E. Fora given
charge density, our objective is to design a two phase dielectric that supports an electric field -~V
that is as close as possible to E. Here B = —V@, where @ is a potential in W3(f2). Placing a
constraint on the amount of the better dielectric 3, the design problem is to minimize the difference

[ 9o vitas, (2)

over all configurations of the two dielectrics.

In general, material layout problems of this type fail to have an optimal design given by a
configuration of the two materials. Instead one must study the behavior of minimizing sequences of
configurations. The purpose of the analysis given here is to provide the methodology for the recovery
of optimal configurations when they exist and to identify minimizing sequences of configurations
for (2) otherwise. We introduce a tractable method for the numerical computation of minimizing
sequences of configurations. These minimizing sequences are associated with materials with graded
dielectric properties that may exhibit a fine scale structure composed of layers of the two dielectrics.
Moreover, for a dense class of target fields we are able to characterize all fine scale structure that
can appear in minimizing sequences of configurations, see Theorem 1 of this Section. We illustrate
our approach through numerical examples provided in Section 6. The examples illustrate how the
electric field can be controlled using functionally graded materials.
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2 Background and main theoretical results.

The nonexistence of an optimal configuration for the design problem coincides with the appearance of
minimizing sequences containing regions of finite measure where the dielectric permittivity becomes
highly oscillatory. As one follows these minimizing sequences the dielectric permittivity oscillates
between the values o and 3 on progressively finer scales. To describe this mathematically we denote
the subset of the design domain ) containing the B dielectric by w. The characteristic function
of this set is written as x where x = 1 for z in w and x = 0 otherwise. The piece-wise constant
dielectric permittivity is given by

&(z) = &(x) £ Bx + (1~ x). (3)

Oscillation of a sequence of designs {w"}22, is described by the weak L>°(f2) star convergence of the
associated sequence of characteristic functions {x*}32., to a density 6 in L*°(2) where 0 < 6 < 1.
The issue of nonexistence of optimal configurations for problems of material layout has been the
object of much interest. The classic example is illustrated in the problem of minimizing the energy
dissipation associated with configurations of two materials. In the context of two phase dielectric

materials the energy dissipation for a configuration is given by

/ e(z)Ve - Vodz.
2

The problem of nonexistence was resolved in an elegant fashion by extending the design space to
include all effective dielectric permittivities that could be obtained through oscillation, see [6], [10],
and [11]. The crucial connection between minimizing sequences of configurations and optimal designs
in the extended design space is established through a continuity property of the energy dissipation
given in [3]. This continuity property is an example of the theory of compensated compactness
developed in [7] and [12]. Here continuity is given in the context of weakly convergent sequences in
L?(Q)2. Indeed, consider sequences {¢”(z)Vy*}52; and {Vp”}52%,, such that —div (e(z)*V¢*) = f.
If these sequences weakly converge to the limits £° Vg™ and Vo™ where ¢ is an effective tensor
in the extended space of designs then one has the continuity expressed by

lim | &'(z)Vy¢*-Ve'da = / e®(z)Ve™ - Vo™ da.
V=00 0 Q

For the design problem treated here we can attempt to resolve the nonexistence problem by extend-
ing the design space to include effective properties. However unlike the energy dissipation and other
continuous functionals treated earlier, the objective functional given by (2) is not continuous with
respect to weak convergence. Thus additional theoretical work is required to provide the connection
tation we outline a methodology for the identification of minimizing sequences of configurations.
The method is based on a careful extension of the design space and by replacing (2) with a suitable
“relaxed” functional that is associated with the extended design space.

It is evident that any attempt to identify minimizing sequences of configurations must account
for the possibility of oscillations in the sequence of gradients associated with minimizing sequences
of designs. As above an oscillatory sequence of gradients is characterized by the weak convergence of
the sequence in L?(Q)2. To fix ideas, let {V, }32; denote a weakly converging sequence of gradients
associated with a minimizing sequence of designs. The weak limit of the sequence is denoted by Vg,
and one has

V=00

lim / Vo, — V| dz
o

v—00

= lim / |V, — V@l dz + / V@~ V| dz. (4)
[1] [1]



The oscillatory behavior of minimizing sequences is naturally linked to the dependence of the limit

lim [ V5, - Vil s, (5)
2

V=00

on the weak limits Vg, 0, together with other moments of measures associated with weak limits
of geometric quantities, (e.g., the H measure introduced by L. Tartar [14]). Our methodology for
identifying minimizing sequences is based upon on writing (5) as an explicit function of the relevant
weak limits. Although at this time we are unable to produce a formula for every type of oscillation
we note that an explicit closed form expression is available when the oscillations consist of layers of
the two materials. The formula follows directly from the corrector theory of homogenization given in
[1] and [9]. To be precise we introduce the characteristic function x(z,t). Here x(z,t) is piece-wise
constant in the first variable and unit periodic in the scalar ¢ variable. As is done in homogenization
theory [1], we define a locally layered material by x(z) = x(z,z - n). Here n = n(z) represents
the normal to the layers given by n = (cos(y(z)),sin((z))). An oscillatory sequence is given by
x’(z) = x(z,vz-n), v=1,2...,00. For this case we have the closed form expression given by

Voo

lim [ Ve, - Ve = [ Ra(e)HOE)E (1@)V5(E)- V5(a) ds. (6)
oQ Q

Here R(7) is the orthogonal matrix associated with a rotation of y radians and the matrix H(6) is
a function of the density 6 given by

1_1 -
H() = ( (c—prot =0k ¢ ) @)

where hg = (17‘9+ %)’1 is the harmonic mean of the two dielectric permittivities. Here, the sequence
of gradients {V, }32, is related to the sequence of configurations through the equilibrium condition

—div (e(x*)Ve) = £. (8)
The “homogenized ” equilibrium equation satisfied by the weak limit ¢ is given by
—div (e(0(z),v(=))V@) = f, (9)

where

£(6(2),7(=)) = R(7(2)) A(6(z)) R” (v(z)), (10)
and the diagonal tensor A(6) is given by

0= 1)

with mg = a (1L — 6) + B 6. Here the tensor (f,v) is the G-limit associated with the sequence of
dielectric tensors {e(x” )}, see [9]. (Since the dielectric tensors are symmetric, the G-convergence
[18] and the H-convergence [9] of any sequence of dielectric tensors is the same.)

The methodology presented here uses the explicit formula given by (6). Our approach is to
replace x and ¢(x) with the new design variables 6, -y, and &(6,v) given by (10). In addition we
introduce the new objective functional given by

RF(6,7,¢(6,7), V) = /n Ve — Vil de + /n R(y(2)H(8(2)) BT (v(z))V- Vo dz, (1)



where the state variable is the W'? solution of
—div (e(6(2), () V) = f. (12)

In order to state our results we formulate the original design problem in a precise way. We
introduce the constant ©, such that 0 < ©® < 1. The space of admissible configurations and
associated dielectric permittivities is denoted by ade, and

ade = {x: / x dz < © meas(2)}. (13)
o
The objective functional is denoted by F(x,(x), V$) and is given by
F(x,&(x), V§) = / Ve — VoI da, (14)
o
where the state variable ¢ is a solution of (1). The original design problem is formulated as
P=_inf F(x,&(x), V). (15)
x€ade
The admissible space of designs for the new design problem is given by

Do ={ (6,%,£(8,7)) |6 € L*=(2;[0,1]); v € L*=(£2;]0, 27]) :
/n 6 dz < © measf) ; e(6(z),7(2)) = R(1(z)) A(6(=)) BX((=)) }, (16)

and the new.design problem is formulated as

RP = (0,'7,e(101,1‘$))eDa RE(8,7,8(6,7),V9). (n

We point out that the extended space of designs Dg contains the original space of designs ade.
Indeed, choosing § = x we have £(6,v) = &(x), H(#) = 0 and

F(x,&(x), V§) = RF(8,7,¢(6,7), V§)- (18)

The first result that we describe is given in Theorem 8. It states that for every ¢ in W13(Q)
and for every f in W—1.3(Q) that

P=RP. (19)

In deriving (19) we identify a class of minimizing sequences for P that is tractable for numerical
computation. Our approach is based upon a discrete approximation of the design space Do. We
consider any partition 7} of 2 consisting of a finite number of pair-wise disjoint subdomains ; C (2,
i=1,...,N(x) such that:

N(x)
= n d- . . 2
Y] ,._.LJI Q; and ,-=1,n.1.'f",3,c(n)( iam();)) < & (20)
We fix the partition T, and the discrete approximation D§ is given by the piece-wise constant

functions 6%(z), v*(z) taking constant values in each subdomain. We denote the restriction of §*(z)
and v"(z) to Q; by 6F and ~ respectively. Here 0 < 6F <1, 0 < +f < 2w, and

Eg_.(f) (6f meas(f;)) = Omeas(N). (21)



The piece-wise constant dielectric permittivity tensor is given by

e(7"(2), 6" (=)) = R(7"(=))A(8"(2)) R (v"(=)), (22)
and the associated state variable ¢* solves the Poisson equation
—div (e(v"(x), 0%(2)) V") = f. (23)

It is clear that D§ is contained in the larger set Dg and the design problem posed on this smaller
set of designs is written

RP" = inf RF(6",4%,e(0%,4"), V). 24

(0",1‘,6(]&1'1‘,1‘))61)3 ( "7 ’6( 7 )’ Sa) ( )
It is shown that a minimizing vector of design variables (5”, 7*) exists for this problem, see Theorem
4. Most importantly it follows from (6) that there exists a recovery sequence of configurations x”
in ade for which

Jim F(x",e(x"), V§) = RP", (29)

see Theorem 5. For any given partition T, we consider its refinements, i.e., the nested family
of partitions {T:}es0 that includes Tx. We show that the optimal design vectors associated with
the refinements represent a minimizing sequence of designs for the problem RP, see Theorem 7.
Moreover, using (25) we are able to recover the explicit form of minimizing sequences for the original
problem P, see Theorem 5 and equation (57). We point out that the choice of the initial partition
T, is arbitrary so this method generates minimizing sequences of designs for any initial choice of
partition.

It is instructive to write RF(6,v,¢(8,%), V@) in a form where £(6,v) appears explicitly. Manip-
ulation gives

(maI = e(6,7))" , (mol — &(6,7)
(T-8)8(6 - o) 5

It is clear from (11) and (26) that if £(6,7)Vy = mgVyp then

R(y)H(6)RT (v) = : (26)

/n R(y)H(6)RT (y)Ve¢ - Vpdz = 0.

It now follows from (6) that the gradients V" associated with a recovery sequence of configurations
{e(x%)}22o G-converging to &(8,7) converge strongly to V. Conversely if the gradients Ve
associated with a recovery sequence of configurations converge strongly to V¢ then the term

/Q R(y)H(0)RT (1)Vep - Vo da

vanishes and £(8, )V = mg Ve follows from (26). In this context we mention that the earlier work
of [5] focuses on the energy dissipation to show that the condition V¢ = £* Vg is necessary and
sufficient for the strong convergence of gradients associated with sequences {e£}32, G-converging to
€ and weak L™ star converging to £*.

For a dense set of target fields we show that our method accounts for all oscillations appearing
in minimizing sequences of configurations. We consider target fields of the form

—V$, ¢ € Wp(Q) (27)
and the relaxed version of the original problem is given by

Theorem 1. There exists a dense G; subset K of W,'>(f) such that for ¢ in K:



(1) There exists a minimizer of RP in Dg,
(2) P = RP,

(8) Any cluster point of any minimizing sequence in ade of P is a minimizer of RP and any
minimizer of RP in Dg is a limit of a minimizing sequence for P.

(4) Let @ be the potential associated with the minimizer (8,7,¢(6,7)) of RP, then

RF(,7,66,7),99) = [ V6= Vil de and o6, 7)Ve = msVp.
Q

Here the convergence of sequences of designs are with respect to the G-convergence [18].

The class of targets appearing in Theorem 1 is motivated by the following theorem of L. Tartar
[2], [13], which is an improvement of a result of M. Edelstein [4].

Theorem 2. : Let S be a non-empty strongly closed subset of a Hilbert space H. Then there exists
a dense Gy subset K of H such that for any € K, the minimizing sequences {c,}3>; € S of the
function ¢ — ||¢ — ¢|| are Cauchy sequences. In particular the subset of points of H with a unique
projection on S contains a dense G subset, as it contains K.

With Theorem 2 in mind we can take advantage of the geometry of the set of effective tensors
for two dimensional problems and establish Theorem 1. This topic is taken up in Section 5 where
Theorem 1 is proved.

The recent work of P. Pedregal [15], [16] approaches similar design problems from a different
perspective. In that work the equilibrium equation for the potential, together with the resource
constraint is incorporated into the cost functional and a new type of envelope for the au§mented
functional is introduced. The envelope is shown to be weakly lower semicontinuous in WO’Z(Q) X
L*®(Q) see [15], [16] and can be thought of as a constrained quasiconvexification of the original
augmented functional. The constrained quasiconvex envelope can be expressed in terms of a class A
of gradient Young measures, see [15]. To proceed further, the envelope needs to be given in terms of
explicit formulas. This requires knowledge of the set .A. However at this stage the characterization of
A is not known. In principle the methods of this paper can be used to deduce the part of A containing
Young measures associated with simple one scale laminates, see [15]. Theorem 1 shows that the
knowledge of gradient Young measures associated with layered microstructures (a.k.a. laminates) is
sufficient for the computation of the constrained quasi convex hull when the target fields are in the
class K ¢ Wy,

We point out that the discrete problem given by (24) is of interest on its own right. From a
practical perspective there is a prohibitive manufacturing cost incurred when attempting to make a
graded material with possibly different anisotropic dielectric properties at every point. Instead there
is a smallest scale & over which the dielectric properties change. The scale is set by the manufacturing
cost. Practically speaking one partitions the design domain into subdomains of diameter « and inside
these subdomains one optimizes the dielectric properties. This approach to the design of graded
materials is naturally incorporated in the formulation of the discrete problem given here and is
discussed in the context of the numerical examples given in Section 6.

3 The Discrete Problem.

In this Section we analyze the design problem on the discretized space of designs. The existence
of an optimal design is established in this space. Next we apply the corrector theory to exhibit a
recovery sequence of configurations of the two dielectrics.



We consider any partition T, of Q consisting of a finite number of pair-wise disjoint subdomains
Q% CQi=1,...,N(x) such that:

N(x)
Q= g Q; and i:]i!.l.?gfc(n) (dmm(ﬂt)) S K.

We fix the partition T, and the discrete approximation D is described by equations (20-23) given
in the introduction. The design problem over the discrete space is given by (24). Existence of the
optimal design is established using the direct method of the calculus of variations. We start by
introducing the type of convergence relevant to the discrete problem. A design (6%,v*,&(6",7*))
in DY can be identified with the vector (65,7f) for i=1,...,N(x) in R?¥ (%), Thus D} is iden-
tified with a compact subset of R2¥(*) and convergence of designs in D} is given by sequential
convergence in R?N (), Existence of an optimal design will follow once we show that the functional
RF(6",4",£(68%,~*), V) is continuous with respect to sequential convergence in R2N(%),

Theorem 3. Given a sequence of designs {(§%", ™)}, and a design (8%,5*) such that

. Kn KN\ __ (pKk =K
Jim (67, 4%%) = (6%,7") (28)
as elements of RN (%), then
lim RF(8%", %", e(8~",y™"), V$) = RF(6~,5",(8%,7"), V). (29)

n—00

Proof. The state variable associated with the limit design (6*,7"*) is denoted by @" and is the
W3 2(9) solution of

—div (e(8%,7°)Ve*) = f. (30)

The convergence of the sequence of designs given by (28) implies that the associated conductivi-
ties {g(8%™,4*")}32, converge to (8%, 4*) almost everywhere. From the theory of G-convergence
[18] we also know that the sequence G-converges to £(6*,7*). The definition of G-convergence im-
plies that the state variables ¢¥ associated with the sequence {e(6*™,y*™)}3%.; converge weakly in
W3%(Q) to @*. In order to establish the continuity given by (29) we first show that the sequence
@& converges strongly to ¢* in Wol’z(ﬂ). To do this we recall the formula (10) for £(6,7) to easily
see that

0<a<ed™", 7)< B

We apply this estimate to obtain,

[iver-vortds < [ elem )Tt - VoY) - (Vi - Vo )ds (31)
Q [
= Ls(ﬂ"‘“,v"’")chﬁ -Veonde — 2 -/x.z e(6™™, ¥~V - Vg de
+ / (6", 75"V " - V@tda. (32)
0

Passing to the limit as n — oo in (31,32) , we apply the well known properties of G-convergence
together with the almost everywhere convergence of {&(6%™,y*™)}32, and the Lebesgue convergence
theorem to find that

Jim || Vof — V" ||7.=0, (33)

and strong convergence of ¢ to ¢* in Wol’2 follows.



From (7) we easily obtain the following estimate for the sequence

{R(y™"(=))H(8"" (z)) B (v*" (=) }aLs

given by

n 21 1
R(y™"(2))H(0"" ()R (""" (@))n-n < (= - 3) Inl?, (34)
for every vector 77 in R%. Moreover, from the convergence given by (28) the sequence converges

almost everywhere to _
R(Y*(2))H(6" (=))R" (7" (=))-

Finally since Vit — V@* strongly in L? we apply (34) together with the Lebesgue convergence
theorem to conclude that:

lim RF(6"",7"",e(6%",v""), V) =

n—oo

= jim ([ 1v65-VePds+ [ Rorm)EE0rm) Vi vt de )
Q Q

= [ 15" - VP o+ [ ROFEE)E () Vo~ - V4" da
[t} (43
= RF(§,7", (6%, 7°), V§). (35)

which proves the theorem.
Collecting our results we have shown that

Theorem 4. There exists an optimal design (6%,7*,&(6%,7")) in D§ for the discrete problem, i.e.,

RP" = RF(§",7",¢(6",7"),V¢)
— min RFon neouu Va- 36

(0% ,v",(6%~))eD3 (6%,7%,6(8"7%), V9) (36)

Now we show how to construct a sequence of configurations described by with the sequence of

characteristic functions {x"}3>, for which

Jim F(x™, e(x™), V§) = RP*®. (37)

In view of Theorem 4 it is sufficient to consider any design given by (6%,4*) in D§ and show
how to construct a sequence {x*™}3%, for which

nlif.‘o F(x™", e(x""), V§) = RF(6%,7%,€(6%,7"), V). (38)

We start by observing that for § = 0 or § = 1 that £(6,v) = ol or BI respectively, where I is the 2x2
identity. Thus for a design specified by (6%,v") we proceed to construct the sequence {x*™}52, in
the following way. In the subdomains 2; for which 6 = 0 we set x*" =0, n=1,2...00 and in the
subdomains €; for which 8F = 1 we set x™® =1, n =1,2...00. Next we consider the subdomains
Q; where 0 < F < 1. In these subdomains we have 0 < 4¥ < 2r and we set x*™ = p(nz - n(vf)),
where u(t) is a periodic function on the real line of period unity taking the values 1 for 0 <t < 6
and 0 for f <t < 1 and n(¥f) = (cosy¥,sinyF). We summarize our construction in the following
equation,

0, in €; for which 6f =0,
X""=4q 1 in §; for which 6F =1, (39)
p(nz -n(vf)), in ; for which 0 < 6f < 1.



The associated dielectric permittivity e(x*™) corresponds to pure a dielectric in the subdomains
Q; where ¢ = 0, pure 8 dielectric in the subdomains {}; where §* = 1, and layers of & and 8
dielectric with layer normal in the direction (cos 4¥,sin~¥) in the subdomains where 0 < 6F < 1.
The associated state variables ™™ are the Wo (ﬂ) solutions to the equilibrium equation

—div (e(x™")Ve™") = f. (40)

The  sequence e(x™™) G-converges to €(0",v*) [9], hence the sequence ¢™™ converges weakly in
Wa*(Q) to the state variable p* associated with the design (8%, v"). With this construction in mind

we state the following Theorem that guarantees the existence of recovery sequences of configurations.

Theorem 5. Given a design (6%,v"*) in D} the sequence of configurations {x*"}32; given by (39)
is a recovery sequence, i.e.,

lim F(x*®, e(x*"), V§) = RF(6",7,£(6%,7), V§). (41)
Proof. We have
Jim P, () = [ 194" Vol da+ lim [ (Vg™ - verids (42)

Applying the corrector theory of homogenization given in [9] we can write

lim / V™™ — Vo |? do
o

n—oo

= fn [(P%™ — I)Vg* + 25*|? dz. (43)

Where P*™ is the corrector matrix associated with x*™ and on each subdomain ; it is given by:

hgg-
[a(i—x*")+Bx™" ]

P*™ = R(~F) RT(~f), and P™™ —~T in L? as n — oo.

0 1

Since P*™ € L®(2)?*2 it follows from the corrector theorem of F. Murat and L. Tartar [9] that
2™ — 0 strongly in L?. As a consequence we have:

lim f (P — )Vg" + 2™ do =

n—00 Q

hgs
N(x) ke — 1)2 0
li)m /R( [ (I—x™=)+8x"" ] RT(4F)Ve" - Vo da | =
0 0
= f R(y®)H(6%)RT (v*)V¢" - Vo* dz, (44)
Q

and the Theorem follows.



4 Minimizing sequences of configurations.

In this Section we identify minimizing sequences of design vectors for the problem RP. These

sequences are associated with the refinements of a given partition 7. Next we employ Theorem 5

to deduce that RP = P and identify a special class of minimizing sequences of configurations for P.
We recall that a nested family of partitions {T,;}Ks.E of Q is a family that satisfies:

K<k = VI ET, €T, : O COl (45)

For any given partition T} the sequence of refinements of this partition is denoted by {7 }x<z and
is a nested family of partitions as described by (45). We show that the space of discrete designs D§
associated with the refinements of T% is dense in Deg.

Theorem 6. The system of designs { D% }.—,0 is dense in Dg. Indeed, for every (8,+,¢(6,7)) € Do,
there exists a sequence (6%,~",&(8",v"*)) € D§ for which

6% — 6, ¥* = v a.e. in Q and £(8",v") G-converges to £(f,v) as £ — 0, (46)
furthermore:

lim RF(6%,7",£(6",7"), V$) = RF(8,7,£(6,7), V9) - (47)

Proof. For a given design (,+,¢(0,7)) € De we choose any partition T; of {2 and consider its
refinements {Tx}x<z. For any refinement T, , we construct (6,7*,&(6",v"*)) € D§ as described
below:

or=—L [ o) de

' meas ; Jg,

1

£~ d
K= reas i T

§(6%,7") = R(% )AE)RT (7)) on .

We consider the intersection of Lebesgue points for the functions 6(z) and y(2). On this set we
have:

6%(z) = 0(z), ¥*(z) > v(z) ask—0.

This delivers the convergence

(0% (2), v"(z)) = &(8(z),7(z)) = R(7)A(O)RT (7) a.e. in Q as k — 0
and
R(vy*)H(6")RT (v*) = R(y)H(6)R" (7) a.e. in R as £ — 0.

From the properties of G-convergence [18] we deduce as in Theorem 3 that £(6%(z),v"(z)) G-
converges to £(8(z), 7(z)) and this establishes (46). This implies that the sequence of state variables
¢~ satisfying p* € Wy'*(Q) and

—div ((6%,¥")V") = f, (48)

10



converges weakly in Wa'3(Q) to the W3'*(Q) solution ¢ of
—div (e(6,7)Ve) = f. (49)

Following the same arguments given in the proof of Theorem 3, we see that the sequence {¢*}x>0
converges strongly in Wg’z(ﬂ) to ¢. Moreover, the same estimate as given in (34) holds for the
sequence

{R(v")H(6)RT (1")}x>0

and we can proceed along the same lines as in the proof of Theorem 3 to show that
1i_1{(1) RF(0",v",e(6%,7"), V@) = RF(9,7,(6,7), V§)- (50)
[

We now identify minimizing sequences of designs for the RP problem. We consider any nested
family of partitions denoted by {T,;}_,;>0. For each value of « we consider the optimal design for the
discrete problem RP* denoted by (6%, %", e(6*,5")).

Theorem 7. The sequence {(5‘,'7",6(5",'7"))},»0, is a minimizing sequence for the RP problem
and satisfies the monotonicity condition:

for k < ', RP* = RF(8",7",&(8%,%"), V$) < RP* = RF(8" ,7° ,¢(8* ,7~), V$),
and
lim RF(6",7"°,6(6%,7°), V$) = RP.

Proof. The monotonicity follows immediately from the fact that & < &’ implies that D’g)’ C Dg.

We note that the monotonicity property implies the existence of the limit
: 7 —k oKk =K A
Lim RF(67,7%,&(8%,7"), V).
Since D§ C De we have:
RP < RF(6*,7",£(6%,9%), V), (51)

for every k& > 0. On the other hand, for a nested family of partitions {Tx}x>0 and for any given
(8,v,€(8,7)) in De, it follows from Theorem 6 that there exists a sequence {(8*,v",€(68",7"))}x>0
for which:

RF(",7",€(6%,7°), V$) < RF(6",7%,&(6%,7"), V§), (52)
and

lim RF(6",7°,6(6%,7"),Vp) < lLim RF(6%,~",¢(6%,7"), V)
K0+ =0+

= RF(8,7,¢(6,7), V). (53)
It is now evident that:
: " == Ak =K ~ : ~
f F(0 8,7v),V¢) = RP 54
Jlim RF(8",7",€(8%,7"), V) < et epe B (6,7,€(6,7), Vg) = R (54)

and the theorem follows from (51) and (54).
With Theorems 5 and 7 in hand it is possible to identify a sequence of configurations specified
by %’ for which

RP = lim F O, e(x?), V). (55)

11



Iggeed we consider a minimizing sequence for RP as given by Theorem 7. To each element
(67,7%,€(6%,7")) of the sequence we can apply Theorem 5 to find a recovery sequence of con-
figurations {x*"}32,. In this way we see that

RP= lim lim F(x™",e(x""), V), (56)

K00 11— 00

and it follows that we can extract a sequence of configurations {x"#""7}2, for which
RP = Jim F(x"™,(x"™), V§). (57)
j—oo

We now establish the following result.

Theorem 8.

ie.,

inf  F(x,e(x), V@) =

inf RF(8,,¢e(8,v), V). 58
(X,G(;))Eude (91715(16?7))€D8 ( 7 ( ’Y) ¢) ( )

Proof. Since ade C Do and from (18) it follows that P > RP. Moreover from Theorem 7 and
(57), there exist {(8", 7%, (6%, 7)}x>0 € {D%§}x>0, such that

RP = lim RF(8",7%,6(8%,7"), V) = lim F(x"5"™,e(x""™), V). (59)
[, 3 7 [» o]

On the other hand
F(x"™, g(x""™), V@) > P, for all j. (60)

Thus (59) and (60) imply that RP > P, and we conclude that RP = P.

The results presented in this Section provide the way for the identification of a class of minimizing
sequences of configurations of the two conductors. Theorem 7 shows how to generate a minimizing
sequence of generalized designs coming from discrete problems. Theorem 5 and (39) provide the
methodology for constructing an optimizing sequence of configurations based upon the information
given in the solution of the generalized design problem. These results give rigorous rules of thumb
for the design of two phase conductors. The numerical implementation is given in Section 6.

5 A complete characterization of minimizing sequences.

In this Section we provide the proof of Theorem 1. We consider a dense class of target fields for which
we can account for all oscillations in minimizing sequences of designs. For x € ady we introduce the
set of gradients given by

So = { Vu | uis a Wy'*(R) solution of — div (e(x)Vu) = f, (61)

- X € adyg.

The strong L?(R) closure of the set S is denoted by the set Se. It is evident that

s - _ . _ a2
P—xéggeF(x,E(x),Vw) = ginf /ﬂ [Vu—-Vé|“de

= _inf /IVu—V(ﬁIzdm. (62)
Vu€eSe JO

In light of (62) and the definition of Se we apply Theorem 2 of the introduction to conclude the
existence of a G subset K of Wol ’2(ﬂ) such that

12



Theorem 9. Given a target field $ € K and a minimizing sequence {(x",(x™))}3, € ade for P
then the associated sequence of state variables {p™}32 ; solving the equilibrium equation

—div (e(x")Ve™)=f (63)

is Cauchy in the Wy'*() norm given by [[u]]> = [, | Vu|*dz.
From the completeness of W'*(R2) there exists a potential g € Wy'2(R) such that lim, o 9™ = @
strongly in Wol’z(ﬂ). Passing to subsequences if necessary, the sequence {x"}5%, weak L*>(Q) star

converges to a density 6 and the compactness property of G-convergence implies that the sequence
{e(x™)}3, G-converges to an effective tensor £° where

—div (6°V) = f. (64)

From the results given in [6] and [11] we have that the set of effective tensors associated with the
density 6(z) are all the symmetric 2 X 2 matrices with eigenvalues A1, Az lying in the set Kz for
almost all z in Q. The set Kj is given by the inequalities

1 < 1 1
k=1Aj_a hf—a my—a
2
1 1 1
< + .. 65
25y S FmtEm (65)

On the other hand the work of J. Dvorak, J. Haslinger, and M. Miettinen [5] shows that the strong
convergence of the sequence {¢™}32, delivers the local relation

Vg =mzVe, ae. (66)

This implies that mj is an eigenvalue of €°. The constraints on the eigenvalues of €° given by (65)
together with (66) allows us to uniquely identify £° as the effective tensor given by

e = R(7)A(B)R” (), (67)

where the angle ¥ is chosen according to the requirement given by (66). For this choice of angle we
also have the local relation

R(YH@E)RT(7)VE =0, ae., (68)

and we conclude that
P= / | V@ — V@|?dz = RF(0,7,¢(0,7), V). (69)
Q

In view of Theorem 8 we deduce that the design (8,7, £(6, 7)) is the optimal design for the problem
RP. This establishes parts (1), (2), and (4) of Theorem 1.

To proceed we recall the notion of a cluster point (8, £¢) for a sequence of designs associated with
a sequence configurations {x*}32,. The definition of a cluster point (8, €%) implies the existence of a
subsequence {x"7,£(x™#)}32, such that {x"i}32, weak L°(Q) star converges to 6 and {e(x"/)}52,
G-converges to £°. Arguments identical to those given above show that any cluster point of any
minimizing sequence for the problem P is a minimizing design for the problem RP. This establishes
the first part of (3) of Theorem 1. The second part of (3) of Theorem 1 follows immediately from the
construction of a recovery sequence of configurations based upon Theorems 5 and 7, see equations

57).

( )Part (3) of Theorem 1 together with (66) and (68) point out what kinds of oscillations can occur
in minimizing sequences of configurations. In the subregion of ) where the minimizing sequence
oscillates, i.e., the region where 0 < 8 < 1, we see that the oscillations are in the form of layers
of the two conductors. The layers are asymptotically parallel to the optimal gradient V. This
configuration allows for the best effective conductivity properties to be aligned with the direction of
the gradient. This is consistent with physical intuition.
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6 Numerical solution and a practical approach to design of
graded materials.

We provide an outline of the method used for the numerical solution of the discrete design problem.
For convenience the objective functional is denoted by E(6,%) and

E(os '7) = RF(ei Y 5(057)1 V‘ﬁ)
= /n Vo — Vol2da+ /n R(7(2))H(6(=))E" (1()) Vs - Vo da, (70)

where the state variable ¢ solves the equilibrium equation (12). For a given partition, the number
of subdomains is N(x) and the design variable (8, ) is a vector of length 2N(x). The components
of (6,+) are the constant values (6;,+;) taken in each subdomain ;. The components of the design
vector are subject to the box constraints:

0<6;<1,i=1...,N(x),
0<% <2m i=1...,N(x). (71)

We include the resource constraint _]'00 dz < @ meas(f2) by adding a penalty term

£x (/nodz—emeas(n)) ,

for £ > 0. The discrete design problem is written
min E(8,v) + £ x (/ fde—© mea.s(Q)) ) (72)
(6.7) v}

where (8,7) are subject to the constraints given by (71). The numerical procedure is a straight
forward application of the steepest decent method, see [17]. Gradients of the objective E(6,~) are
computed and increments of the design variables (46, §) are chosen to insure E(6,v) > E(0+40,v+
87). The advantage of this procedure is that it is monotone and convergence is assured.

We provide numerical examples that illustrate how electrostatic fields can be controlled using
functionally graded materials. For all examples the design domain is chosen to be the square centered
at the origin given by Q = (—1,1)x(—1, 1) and we choose the target field to be zero, i.e., V$ = (0, 0).
The discrete design is associated with a partition of  into 20,000 subdomains of diameter on the
order of 10~2.

For the first two examples the charge distribution is taken to be uniform in  and given by
f =1. We choose @ = 1 and B = 2 and constrain the amount of good dielectric to be 40% of the
design domain. The density distribution, 6(z), of the better dielectric material in the optimized
discrete design is given in Figure la. Here the darkest regions consist of pure § dielectric, the
white regions are occupied by pure a dielectric and the regions of graded conductivity properties
are given by the intermediate shades. The layer normals in the graded parts of the design are
given by the arrows in Figure la. The contours are the level lines of the electric potential. Note
that the layer normals are tangential to the level lines, hence perpendicular to the electric field.
We emphasize that Figure la gives the necessary geometric information for manufacturing graded
materials. Indeed, given 8(z),y(z) we can we apply (39) to construct a sequence of graded materials.
Because of the continuity expressed by Theorem 5 we are guaranteed that we can construct a two
phase configuration thats nearly optimal.

For the second example we consider a subdomain D of the design domain 2. Here we take

D =0\ {(-1/2,1/2) x (-1/2,1/2)}. We consider the problem

P= inf /|V¢p|2dz. (73)
x€ade Jp
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Figure 1: a. Figure 1: b.

The theory presented in this paper easily generalizes to this case and the relaxed problem is

RP = (ams(igg))we { /D |Vo|?dz
+ [ BaE)HEEE (@) Vo dz}, (74)

and P = RP.

Here the goal is to screen as much electric field away from the domain D as possible. The good
dielectric is constrained to occupy 40% of Q. The density distribution of the good dielectric in the
optimal design is given in Figure 1b. We point out that we allow the two dielectrics to be placed
anywhere in Q, however the algorithm automatically uses the good dielectric only in D. This is
consistent with intuition.

For the next example we take the charge distribution to be 1 everywhere outside of D and zero
inside D. As before we take o =1 and 8 = 2.

| I A

SRR

T 1
! \

T 1

P A A i

Figure 2: a. Figure 2: b.
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Figure 3: Electric field for 8 = 1000.

The good dielectric is constrained to occupy 15% of the design domain. The density distribution
for the optimal design is given in Figure 2a. In Figure 2b we plot the level lines of the potential and
the electric field associated with the design. Last we consider the same layout as in Figure 2a but
with @ = 1 and 8 = 1000 and we plot the electric field for this case in Figure 3. For this layout and
choice of B we see that the electric field has been screened away from D.
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