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We consider an emulsion of two Stokes fluids, one of which is periodically distributed in the
form of small spherical bubbles. The effects of surface tension on the bubble boundaries are
modelled mathematically, as in the work of G. I. Taylor, by a jump only in the normal
component of the traction. For a given volume fraction of bubbles, we consider the two-scale
convergence, and in the fine phase limit we find that the bulk flow is described by an
anisotropic Stokes fiuid. The effective viscosity tensor is consistent with the bulk stress
formula obtained by Batchelor [2].

1. Introduction

In this paper we provide a rigorous framework for demonstrating the dependence
of the bulk properties of an emulsion on its microstructure.

We consider flows of suspensions of n fluid drops in a second fluid. In such flows,
the velocities of the drops must be determined simultaneously with the flow. For the
case of fixed drops, the problem reduces to the one studied in [5]. The bubbles are
assumed to be small with respect to macroscopic length scales. We model the effects
of surface tension on the bubble boundary using the zeroth order approximation
introduced by Taylor [10]. In this approximation the bubbles are assumed spherical
and only the normal component of the traction is allowed to jump at the bubble
interface.

We suppose that at the initial time the bubbles are periodically distributed in the
emulsion. The scale of the period is assumed to be of the same order as the bubble
diameter. Since the characteristic length scales of the body force and flow region are
much greater than the local period, it follows that periodicity is preserved in the flow.

It is assumed that the flow is quasistatic and satisfies the time stationary Stokes
equations at each instant. Under these hypotheses the flow equations of the emulsion
are given by those derived by Keller, Rubenfeld and Molyneux [4].

We show that as the period of the suspension approaches zero, the associated
family of flows approaches a homogenised flow with velocity field satisfying the
stationary Stokes equation, where the constitutive relation is given by an anisotropic
viscosity that depends upon the microscopic geometry.

The emulsion considered here is given by a simple cubic lattice of spherical drops.
The associated effective viscosity is therefore cubically symmetric and of the form:

i = 22U P + 2uP P, (L.1)

where PS is the projection onto off diagonal strain rates and PP is the projection
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onto diagonal trace free strain rates (see [ 12]). We remark that our homogenisation
result applies immediately to arbitrary lattice geometries.

The paper is outlined as follows. In Section 4 we normalise the pressure in order
to get a uniform I*(Q) estimate for the sequence of pressures. Global and local
conservation of mass equations are obtained for the homogenised velocity and its
first corrector in Section 5. In Section 6 we obtain the local kinematic condition on
the bubble interface by identifying the two scale limit of a suitably normalised
velocity field with respect to the local bubble velocity. The two-scale convergence
method is applied to the momentum balance equations to obtain the local balance
laws for the homogenised stress (see Lemma 7.1). These results, together with those
in Sections 5 and 6, give the local problem. In Section 8 we obtain the homogenised
momentum equation and the formula for the effective viscosity. Unlike problems
with continuity of the traction across phases, the effective property for this problem
contains a term encoding the effects of the work done against the bubble boundary
due to viscous forces. The effective viscosity obtained here is consistent with the bulk
stress formula obtained by Batchelor [2] (see [6]). Variational formulation and
bounds for the effective viscosity are also given in [6].

The work here constitutes the rigorous proof of the two-scale asymptotic expan-
sions given in [6].

2. Formulation

We consider a bounded domain Q in R3, containing an emulsion of two fluids. The
viscosities of the bubbles and of the surrounding fluid are y; and py,, respectively,
with 0 < py < 5.

The local fluid velocity is denoted by v(x). We consider the local strain rate tensor
e(v) = (Vv + VoT)/2 and the local stress tensor ¢ = 2ue(v) — pl, where p is the local
pressure and:

u, in the bubbles,
p= . . . (2.1)
Uy in the continuous fluid phase.
For a prescribed body force f, the equations of motion in each phase are:
dive+ =0 (2.2)
and the incompressibility condition is:
divev=0. (2.3)

On the boundary of Q a no-slip condition is imposed.

Following Taylor [10] and others [3,8], we assume that the fluid velocity is
continuous across the bubble surfaces. For a suspension of n bubbles, we denote the
velocity of the centre of mass of the ith bubble, 1 <i<n, by V. The kinematic
condition on the bubble surface I is given by: :

ven=Vi-n 24)
The associated dynamic condition is given by:

[on] =[on] - nn, (2.5)
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where n is the exterior unit normal to the bubble surface I;. Here the notation [ ]
denotes the jump of the bracketed quantity across the bubble surface.
The balance of forces on each bubble B' is given by:

J‘ fdx+J‘.¢mds=O. (2.6)

Here the surface integral of the normal stress is evaluated on the exterior of the
bubble. The above condition is easily seen from equations (2.2) and (2.5) to be
equivalent to:

J [on] ds=0. 2.7)
r .
The balance of torque on each bubble B' is given by:
j xxfdx+J x+onds=0. (2.8)
B r

In view of (2.2), (2.5) and (2.7) and the fact that the bubbles are spherical, equa-
tion (2.8) is automatically satisfied.

The flow problem is to simultaneously find the flow v, pressure p and the bubble
velocities V¥, i=1,...,n satisfying (2.1)-(2.6). We remark that the problem given
by (2.1)2.6) is a specialisation of the suspension flow problem formulated in [4],
to emulsions.

We observe that the bubble velocities are related to the flow by the following:

S |
Vi=—r | vdx. (29
Gl )
This follows immediately from (2.4) and the identity:
f v;dx = f v - nx; ds, (2.10)
B! r!

which holds for divergence-free flows.

3. Homogenisation result

We suppose that at some instant in time the emulsion is periodic, with the ratio
between the period and the characteristic length of the domain given by e We
consider a unit periodic reference emulsion of bubbles B' with centres specified by
the vectors r, such that r° coincides with the origin. The bubbles of the e-periodic
emulsion are denoted by B and their centres are given by gr'. Thus the coordinates
of a point in the emulsion will be given by:

x=¢gr + ¢y, (3.1)
with y & (—3, 3.
The emulsion is equivalently characterised by an e-periodic viscosity u° given by:

#‘=u<§>, where p(y) = g1 2:1(¥) + 12 x2()s (32)
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where y, and y, are the characteristic functions of the bubble and of the surrounding
fluid in the unit period cell @ =(—3,3)>.
We consider the associated family of emulsion flow problems with solutions
%, p°, V¥ satisfying:
dive®*+ f=0 in Q— u;0B",
ot =2ufe(t’)—p°l inQ,

divef=0 n Q,
[*]=0 on I'* = 3B®,
v¥en=V%n on I'%, (3.3)

[o‘n]=[o°n]-nn  onT¥,

j [6°n] ds=0
ria )
¥ =0 on 9Q.

We observe that the pressure can be adjusted by a constant in each bubble and still

satisfy (3.3).
To obtain the asymptotic behaviour of the flow, we define the following local

problem:

div, 77 =0,
div, o =0,
[1¥]1=0,

. 1 .
1(5..5. S — 25, g, = -— i .
(2(51151111 + 51m5ﬂ 35ualm)yl + Um)nm |BI ( J; Um dJ’> Rps (3.4)

[7¥n] = [t¥n] - nn,
J [+“n] ds, =0,
B

where:
= 203040 jm + OimOj) — 300y + erm(®”)) — P 61

and

I p¥dy=0.
Q

Here v is a Q-periodic vector field, and p¥ is normalised such that its average
P

is zero.
We introduce a security region S inside the unit period containing the bubble B,

and denote by B the set:
B,=S-—B. (3.5)
The region homothetic to B, about the bubble B¥ is denoted by B%.
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We introduce a normalised p:éssure field p° by subtracting off a constant pressure
C'* inside each bubble given by:
1

1
=-——= £ dx - * dx. 3.6
B e 7 p (36)

{B% | B

Cis

Fromi earlier remarks, the normalised pressure also.satisfies the emulsion flow prob-
lem-(3:3). For each &, the constant C* is-a measure of the difference between the
average pressures of the fluid inside and outside the bubble. We show in Lemma 4.5
that the normalised pressure is uniformly bounded in Q). . ...

The asymptotic behaviour of the flow is described by the following homogenis-

ation result:

THEOREM 3.1. As ¢ tends to zero, we have: for any body force fin H “1(Q), the sequence
of flow fields and pressures (v, ) converges weakly in HEQP x IHQ) to (°q)
satisfying the homogenised flow equation given by: ’

dive® 4+ f=0 o ing,
off = 2ufen(t’) — gy inQ,
_ _ (3.7)
dive®=0 in Q,
©=0 on 0T,

where the effective viscosity plh, is defined by:
zﬂgu‘j = J\ (t;fc - %‘Slktlﬁ’p)dy - f ([t;‘{nnm] Y - %[Tipjmnm]ypalk)ds’ (3'8)
o r

oy H H H
with pija = Hja = Pidije

It is shown in [6] that the effective viscosity delivered by homogenisation is
equivalent to the bulk stress formula obtained using formal averaging procedutes of
the type given in [2].

4. Pressure extension and estimates
The emulsion flow problem (3.3) has the equivalent variational formulation: for
fe IXQ), find v* € V* such that:
J 2pfe(v°) e(w) dx = J‘ fwdx, foranywe V5 4.1)
Q Q
where V¢ is the closed subspace of (H3(Q))* given by:

) N 1
Vi= {we(H},(Q))-”ldivw:O inQ wn=W=e-nonT", Wu:ﬁj wdx}.
Bit
4.2)
We remark that the last equation in (4.2)isa compatibility condition for a divergence-

free vector field with normal component constant on I'.
The existence and uniqueness of the solution of the emulsion flow problem follows

from the Lax-Milgram lemma.
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- Tt also follows immediately from (4.1) that the velocity field is bounded uniformly
in &

Il sgeey < C- (4.3)

The pressure gradients delivered by (4.1) are linear functionals on subspaces of

. HY(S). Following the ideas of Tartar [9], we construct an extension for the pressure

gradient as a linear functional on H}(Q). We show as in [5] that the extension is
equivalent to a suitable normalisation of pressures.

LemMA 4.1. There exists a restriction operator:
R e ZL[(Ho(Q); H*] . (4.4)

satisfying:
(1) R*u=u, for any ue H%; (4.5)
(2) if divu=0 then div R®u=0;
(3) EHVR‘u“LZ(m + [[Rou 2y = Ce “V“|[L2(n) + “u"LZ(ﬂ))-
Here: :
H={we (H)Q))?|w:n=W?*-nonI*}.

Proof. Let us introduce for any ue H'(Q), v* € H(B.), ¢* € I*(B,) and v € H'(B),
q € I2(B) solutions of the following nonhomogeneous Stokes problems:

Avt =Au—Vg* in B,
dive* =divu+C* in B,,

vt=u on 't =45, (4.6)
vten=V-n onT,
vtet=u-r onT;

Av=Au—Vg in B,
divv=divu+C in B,

ven=V-n onT, (47)
vV T=U"T onT,
where 7 is any tangent vector to I' and

= |_11%| L (4 + (div w)x) dx, . (48)
ct =t Ju-nds,  (49)

|B+] Jr
C= ——1— f u-nds. (4.10)

(Bl Jr

The existence and uniqueness of the solutions for (4.5) and (4.6) follow from general
results for nonhomogeneous Stokes problems (see [11]).
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We define the restriction operator on (H'(Q))*:

u inQ@-—S5
Rw)=<{v* inB,,
v in B,

and applying R to every ¢Q period we define R".

The first property of the restriction follows from the uniqueness of the solutions
of (4.5) and (4.6) and from the fact that, for any ue HY(Q) with u*n=U-nonT,
we have that V=U.

Since the normal component of Ru is continuous across I', and T, and divu =0,
the second property follows immediately from (4.8) and (4.9).

From standard trace and lift estimates, we obtain:

| RW) e < Cllullare
and the third property is obtained by rescaling. Ul

Substitution of smooth test fields in V* with support in each phase in (4.1) delivers
pressure fields p® in each phase such that:

div (2u,e(®) —p*I)=f in H Y{Q—u;B®), (4.11)
div 2u,e(®) —p*I)=f in H~Y(B"). (4.12)

DEFINITION 4.2. The normalised pressure j* is defined by:
Pt =pt— Z C:ygic, (4.13)

where the constants C* are given by:
1
IBiﬂ B

LemMa 4.3. The normalised pressure gradient V p° is in H™'(Q) and satisfies

Cr= pPdx -+ P dx. (4.14)

|Bl£| Biz
I prdivudx= J Pt div R*(u) dx = J p® div R*(u) dx (4.15)
Q Q o

for any u € HYQ).
Proof. Indeed:

J (5 div u — p* div R°(u)) dx = ) ( J‘ pi(divu—dive*)dx
Q Bi2

+ J (p° + C*)(div u — div v) dx)
Bie

=Z(— J p°C* dx— J (p"‘+C“)Cdx)=0.
i BY Bl

Here the last equality follows from (4.8), (4.9) and (4.14).
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The second equality in (4.15) is a direct consequence of the definition of the
normalised pressure and the restriction operator. U

We denote by & the stress associated with the normalised pressure (see
Definition 4.2) ie.:

& = —p°1 + 2pe(vf).
REMARK 4.4. Since the solution of the emulsion flow problcm is unique up to a
constant pressure in each phase, we see that we may replace ¢ by & in (3.3).
We are now in a position to estimate the normalised pressure.
LeMMA 4.5. The normalised pressure is uniformly bounded in 2(Q):
1Pl 2yin = C. . (4.16)

Proof. We first estimate ¢p* and then use this to prove the uniform bound on the
sequence p°.

Indeed, if follows from the emulsion flow problem (3.3) and its variational formu-
lation (4.1) that

—dive@=f (4.17)
as regular distributions in each phase, thus for u in (HY(Q))® we have
(div &%, R*(w)) = —(f, R*(v))- (4.18)
Integrating by parts using an adequate Stokes formula (cf. [11]) yields:
f p°div R*(u) dx = J 2ute(v®):e(R(w) — J f*R(u). (4.19)
Q Q Q

Combining Lemma 4.3 with (4.19) and the estimate (4.5);, we find that the normalised
pressure gradient satisfies

IVP a1 <& 'C. A (4.20)
Thus from [11] it follows that
flep® | zeyim = C. (4.21)
Multiplying (3.3) by w*¢ where ¢ € 2(Q), and w'(x) = w(x/e) with w & (Hp,(Q))* and
integrating by parts, we obtain the identity:
' J &e(w'p)dx— Y, J [6*n] - w'ods= J fwo dx. (4.22)
Q i Jr Q .

Here the integral over I'* is understood in the sense of traces: 6°n € (H ~#(%))® and
wip e (H¥(I"™))%. Choosing w-n=0 on T, it follows from (3.3) that the second term
in (4.22) vanishes and multiplication of the result by ¢ gives: :

J‘ pe(div, wye dx = —¢ J~ fwredx + J 2ute(v): ((e, W)\ — ew' * Vo) dx
Q e} Q

- J ep*wt - Vo dx, (4.23)
Q
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where (e, w)* = (e, w)(x/e) and (div, w)' = (div, w)(x/e). It now follows from the uniform
I*(Q) bound on &5 and (4.3) that the right-hand side of (4.23) is uniformly bounded.
Therefore: '

<C, (4.24)

J pe(div, wye dx
Q
for all g € D(Q), w e (Haee(Q)*, w-n=0o0nT. This is equivalent to:

J‘ pFsfp dx
o

for all g€ D(Q), s€ L (Q), [zsdy=[,.psdy=0. By a density argument, for &
fixed, we may choose s°¢ to approximate p° and obtain the estimate:

1P lzeirsC. O (4.26)

<C, (4.25)

5. Convergence of the conservation of mass

The sequence v* of flow fields is uniformly bounded in H(Q), therefore it follows
from the two-scale convergence introduced by Nguetseng [7] (see also [17) that
there exists v° € H(Q) and v* € I*(Q, Hp(Q)) such that
*—1° weakly in H'(Q) and (5.1)
o a® o'
— A e RN,
6x,~ ax,- + 8y,-’ (52)

where the convergence indicated in (5.2) is in the two-scale sense, ie. for u* e [*(Q),
W0 e IH(Q, L2.(Q)), u*~~~*u° if and only if:
J u*w'g dx— J w(x, Yw(y)e(x) dy dx (53)
Q QxQ

for any w e L2.(Q), w'(x)=w(x/e) and ¢ € 2(Q). To expedite the presentation, the
symbol “~~” will be used to indicate two-scale convergence.
Applying the two-scale convergence to the conservation of mass law (3.2); gives

div, v° + div, v' =0. (5.4)
Integration in the y variable of (5.4) over the unit cell Q yields from periodicity: '
div, 1°=0, div,v'=0. (5.5)

6. Convergence of the kinematic condition on the bubble interface

In this section we rigorously prove the asymptotic behaviour of the kinematic
condition (3.3)s as ¢ tends to zero. In view of (5.1) and (5.2), the asymptotic behaviour
of the kinematic condition is given by the following theorem:

THEOREM 6.1. The limits v° and v* delivered by the two-scale convergence of the
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emulsion flow fields v* satisfy

o9 1
(6xl- yi + 05 (x, .V)) nj:ﬁ(L v} dy) n; (6.1)

for yonT and x in Q.
The proof of Theorem 6.1 follows immediately from the following two lemmas:

LemMA 6.2. Let {v°} be a bounded sequence in HYQ) and let {V*} be an L[*(Q)
approximation to {v°}, i.e.: .

1 .
vi=3, (I_B;"‘_l Lu v* dx) 2(Q"); - (6.2)

i

then there exists c; € L*(Q) such that:

1 o .
— (Wi = V)~ =y +i(x, y) + clx). (6.3)
£ 0x;
Proof. From (6.2) and Poincare’s inequality we have:
lof — V*ll 2 < Ce (6.4)

and thus, from the two-scale convergence theorem, there exists s LXQ, L2..(Q)) such
that

%(v‘— Vey s, (6.5)

In order to identify s, we introduce w € L*(Q), such that divw e [*(Q), w-n=0 on
80 and write the following identity:

% L (v — VE)(div, wip dx = L (v — V5) divwip dx (6.6)
for any ¢ € 2(Q). The left-hand side converges from (6.5) to:
J . s(x, y) div, we(x) dy dx (6.7)
ax
and integration by parts on the right-hand side yields:
L (* = Vi) divwipdx= — J;: —gi—i wigp dx — L ° — Vo )w'« Vo, '(6.8)

which by (6.4) and two-scale convergence has the limit:

a° ot ,
- J (6 + 5—) wi(V)o(x) dy dx. (6.9)
QxQ Xi Vi
Equating (6.7) and (6.9), we see that:
0 1
o 7 (6.10)
dy; 0x; Oy

and the lemma is proved. U
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LeMMA 6.3. Let {v°} and {V*} satisfy the conditions of the previous lemma and moreover
diver=0, v°-n=V*-non dB% (6.11)

then on 0B:

) . 1 .
Eyﬂrv,-(x,y) "= 1B Bv,- dy | n;. (6.12)

Proof. We let y, denote the characteristic function of the bubble B and consider the
identity given by:

1 ow \* -
" J ;—=V3) (_XB) = z<‘[ (5= Vinjwedx
¢ Jo 0y; i \ Japr

— f div (v° — Ve dx

Bia

e ey P
- J;h W;—Viw ax, dx). (6.13)
Applying the hypotheses to the right-hand side of (6.13), and using the estimate
(6.4), we see that the limit of the right-hand side is zero.
Passing to the limit on the left-hand side using Lemma 6.2, we find:

o0? ) ow
—y;+ o} +¢ (x) dy dx =0. (6.14)
.LXB <5xj Y ay; ?
Thus
o? '
aTyj+vi n;=C+n on 0B. (6.15)
j
Since C is constant in y and the vector:
o?
gc—. y; + vl (6.16)
J

is from (5.4) divergence-free in y, it follows from (2.10) that:

1
=— ! 6:
¢ lBi(L” dy) (617)

and the lemma follows. O

7. Derivation of the cell problem

In this section we obtain the local balance laws of the flow. From the estimates (4.3)
and (4.25) on the velocity field and extended pressure we have 2u°e(v’) and p*
bounded in L*(Q). Thus from two-scale convergence:

P p® 500 = —pOl 4 2u())(ex(v°) + ¢, (")) (7.1)
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LeMMA 7.1. The two-scale limit of the stress satisfies:
div, ¢® =0, ‘ J [6°n] ds=0, [6°n]=([cn] n)n, (7.2)
T

where n is the unit outer normal to T’

Proof. We first observe that for any function ¢ € 2(Q), the step function approxi-
mation

¢° =2, pler)x(@") . (7.3)
converges to ¢ in L*(Q). Thus from tlie Holder inequality we hﬁve that:
f whpt div 6° dx — L wie div & dx—0, ‘ (7.4)
Q
as ¢—0, since w* is bounded in I?(Q) and div &*=f in ([*(Q —T*)).
We now multiply (3.3) by w*¢®. Here we shall take we (Hrl,er(Q))"‘, such that w=0

on 8Q, w-n=W-n on I with W constant and ¢* as defined above. Integrating by
parts, we obtain the identity:

J F:e(w')p’ dx = J et ‘ (1.5)
Q Q
Multiplying (7.5) by ¢ and taking the limit as ¢ goes to zero gives:
f a°(x, y):e,(w)p(x) dy dx = 0. (7.6)
axg
Thus we see that
div, =0 (7.7)

for y in B and Q — B. Equation (7.2), follows by integrating (7.6) over the period
cell. Finally, integrating by parts and choosing w with support on I' and taking
arbitrary tangential variations gives:

[6°n] = ([¢°n] - n)n (7.8)
foryonI. O

Collecting the results of Lemma 7.1, equations (5.5) and (6.12), we find that for
each point x, v* solves the following flow problem in the unit cell:

div, (2u(y)e.(0°) + 2u(y)e,v") = V,p°, - (7.9)
div, v =0, (7.10)
[v']=0, (7.11)

0
(%y,-+v‘) -n=é vi(x, y)dy-n, (7.12)
[6°n] = [¢°n] - nn, (7.13)

J [6°n] =0. (7.14)
B
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We observe that on the surface of the spherical bubble, the normal vector n=y
and only the symmetric part of 8v9/0x; appears in the contraction (809/0x;)y;n;; ie.:

(]

vy
a—- yin; = €;(0°)y:n; (7. 15)

Therefore we see that, for each x, the solution v?, p° of (7.9)(7.14) depends hnearly
on e(1°) and we write:

v = 09(y)e;;(v°) + w(x), ) (7.16)
p° = p(y)e;(°) + q(x), (7.17)
where v", p are solutions of the local problem: )
div, /=0, (7.18)
div, v =0, (7.19)
[v7]=0, (7.20)
1 .
(%(5;'151'"; + 0im 1 —%5:','51";)}’1 +vin, = m (J ij dy) “Nps (7.21)
[t9n] = [*¥n] - nn, (7.22)
f [c¥in] ds, =0, (7.23)
B
where:
i, = 213040 jm + Sim 1) — 36401 + e1m(t7)) — PY6im (7.24)
and
f pidy=0. (7.25)
)

In view of (7.24) we may write ¢° as
O = xij(vo)’fgn — G0 (7.26)

8. Homogenised momentum equation and formula for the effective viscosity

TuEOREM 8.1. The two-scale limit of the stress satisfies the macroscopic momentum
balance law given by:

j (J % dy — J‘ Ladn;Im dsy) eyvdx = f fevdx (8.1)
Q Q r Q

for all v e (HA(Q)).
Proof. Multiplying (3.3) by v € 2(Q), we obtain:

—ZJ [6‘n]-vds+-[ :e(v) dx = J o (8.2)
i re Q Q



1132 Robert Lipton and Bogdan Vernescu

It is evident from (7.1) that the second term has the limit:
j a%:e(v) dx dy. (83)
2xQ

To compute the limit of the first term, we introduce w e I*(Q) such that for a given
constant W, we have w=W on I" and w=0 on 4Q. For a given ve 2(Q), we
introduce the piecewise constant approximation:

ve= ¥ oler)u(@"). (84)
In the sequel we use the fact that v — V* converges to zero L® (.Q} as ¢ tends to zero.
Multiplying the first term in (8.2) by W, writing v = V*+ (v — V*) and application of
(3.3), gives: -

N4 J [(#n)-vds=—), J‘ W&.n.l: (v;— Vi) ds. (8.5)
i ré i Jri
Integrating by parts on each pave 0%, we obtain:

ow* ' o, — V&
Z(J —— Oim(v;— V) dx — w diva - (v—V*)dx— w‘o‘f,,,——(v' ‘)dx).
P 6x,,, o' e 6x,,,

(8.6)

Here the contribution on the cell boundary Q% vanishes as w* = 0 there. Passing to
the limit in (8.6), we see that the second term converges to zero and the third reduces

to:
av; dv;
—_ 5y — dx — — 0 (%, —dx dy. 7
%), gy de LXQ oha( YIW() 3 dy (8.7)
For a given &> 0, we have for each pave Q% the estimate:
max |(v; — V) — d0:(x)(x — rf)| < &2C. (8.8)
x€ Qu
Here the constant C is independent of ¢ and the estimate follows from Taylor’s

formula and from the uniform Lipschitz continuity of ,, v;. Therefore we can approxi-
mate the first term by:

oWt w00 w\_ Oy
—Zi:L —O‘im(xz—rz)axldx—-ii:Lu( )of'"ylax,dx

ie ax,,, axm
dw \* Ov;
=— | @Ely=—] —dx - {89
J.ﬂ ’ (yl aym) axl ( )
and passage to the limit gives:

ow  Ov;

— 62 (x, y) =— y; — dx dy. (8.10)
.Lxg (. 5) OVm laxl Y

In this way we see that (8.5) converges to

ow dy ay
- 0% (x, y) =— y—dxdy— J o (x, Yw(y) —dxdy. (8.11)
qu 9) OYm ’* dx nxQ Y OXpy
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Integration by parts in the first term of (8.11) and applying (7.2) gives:

. _ 0v; 0
im{ -Y W | [&n]-vds|=—-W F [o¥n;Iy ds, ) dx.  (8.12)
=0 i rk Q xl r

Setting W =1 in (8.12), it follows from (8.6) and (8.7) that the limit of (8.5) is:

I (J a?,dy—J. Lodm;yi] ds,,) eyvdx = f frvdx (8.13)
Q o r 0 .

and the theorem follows from density of (2(Q)) in (H3(Q))*. O

It follows immediately from Theorem 8.1 that we can identify the.deviatoric part
of the homogenised stress as:

ol — a5y = j (08 —4028) dy — f Codn Tye—4Le%m Iyiduw) ds (8.14)
(4] r

and from (7.26) we see that this is related to the homogenised strain rate e(v°)
through the effective viscosity tensor u¥ given by:

off — 408 8y = 2010, (8.15)

where
20— ] (el — By dy — f by — A ly,0u) s (8.16)
Q r

From Theorem 8.1 and equation (7.26), the hydrostatic part of the homogenised
stress o is given by the pressure of g(x), i..:

30 Oy = q(x) .- (8.17)

Collecting our results, we observe that Theorem 3.1 follows from Theorem 8.1,
equations (5.5), (8.16) and (8.17).

Acknowledgments

The work of R. Lipton was supported by NSF grant DMS 9205158. The research
was initiated while B. Vernescu was visiting the Institute for Mathematics and
its Applications of the University of Minnesota, whose support is gratefully
acknowledged.

References

1 G. Allaire. Homogenizataion and two-scale convergence. SIAM J. Math. An. 23 (1992), 1482.

2 G. K. Batchelor. The stress system in a suspension of force-free particles. J. Fluid Mech. 41
(1970), 545-570.

31 R. G. Cox. The deformation of 2 drop in a general time-dependent fluid flow. J. Fluid Mech. 37
(1969), 601-623.

4 . B. Keller, L. A. Rubenfeld and J. E. Molyneux. Extremum principles for slow viscous flows with
applications to suspensions. J. Fluid Mech. 30 (1967), 97-125.

5 R. Lipton and M. Avellaneda. Darcy’s law for slow viscous flow past a stationary array of bubbles.
Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 71-79.

6 R. Lipton and B. Vernescu. Bulk properties of two phase emulsions with surface tension effects. Int.
J. Engng. Sci. (submitted).



1134 Robert Lipton and Bogdan Vernescu

7 G. Nguetseng. A general convergence result for a functional related to the theory of homogenization.
SIAM J. Math. Anal. 20 (1989), 608-623.
8 W.R. Schowalter, C. E. Chaffey and H. Brenner. Rheological behavior of a dilute emulsion. J. Colloid
Interface Sci. 26 (1968), 152—160.
9 L. Tartar. Convergence of the homogenization process. In Nonhomogeneous Media and Vibration
Theory, Lecture Notes in Physics, 127 (Berlin: Springer, 1980).
10 G. I Taylor. The viscosity of a fluid containing small drops of another fluid. Proc. Roy. Soc. London
Ser. A 138 (1932), 41-48.
11 R. Temam. Navier-Stokes Equations (Amsterdam: North-Holland, 1984).
12 R. N. Thurston. Waves in solids. In Mechanics of Solids, vol. 4, ed. C. Truesdell (Berlin: Springer, 1984).

(Issued 13 December 1994)



