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New variational principles and bounds are introduced, describing the effective con-
ductivity tensor for anisotropic two-phase heat conducting composites with interfa-
cial surface resistance between phases.

The new upper bound is given in terms of the two-point correlation function,
component volume fractions and moment of inertia tensor for the surface of each
heterogeneity. The new lower bound is given in terms of the interfacial surface area,
component volume fractions and a scale-free matrix of parameters. This matrix cor-
responds to the effective conductivity associated with the same geometry but with
non-conducting inclusions.

The bounds are applied to theoretically predict the occurrence of size effect phe-
nomena. We identify a parameter R., that measures the relative importance of in-
terfacial resistance and contrast between phase resistivities. The scale at which size
effects occur is determined by this parameter. For isotropic conducting spheres in
a less conducting isotropic matrix we show that for monodisperse suspensions of
spheres of radius R, the effective conductivity equals that of the matrix. For poly-
disperse suspensions of spheres it is shown that, when the mean radius lies below
R.., the effective conductivity lies below that of the matrix.

1. Introduction

Composites of technological and physical interest often exhibit imperfect contact
between constituent phases. Here we address the problem of estimating the effective
thermal conductivity for composites with an interfacial resistance. Such resistance in
composite materials may arise from the presence of impurities at phase boundaries.
These impurities are due to oxide films or bonding agents at the phase interface.
At liquid helium temperatures, interfacial resistance arises due to acoustic mismatch
between component phases as seen in experimental work of Garret & Rosenberg
(1974).

Starting with the efforts of Maxwell (1904) and Rayleigh (1892) a great part of
the literature has focused on the idealized case of perfect contact. Here one assumes
the continuity of the temperature and heat flux across the phase interface. On the
other hand, imperfect interfaces are described by discontinuous temperature fields.
The jump in temperature is assumed to be proportional to the heat flux across the
interface.

For composites with perfect contact, the variational description of effective prop-
erties have proved successful in the estimation of effective properties. One of the best
known are the Hashin-Shtrikman variational principles (1962). These principles yield
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the celebrated Hashin-Shtrikman bounds for isotropic heat conducting composites
made from two heat conductors specified by the conductivities o5 and o, in propor-
tions 8; and 6,. The Hashin-Shtrikman bounds are the best possible in that they are
attainable by special microgeometries (Hashin & Shtrikman 1962). For anisotropic
composites the Hashin-Shtrikman variational principle yields bounds in terms of the
two point correlation functions (Willis 1982; Avellaneda & Milton 1989).

In this paper we treat two phase composites with interfacial barrier conductiv-
ity specified by . We assume that the composite is made from isotropic conduc-
tors specified by o, > 0, in the proportions 8;, 8;, respectively. Our tool is a new
set of variational principles describing the effective heat conducting properties of
anisotropic conductors with barrier resistance, see § 2, equations (2.17) and (2.28).

We develop a systematic method that we refer to as the interface comparison
method, to obtain the new variational formulation for the effective conductivity. The
advantage of the new formulation is that the solution of the associated field equations
involves fields that are not coupled at the two-phase boundary. The choice of trials
for these principles is a product space of fields, given by the space of periodic square
integrable fields over the domain and by the space of square integrable functions
defined on the phase boundary. Most importantly the solution operators for these
problems have an explicit form or can be written in terms of solution operators for
the perfect contact problem (§§2 and 3).

We apply these principles to obtain new upper and lower bounds on the effec-
tive conductivity for anisotropic particulate composites with interfacial barrier resis-
tance. These bounds are shown to be optimal for certain parameter values. The lower
bounds depend explicitly upon interfacial surface area, interfacial barrier conductiv-
ity, component conductivities, and volume fraction. In addition the bound includes a
scale-free matrix of parameters. This matrix corresponds to the effective conductiv-
ity of a composite with non-conducting inclusions having the same geometry as the
original composite. In the porous media literature, this matrix is commonly known
as the formation factor tensor (cf. Dullen 1979).

For isotropic particulate mixtures with barrier resistance we can say more. We
introduce the effective conductivity function associated with the same inclusion ge-
ometry but with perfect contact between phases. The poles and zeros of this function
are confined to an interval [L,, Lo] on the negative real axis (Bergman 1978; Golden
& Papanicolaou 1983). Using the results of- Bruno (1991) for the perfect contact case
we are able to write lower bounds on the effective conductivity for composites with
imperfect contact in terms of the data L,, L, see equation (3.17).

For isotropic monodisperse suspensions of spheres we show how to apply the esti-
mates of Torquato & Rubinstein (1991) for the perfect contact case to obtain lower
bounds for imperfectly bonded conductors in terms of the nearest neighbour distri-
bution function, see equation (3.19).

We present an upper bound for anisotropic composites in terms of volume fraction,
the two point correlation function and the moment of inertia tensors of the particle
surfaces, see equation (3.59). For the special case of isotropic particulate composites
we display upper bounds for particles of conductivity o, (or ¢;) in a matrix of oy
(or 7). Our bounds are in terms of volume fraction and a parameter « given by the
sum of polar moments of inertia of the surface of each particle, see (3.61). We show
that for the same choice of trial fields new bounds are tighter than those derived
from simpler variational principles, see (3.70)—(3.72).

We consider the behaviour of the bounds in the surface area s and total polar
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moment of inertia of the interface . To fix ideas we note that for a monodisperse
suspension of spheres of radius r with prescribed volume fraction 6;, the geometric
parameter a is given by a = 36,r and the total interfacial surface area s is s = 36, /r.
For polydisperse suspensions of spheres we have a = 36,(r) where {r} is the average
sphere radius appearing in the suspension (see §4d). We find that in the limits s —
00, a — 0 these bounds are linked to the effective properties of suspensions of non-
conducting inclusions (§4 a). Here the limit & — 0 corresponds to s — oo (cf. (4.1)).
Indeed, as shown in Lipton (1995), we note that the asymptotic behaviour of the
bounds is consistent with the effective conductivity for a large class of composites in
the high surface area limit. Physically this follows from the behaviour of the effective
property under a rescaling of the geometry as shown by Lipton (1995, theorems 3.3
and 3.4). We pursue this topic in §4a.

We consider monodisperse suspensions of spheres of conductivity o in a matrix of
o1 with o3 > 0. For this case we exhibit a critical radius, R., = 8~ (07" ~05 )", for
which the effective conductivity equals that of the matrix (§4b). This result follows
from a more fundamental interaction between interfacial and phase resistances. We
consider a sample of composite containing spheres of critical radius R, subjected to
a prescribed average heat intensity. We calculate the fields external to the spheres to
observe that the temperature gradient is unaffected by the presence of spheres, see
(4.6). In this way we see that the mismatch between component resistivities together
with the interfacial resistivity conspire to make the spheres undetectable when the
composite is subjected to a homogeneous heat intensity.

We show that, for selected values of volume fraction and geometric parameters of
the interface, that isotropic monodisperse suspensions of spheres at critical radius
provide extreme heat conducting properties (see §4c).

For polydisperse suspensions of spheres we use the bounds to give new theoretical
predictions of size effect phenomena. Indeed, it is shown that if the average sphere
radius (r) is less than R,., then the effective conductivity lies below the matrix (see
theorem 4.2 §4d).

In §4 e we investigate the general question of optimal design of isotropic particulate
suspensions of conducting particles in a matrix of lesser conductivity at fixed volume
fraction. In this context we apply the monotonicity of the lower bound to show that
the effective conductivity is greater than the matrix provided the interfacial surface
area is less than the value df, R;! (see theorem 4.3).

Next we consider the problem of the optimal isotropic distribution of conducting
spheres of different radii in a matrix of lesser conductivity. For fixed volume fraction
of spherical particles, the objective is to find the optimal distribution of spheres that
give the best effective heat transport properties in all directions (i.e. maximize the
effective conductivity). We use theorems 4.2 and 4.3 to show that any polydisperse
distribution with mean radius less than R, is suboptimal (see theorem 4.4). Thus we
see that the scale of the heterogeneities has an effect on the optimality of a particular
design. This is in striking contrast to optimal layout problems with perfect heat
transmission between phases where scale plays no role in the optimal design (see
Lurie & Cherkaev 1986; Murat & Tartar 1985).

For isotropic monodisperse suspensions of spheres we can say more. Indeed, col-
lecting our results (see §§4b, 4d and 4e) we note that: (1) for spheres of radius
less than R, the effective property lies below that of the matrix. (2) For spheres
of radius greater than R, the effective property lies strictly above the matrix, see
theorem 4.5. This prediction is rigorous and exact.
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Previous size effect predictions have been limited to monodisperse suspensions
of spheres based upon approximate phenomenological models and low volume frac-
tion expansions. Indeed, using the approach of Rayleigh and Maxwell, Hasselman
& Johnson (1987) develop an effective medium theory. Using this model they are
able to give the estimate o,/8 for the critical radius of a monodisperse suspension
of spheres. Every et al. (1992) also obtained the same estimate for a monodisperse
. suspension of spheres using a differential effective medium theory. It follows from
our result (see (4.5), §4b) that their estimate is asymptotically correct in the limit
o2 > 0,. For monodisperse dilute suspensions Chiew & Glandt (1987) show that
0 < 0, for spherical particles of radius less than R, and ¢° > o, for particle radii
greater than R..

The existence of a critical radius has been experimentally observed by Garret
& Rosenberg (1974) for composites with epoxy-resin matrix and inclusions of glass
spheres, quartz, corundum or diamond. This phenomenon is also seen in the experi-
mental work of Every et al. (1992) where it is observed that the thermal conductivity
of zinc sulphide is increased by adding large particles of highly conducting diamond,
but lowered by the addition of submicron size particles of diamond.

The result given in this paper is, to the best of our knowledge the first theoretical
size effect prediction for polydisperse suspensions of spheres at high concentration.
Physically all size effects are due to the increase in interfacial surface to volume
ratio as the sizes of the inclusions decrease. The scale at which these effects occur is
determined by the parameter R... This parameter measures the relative importance
of interfacial resistance and contrast between phase resistances.

Lastly we note that the scope of this paper is not limited to the context of heat
conductivity. Indeed, this problem is mathematically analogous to the problems of
estimating effective diffusivity for multiphase composites separated by permeable
membranes (Latour et al. 1994) as well as electrostatic problems in composites with
interface resistance. We further remark that the techniques introduced here can read-
ily be applied to the context of two-phase elastic mixtures with interfacial slip (see
Lipton & Vernescu 1995).

2. Variational principles for effective conductivity

(a) Mathematical and physical background and basic variational principles

For periodic heat conducting composites we may decompose the temperature field
T into two parts, a periodic fluctuation ¢ and a linear part §-z such that T = o+€ .
Following Benveniste (1986) the average intensity (VT) seen by an ‘outside observer’
is

(VT) =/6Q(q~5+£-m)nds=£. (2.1)

Here Q is the unit cell occupied by the composite, Q is the boundary of the cell
and n is the outward directed normal.

The cell Q is composed of two isotropic conducting materials occupying regions Y;
and Y; separated by an interface denoted by I'. The temperature inside the composite

satisfies:
V-{0:(Vé+£€)}=0 in V;, i=12, (2.2)

[o(z)(Vé+€)]-n=0 on T, (2.3)
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02(Vé+€)-n=—B[¢)? on T. (2.4)

Here n denotes the normal to ' and points into the interior of phase-1 and (2.3) is
the continuity of the normal flux across I'. Equation (2.4) represents the effect of
thermal surface resistance. The quantity o5(Vé + €) - n in (2.4) is evaluated on the
phase-2 side of I". The solution of problem (2.2)—(2.4) is unique up to a constant;
this is an application of the Lax-Milgram lemma.

The positive parameter 8! represents the thermal barrier resistance. The 8 = co
limit corresponds to the case of perfect contact and condition (2.4) is replaced with
[¢] = 0. The B = 0 limit corresponds to a perfectly insulating surface and is usually
referred to as the ‘adiabatic’ boundary condition.

The effective conductivity tensor for the composite is defined by

0% = /Q o(2)(Vé + ) dz. (2.5)

The effective conductivity admits two variational formulations analogous to the
Dirichlet and Thompson variational principles for the case of perfect contact. The
first is

0% € = ggg{ /Q o@)V8+ a5 [ (o) as ), (2.6)

where the space V' consists of all square integrable, Q-periodic functions ¢ such that
V¢ is square integrable in each phase. We note that the space V allows for fields ¢
that are discontinuous across I'.

The second variational principle is

(ae)'li'-v'-=1r_réi‘2{/Qa_l(x)|(T+'T')]2dz+%/F((T+7")-n)2ds}, (2.7)

where the space W is the infinite-dimensional space of all Q-periodic square inte-
grable fields 7(z) characterized by

Q

and T is any constant vector. For similar variational principles for effective tensors of
heterogeneous elastic materials with imperfect interface, see Lene & Leguillon (1982)
and Hashin (1992).

(b) Interface comparison method variational principles

We present two new variational principles describing the effective conductivity
tensor.

Before stating the first variational principle we introduce a comparison material
with conductivity v < o, and formulate two auxiliary conductivity problems. For a
square integrable Q-periodic field p, the potential ¢? is a solution of

YAPP =-V-p in Y, 1=1,2, (2.9)
[Pp+vVeP]-n=0 on T, (2.10)
(P+9VeP)-n=0 on T. (2.11)
For a square integrable function v defined on I' the potential ¢ is a solution of
A¢*=0 in Y 1=1,2, (2.12)
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(hV¢’] - n=0, on T, (2.13)

YWV¢’-n=-v on I. (2.14)

We observe that the boundary value problems given by (2.9)~(2.11) and (2.12)-(2.14)
can be separately solved in each phase region.
Introducing the linear operators M and R given by

Mp=V¢® in YUY, (2.15)
Rv=V¢’ in YUY, (2.16)
one has the new variational principle given by
@) (ot-2r+Z [nen)e €= max pLErv) -Qpo) @17
B Jr (pv)eP
where the space P defines a couple (p, v) of admissible bulk and surface polarizations

(p,v) where p is square integrable and Q-periodic and v is square integrable on I'.
The linear form L(&, p,v) is defined by

L) =] [ nds+ [ p-g)de (218)
r Q
The quadratic form Q(p,v) is given by
1
Q(p.v) = / (=7 YplPdz + = / v’ ds + 'y/ [Mp + Ru|*dz. (2.19)
= Q B Jr Q
For the second new variational principle we introduce a comparison material with

conductivity v > ¢, and formulate two auxiliary conductivity problems. For a square
integrable @-periodic field p the potential ¥? is a solution of

AYP=V-p in YUY, (2.20)
[V¢P—p]-n=0 on T, (2.21)
[¥*°]=0 on T. (2.22)

For a square integrable function v defined on I', the potential ¥’ is a solution of
Ay’ =0 in YUY, (2.23)
[6.9°] =0 on T, (2.24)
W]=-v on I. (2.25)

Introducing the linear operators N and S defined by
Np=VyP in Q, (2.26)
Sv=Vy’ in YUY, (2.27)
one has
(P2): (@) =777 = mex (2L(Fp0) - Qp)).  (228)
»v

Here the linear form L(#,p,v) is defined by
L(7,p,v) = / p-1"+/(1"-n)vds (2.29)
Q r
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and the quadratic form Q is given by

Q(p,v) / (e =7 )7 plPdz + B / [vf? ds

+~7’/
Q

Here we remark that the operator N can be identified with the projection of square
integrable periodic fields onto Q-periodic curl-free fields.

The right-hand sides of (2.17) and (2.28) can be written alternatively as min
max principles for appropriately chosen Lagrangians. Doing so yields the following
characterizations of the effective conductivity tensor:

2

(Np+Sv—p)—/q(Np+Sv—p)dy dz. (2.30)

(p,V)EP ¢V

= 2.
min (ggpﬁ(p,v ,#), (2.31)

2
(0""—'71+1ﬁ-/rn®nds> -£ = max min L(p,v, ¢)

((O_e)-—l 1I)‘I' T= (ﬂ%’l’%l‘% C(p’v T)

= L(p, 2.32
f“é’é‘/(,f,’,?é‘p (p,v,T), (2.32)

where the convex-concave Lagrangians £ and £ are given by

Q(P1va¢)52/19 §d$+—/v£ nds—/(a ’y) 1Ip|2dx———ﬁ-/v ds
+2 -Vodz +2 d V| dz, 2.33
/Qp pdz + /Pv[¢]S+7/Q| o dz (2.33)

[Z(p,v,'r)=2/p de+2/'u(‘7' n)ds

- [ =t tpar g [ o7as
+2/;p-'rdx+2‘/r('r-n)vds-l-'y"l/;lrlzdx. (2.34)

We recall that the limit § — oo corresponds physically to the perfect contact case
in which there is no surface resistance. For this case the new variational principles
(2.17) and (2.28) reduce to the well-known Hashin-Shtrikman variational principles
(Hashin & Shtrikman 1962) for conductors with perfect contact.

To show that (2.17) reduces to the lower Hashin—-Shtrikman principle as 8 — oo
we appeal to the equivalent saddle formulation (2.31). Passing to the limit 8 = oo
in (2.31) yields

(6° = y1)€ - € = min maX{ /Qp-Edz—/Q(o—“r)"llpIde

¢€EV (p,v)EP
+2/p-V¢>d:z:+2/v[¢]ds+7/ |V¢|2dx}. (2.35)
Q r Q

We observe from (2.35) that the minimum is obtained for [¢] = 0. Switching the order
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of max and min leaves the right-hand side of (2.35) unchanged and one obtains

e _ . _ _ —-11,.12
(0" -0 € =max{2 [ p-&dz— [ (o -1 plde

+:ﬁig{Z/;p-V¢dm+WL(V¢)2dx}} (2.36)

(#]=0

for v < o, which is the lower Hashin-Shtrikman variational principle for two-phase
conductors with perfect contact. Passing to the 8 = oo limit in (2.32) forces v =0
and we obtain

R L R A

2 dm} (2.37)

+v-‘/Q|(Np—p)—/Q(Np—p>dy

for ¥ > o, which is the upper Hashin—-Shtrikman variational principle for the case
of perfect contact. We note that the above statements can be made rigorous by
appealing to the theory of epi/hypo-convergence introduced by Attouch & Wets
(1983).

(¢) Derivation of the variational principles
(i) Lower variational principle by the interface comparison method

In this section we derive the lower variational principle (P1) for the choice of
isotropic comparison material with conductivity v < g1. The sequence of steps out-
lined below comprise the interface comparison method. We begin with the variational
principle (2.6). Noting that the solution ¢ of (2.2)—(2.4) is the minimizer of (2.6) we
write

o€ = /Q o(2)|Vé+EP dz + /F (1))? ds. (2.38)

Adding and subtracting the reference energy 7|V<Z + £J? to the right-hand side of
(2.38) and rearrangement gives

(0 7)€ = /Q (o(z) — )V + £ dz +v /Q (Vo[ dz

+27 /Q Vé-tdzr+ 8 /r ([#])% ds. (2.39)
Integrating by parts, one obtains
2 /Q Vé-tdz =2y /F [¢)n - €ds. (2.40)
Applying (2.40) and completing the square in the last two terms of (2.39) gives

(ae—qu%/Fn@mds)eg=/Q(a(x)—7)|v$+g|2dx+7/Q|vJ>|2dx

W /r ([$]+%e~n)2ds. (2.41)
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Introducing the bulk and surface polarizations p and v one has the elementary
estimates,

ﬁ/r([d-)]+%5-n)2ds>/;2v ([d;]+%€n) ds—%/rvzds, (2.42)

/Q(v(x) ~7)IVé + £ dz > 2/ p-(Vé+§)dz— /Q(o(rv) — )7 pl* dz, (2.43)
Q
for any square integrable and Q-periodic field p and any function v square integrable

on I. We denote the set of all pairs (p, v) by P. Applying estimates (2.42) and (2.43)
to (2.41) we obtain

2 -~
(o"—vl+ %/n@nds)e-e > L(p,v, ), (2.44)
r
where L is defined by (2.33). Next we observe
2 - *
(o -+ L [nonds)e-¢> Lp0d) > ol Lipoe) = Lo (249
r

-
where ¢ is the minimizer of:

inf {2/ Vé¢-pdz + 2/v[¢] + 'y/ V| da:} (2.46)
sev | Jo r 0
and satisfies
A $=V-p in YUY, (2.47)
[V t;b +p}]-n=0 on T, (2.48)
v ;5 +p) - n=-v on I. (2.49)

Observing that ¢ is linear in the data (p,v) we write ¢= ¢® + ¢¥ where ¢P and ¢
solve problems (2.9)-(2.11) and (2.12)—(2.14) respectively. Recalling the definitions
of the operators M and R given by (2.15) and (2.16), inequality (2.45) can be written
as the variational inequality:

,.Y2
(=214 [nonds)e-e>2%6r-Qpw. @

One observes for the choice of bulk and surface polarizations, consistent with the
actual potential inside the composite, i.e.

p=(o-NV+8 md v=p(IA+ ¢ n) (251)

that (2.50) holds with equality. Thus we have established (P1). Additionally it follows
from (2.45) and the previous observation that

(ae —-~I+ %/n@nds)ﬁ .¢£€ = max minL(p,v,9) (2.52)
r

(p,v)EP GV

and equation (2.31) follows.
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(ii) Upper variational principle by the interface comparison method

Here we establish (P2) for the choice of isotropic comparison material with conduc-
tivity v > g,. We consider the variational principle (2.7) and denote the minimizer
by ¥. The effective energy is written:

(6°)'F -7 = /‘;a'l(x)ﬁ' + 7*dz + %/F((‘l" +7)-n)?ds. (2.53)

Adding and subtracting the reference energy v~ !|7 + ¥|? to the right-hand side of
(2.53) yields

() =y )7 -7 = /Q (0™} z) — v )|F + F2dz

1
+/ v HFPd + 5 /((% +7)-n)ds.  (2.54)
Q B Jr
One has the elementary estimates,

/ (oY (@)= Y)|F+72dz > 2 / p-(F4+7) dz— / (0~ (z)=7"1) " |pl? dz, (2.55)
Q Q Q

1 o \ . _ \
E/F((T-*-T)'n) dsZZL(T+T) nvds /rﬁv ds, (2.56)

for any square integrable Q-periodic field p and any square integrable function v on
T.
Application of the estimates to (2.54) yields

((o'e)_1 - 7_1)—? -T2 E(P’ v, ‘;-)1 (257)
where £ is defined by (2.34). Now we observe that

()" =77 -7 2 Lp,v, 7) > inf L(p,v,T)=L(p, v, 7), (2.58)

where T is the mjnimizér of
Sg&{2ép-rdx+2ﬁr-nvds+'y‘l/;|T|2dx}. (2.59)

Calculation shows that T is given by
=1 {v % -p— /Q(v % —p) dx} , (2.60)
where 12) is the solution of

Ay=V.p in YUY, (2.61)
\% z?; -p]-n=0 on T, (2.62)
[1,71] =-v on I. (2.63)

Noting that 1} is linear in the data (p,v) we write 12v= P + ¥ where ¥P and 9’
solve problems (2.20)—(2.22) and (2.23)—(2.25) respectively. Recalling the definition
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for the operators N and S given by (2.26) and (2.27), inequality (2.58) can be written
as the variational inequality,

((ae)—l - '7_1)‘7- ‘T2 21—4(‘7—,?1 'U) - Q(pa U)' (2‘64)
For the choice of bulk and surface polarizations, consistent with the actual heat flux
# + 7 inside the composite, i.e.

p=(0"@) —TIE+ T, v=5FET)n (2.65)

one observes that (2.64) holds with equality. In this way we arrive at (P2). Addi-
tionally it follows from (2.58) and the previous observation that

1oy )F 7= in £ 2.6
((c°) YT T o min (p,v,7), (2.66)

and equation (2.32) follows.

3. Bounds

Bounds that use reduced microstructural information are easily obtained from
the basic variational principles given by equations (2.6) and (2.7). Indeed choosing
constant trial fields in (2.6) and (2.7) yields

6 6, s\
—+ =+ — I<o®*<(0 7 I. 3.1
(0’1+0'2+dﬂ o \(10'1+ 20’2) ( )

Non-constant trial fields that encode microstructural information naturally lead
to more refined bounds. For the case of a suspension of particles of conductivity o3
in a matrix of conductivity oy, we choose trial fields of the form:

{ 0 in the matrix,

. (3.2)
y™ -7 in the mth sphere,

¢ =
here y™ equals  — r™, with ™ being the centre of the mth sphere. Restriction of
trial fields in (2.6) to the class given above and subsequent optimization over 7 gives

the upper bound,
1
€< 1 —— . 3.
[+ [9101+9202( 1+ﬁa/d0202)]I ( 3)

Here o is a geometric parameter of the interface defined by (3.60). For & monodisperse
suspension of radius ‘a’ the parameter reduces to af,d. Phase interchange yields the
upper bound for suspension of particles of conductivity o, in a matrix of o5. We
remark that trial fields of the type given by (3.2) were previously introduced in the
context of two-phase elastic composites with interfacial slip by Hashin (1992).

Here we will present bounds that improve on (3.1) and (3.3). For certain parameter
values we show that our bounds are optimal (see §4c).

(a) New lower bounds on the effective conductivity

We apply variational principles developed in §2 to obtain lower bounds on the ef-
fective conductivity tensor. Here we obtain lower bounds on the effective conductivity
for particulate composites in terms of volume fraction, surface area, and a scale-free
matrix of parameters. This tensor is the effective conductivity of a composite with
the same microgeometry but with non-conducting inclusions.
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(i) Particles of high conductivity in a low conductivity matriz

We consider particles of phase 2 embedded in a matrix of phase 1 with o3 > ¢,.
We suppose that none of the inclusions intersect the period cell boundary.

To obtain new lower bounds we make the specific choice of surface and bulk
Polarization fields, in the variational principle (P1) (equation (2.17)) given by

D = X244, v=r-n, (3.4)

where 1, and = are vectors in R? and n is the normal pointing into phase 1. The
associated bound is given by

2
(ae -1+ %/n@n)s-ﬁ > max{2L(§, xatt, 7 - n) ~ QU2p, 7 )}, (3.5)
F F
rerd
We now set the comparison conductivity v to o, and present the explicit form of L
and Q:

L:%/n@ndsf-r+02£-u, (3.6)
r
Q =63(02 — 01) Yl + %/n@nds r-r
- r
+07 (62l ul® + 20001 - 7 + (I — mg)r - 7). (3.7)

Here the symmetric d x d tensor my is the effective conductivity tensor of a com-
posite with non-conducting particles having the same microgeometry as the original
composite. The region Y; is assumed to be composed of an isotropic conductor with
unit conductivity and Y; is filled with a perfect insulator. For any constant electric
field £ the possibly anisotropic effective conductivity is defined by

- -_— 1 2
mo€ - £ ¢enf11£,, s (Vo + &*dz. (3.8)

We observe that equation (3.6) for L and the first two terms in (3.7) follow di-
rectly upon substitution of the polarizations into (P1). The last three terms in (3.7)
follow from solution of the comparison problems (2.9)-(2.11) and (2.12)-(2.14) and
evaluation of the non-local term in (2.19). Indeed, we have the following lemma.

Lemma 3.1. For the choice p = X2t and v = r - n, the non-local term
/ |Mp + Rul? dz
Q
in (2.19) is given by
0'1-2(02,[11,2 + 292[1 -r 4 (I bl mg)‘l' . ‘I').

Proof. For the choice p = y,pu, solution of (2.9)~(2.11), yields Mxop = —o7 L xops,
and therefore:

/Q \Mpl? dz = 8y07|uf?.

Solution of (2.12)(2.14) provides us with the relation R(r-n) = —~o;'r in region-2
and so

2/ Mp - Rudz = 20,07 %r - .
Q
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Last in region-1 we have that R(r - n) is given by

d
V¢ =) rVe, -
=1
where ¢* is a solution of
A =0 in Y, (3.9)
(V¢ +07'e')-n=0 on T (3.10)

and ¢ periodic on Q. In this way we see that ¢' is the periodic fluctuation in the
potential for a composite made from pure insulator in region-2 and an isotropic con-
ductor in region-1. Here the composite is subject to a constant gradient o7 'e’. The
vector e’ denotes the unit vector in the ith coordinate direction. Indeed, integration
by parts and application of (3.9) and (3.10) yields

/ |V¢'lzdz+af‘/ V¢ -rdz =0.
Y1 Yl
Completing squares gives

o lmer-r= | |V¢" +oi'r]Pdz= o720|r|> ~ | Ve dz. (3.11)
Y1 Yl

We observe for the choice v = 7 - nn, the term fQ |Rv|? dz is given by
|Rv|* dz +/ [Ru|?dz = 07 2|r|® + / [VoT|? dz.
Yz Y Y1

Finally application of (3.11) gives

/(:2 |Rv|2dz = o7 3|r|* — oy mer - T

Now we set
1
~ [ n®nds=B
ﬂ/r

and maximize (3.5) over u and  in R? to obtain the lower bound on the effective
conductivity given by
(6 — oI +0iB)¢-¢ _
-1
S 02(02/01) (o2 — 1)~ N | 6,£ ' 0,¢
- N | B +o7HI —myg) o, B¢ o1 B¢
(3.12)

This bound holds for all choices of constant temperature gradients £ in R<. For
isotropic mixtures the tensor B reduces to

s
B_;iEI’ d=2,3,
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and inequality (3.12) becomes the lower bound on the effective conductivity for
isotropic particulate composites given by

ot 2 oy — 0'1((1 - mo)—l + (0‘1026)_1)—1, (313)

where ¢ represents the characteristic combination
S 09 — 0y
C= - —
d02ﬁ 0102 ’

and mg is the scalar effective conductivity of a composite with the same geometry
but with non-conducting inclusions in a matrix of unit conductivity.

We denote the lower bound on the right-hand side of (8.13) by ICLa(my, B).
Elementary Wiener bounds on mg show that this parameter is restricted to the
interval [0,6,]. Analysis shows that for m, fixed, 0 < mg < 6, and B > 0, one has
ICLy2(me, ) monotone increasing in 8 and

0° 2 ICLy3(my, B) > ICLy5(my,0) = oymy.

Here for § = 0 the bound reduces to &;mg. From Bergman (1978) it is known that
the effective conductivity is a homogeneous function of the component conductivities
and so the quantity oymy is precisely the effective conductivity for a matrix of con-
ductivity o; with insulating inclusions. On the other hand the bound I CLy3(me, B)
is found to be monotone increasing in mg for 8 > 0, and

(3.14)

-1
0 > ICLyy(mo, B) > ICL1(0, 6) = (g—i vy a%) .
Here ICL;5(0,8) is the analogue of the Wiener lower bound for the case of per-
fect conductivity. The bound I CL;2(0, B) may be obtained directly from variational
principle (2.7).

The new bound (3.13) provides the means to estimate the effective properties for
composites with imperfect interface in terms of the effective conductivity function
associated with perfectly bonded composites having no interfacial barrier resistance.

It is shown in the work of Bruno (1991) that effective transport properties for
composites with non-conducting inclusions can be characterized in terms of the sin-
gularities and zeros of the effective conductivity function for perfectly bonded con-
ductors. These zeros and singularities are known to be confined to an interval on the
negative real axis (see Bergman 1978). For composites with singularities and zeros
lying inside an interval (L1, L;] on the negative real axis we set

1
sm—-l_L1 and Sm_l"L2‘

From the work of Bruno (1991) it follows that the conductivity mg is bounded below
by

mg 2 K(Sm, Sm,OQ), (315)
where
_1-8, (1 - 846
Ko S o) = 7 (1 T T G/B) (= 5.)/8) + Gl @ /= o) () "
3.16

and § = Sy, — s,,. Here equation (3.16) is Bruno’s lower bound for insulating inclu-
sions in a matrix of unit conductivity. Collecting our results we display a lower bound
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on the effective conductivity of an imperfectly bonded composite that is a function
of volume fraction, interfacial surface area, and the spectral parameters s,,, Sr,. The
bound is given by

0° 201 —01((1 = K(8my Sm,02))" 1 + (o162¢)~ 1)L, (3.17)

Thus we are able to bound the effective transport properties for composites with
imperfect interfaces in terms of the zeros and singularities of the effective conductivity
function for composites with perfect contact between phases!

If the composite is made up of spherical inclusions then one can estimate Sm and
S using the procedure of Bruno.

One also can appeal to the work of Torquato & Rubinstein (1991) to bound my
below for suspensions of spheres of diameter ‘g’. Their lower bound is given by
mg > J(02, H(z)) where _

>3 28

Equation (3.18) is the lower bound of Torquato & Rubinstein and H is the nearest
neighbour distribution function for spherical inclusions of diameter g. The quantity
H(r)dr is the probability that given a sphere of diameter g at the origin, the centre
of the nearest neighbour lies at a distance between r and r + dr. In (3.18), z =
/g represents dimensionless distance. Thus we are able to display an alternative
lower bound on the effective conductivity for an imperfectly bonded composite that
is determined by volume fraction, interfacial surface area, and nearest neighbour
distribution function:

0° > 01— o1 ((1 = J(63, H))™ + (0162¢)"1)" 1. (3.19)

We now consider the behaviour of the bounds in the extreme cases f = oo and
B = 0. For 8 = oo the lower bound becomes

0¢ 2 01— 01((1 — K(8m,Sm, 02) 7! — 0265 (03 — 07) 1)L (3.20)

From the work of Bruno one has that the parameters s,, and S,, satisfy s, < 6,/d
and S, > 6,/d + 6. For the choice, s,, = 6,/d and S,, = 6, /d + 6, the lower
bound (3.20) reduces to the Hashin—Shtrikman lower bound for perfectly conducting
isotropic composites in d = 2, 3.

(ii) Particles of low conductivity in a high conductivity matriz
For the case of inclusions of conductivity o, embedded in a matrix of conductivity
(02 > 01), we proceed as in the last section to obtain the lower bound for isotropic
suspensions given by
0® 2 ICLy(my, B), (3.21)

where

ICLy (mg, B) = oy
5 026> _p2.-1l _ 35 026, 6251
mc[dﬂ(1+02—al> 030; } 1+ 201
_ i _ 0'292 ] i 0'292 0‘202
ag 0’1(02—01) df oy — oy 01(02—01)

+0'1
2 -1
— 630,

mg [(92 — 91)0’1_1
(3.22)
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For this geometry elementary Wiener bounds on mg give 0 < mg < 6. Analysis
shows that for 0 < mg < 6, and 8 > 0, one has I C Ly, (mo, ) monotone increasing
in # and

o® 2 ICLgl(mo,ﬂ) 2 ICLQl(TTLo, 0) = 0'1/ (m&l bt (0’2 e 0'1)/(020'2)) 2 g1 My.
(3.23)

On the other hand ICL,;(my, 8) is found to be monotone increasing in mg for

8 >0 and :
0> ICLy (mo, ) > ICLyu(0,8) = [ = + 1. + & B (3.24)
= 21 0> = 21\, - dﬂ o o2 . -

In view of the monotonicity of IC Ly, (my, ) in mq we are able to use bounds on
myg for composites with insulating inclusions to obtain bounds on o®. Proceeding as
before one obtains lower bounds in terms of [L;, L] or nearest neighbour distribution
function.

(b) New upper bounds on the effective conductivity

Here we apply the upper variational principle (P2) to obtain an upper bound on the
effective conductivity. This bound incorporates partial geometric information on the
composite geometry. In addition to volume fraction, the bound contains statistical
information in terms of two point correlations and the moment of inertia tensors of
the particle surfaces.

(i) Particles of high conductivity in a low conductivity matriz

We consider particulate inclusions of conductivity o, in a matrix of 0. We denote
the region occupied by the mth particle by Y;, and its boundary by 8Y;,. To obtain
the upper bound we make a suitable choice of bulk and surface polarization fields in
the variational principle (P2). We choose polarizations of the form

pz)=xip and v(xz)=r-y™ on 8Y,,. (3.25)

Here g and 7 can be any vectors in RY, d = 2,3 and y™ = & — r™ where x lies
on the surface of the mth particle and 7™ is a reference point inside the particle.
Uporn substitution into the upper variational principle (P2) and choosing v = 09, we
obtain the upper bound:

((6°)" = 05')7 - 7 > max max{2L(p,7) - Q(p,7)}, (3.26)
pER? reR4
where N
I:(,u,r)=01u-1"'+2/ n®ym"dsr-T (3.27)
m=1 oY,
N
Qur) =0l +8Y. [ ymoymds ror
m=1"0Ym
+02(616:1 — T~ 7) - (u - 7). (3.28)
Here
A=(o;' =07 and T =/ x1Nx, dz, (3.29)
Q

where N is the projection onto periodic mean-zero curl-free fields introduced in
(2.26). We observe that the equation (3.27) for L and the first two terms in (3.28)
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follow directly upon substitution of the polarizations into (P2). The last term appear-
ing in (3.28) follows from substitution in the last term in (2.30). This substitution
is nontrivial and requires proof. To facilitate the proof we require explicit formulas
for the integral operators N and S defined in §2b. We provide such formulas in the
following theorem. :

Theorem 3.2. The operator N is the projection of any square integrable, periodic
bulk polarization p onto the space of mean zero gradients of periodic temperature
fields and is defined locally in Fourier space by

ke b ®F
Np=) ek "’lle—p(k). (3.30)
k#£0

The operator S transforms square integrable fields v on T into gradients defined on
the region Yy UY, and is represented locally in Fourier space by

; k®k i
— 2nik-x —2nik-
Sv = g e ( 7B —I)/re ”vndsy—/rvndsy. (3.31)

k520

Proof. The explicit formulas and properties for the operator N follows immediately
from solution of the comparison problem (2.20)-(2.22) using Fourier expansions. This
operator is well-known and forms the basis of the anisotropic Hashin-Shtrikman
bounds for composites with perfect interfaces given by Milton & Kohn (1988).

To obtain the representation of the S operator given by (3.31) we extend the
function v defined on I into region-1. Where region-1 has a common boundary with
the period cell we require the extension to be periodic there. It may be assumed
that the extension of v has a square integrable gradient in region-1. Denoting the
extension of v also by v we introduce the auxiliary problem: for a periodic potential
w given by

Aw =V -(x;Vv) in YUY, (3.32)
[Vw—-x;Vv]-n=0 on T, (3.33)
fw]=0 on T. (3.34)

It is evident from (3.32)~(3.34), that (Vw— x, Vv) is orthogonal to the subspace of
all Q-periodic polarizations that can be written as gradients of periodic temperature

fields, i.e.
/ (Vw - x1Vv) - Védz = 0. : (3.35)
Q

Here § is a Q-periodic vector field. Since NV is the projection onto the subspace of
fields that can be written as gradients of potentials we have

N(Vw — x,Vv) = 0. (3.36)
In addition from (3.32)—(3.34) it follows that N(Vw) = Vw; thus we obtain
Vw = N(x1Vv). (3.37)
From (3.32)-(3.34) we observe that the function defined by
¢=w—-v, in Y, (3.38)
¢=w, in Y, (3.39)
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is a solution of the comparison problem (2.23)-(2.25). Since the solution ¢* of the
comparison problem is unique up to a constant we may take ¢* to be represented by
(3.38) and (3.39). It now follows from (3.37)~(3.39) that

Sv=V¢*=Vw-x,Vv in YUY, (3.40)

Denoting the identity operator by I we have from (3.37)
Sv=(N-I)x;Vv in YUY, (3.41)

In view of (3.30) equation (3.41) can be written as

Sv= Z gZrik= k®k _ I xﬁv(k) - xﬁv(ﬂ). (3.42)

k]2
k40

From the divergence theorem we may write

xﬁv(k) = /e‘z"ik"’vn dsy + (27ri)k/ e 2"kvy vdy. (3.43)

r Q

Lastly noting that ((k ® k)/|k[* — I'k = 0 we obtain the desired representation
(3.31). |

The formula for the last term in (3.28) follows from the next theorem.

Theorem 3.3. For the choice p = 1 and v = o(x) where & = - y™ on 8Y,,,
the non-local term

/|(Np+Sv—p)—/(Np+$’v—p)d:r:]2d:r (3.44)
Q Q

in (2.30) is given by
(61621 ~T)(pp—7r)- (n—1). (3.45)

Proof. Substitution of p = x4 and v = ¥ into (3.44) gives the expression

/XrNXx dwu-u+/ |52 dx + 6 |p/?
Q Q

—2[/ xleldw-u+/x:Sﬁdx-u}
Q Q
2
- [l/ Svdz| + 63 |ul —291/ Sf)dm-p.]. (3.46)
Q Q

For the choice v = # we appeal to theorem 3.1 to find formulas for the terms
2

/{Sﬁlz, /(S'D)-xlp,d:c and '/ So| .
Q Q Q

Indeed theorem 3.1 equation (3.31) yields

g (o o)

k0
- ZLY"‘ (r-y™)nds. (3.47)
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We integrate by parts to find

‘/‘;y e kY (p.y™)nds = (/ e 2miky dy) r——21rik/ e~ 2mikvp. g™ dy. (3.48)

m

Noting that

Z/ e—21rik-y dy — Xz(k) = —Xl (k)’ k # 0’ (3.49)
m m 021 k= 0,
and (k ® k/|kf?> — I)k = 0 it follows from (3.47), (3.48) and (3.49) that
- i k®k
- 2rik-x o
St =— ;e Xl(k) (W - I) ™ 921‘. (3.50)

Appealing to the explicit formula for the operator N given in theorem 3.1 it is evident
from (3.50) that

St = (T — N)xar — o, (3.51)
where T is the projection onto periodic square integrable mean-zero vector fields.
Observing that

[ xiTards= [ xita = ords = 6itar, (352)
Q Q
it follows from (3.29) and (3.51) that
/ |Si2dz = (6101 — T)r - 7 + 6317/, (3.53)
Q
/ (S9) - xipdz = Tt - 1, (3.54)
Q .

2
= o7 (3.55)

/ Svdzx
Q

Formula (3.45) follows immediately upon substitution of (3.29) and (3.53) through
(3.55) into (3.46). n

The tensor T defined by (3.29) is well-known and appears in bounds on the effective
conductivity for the perfect contact case (see Kohn & Milton 1988). This tensor T°
contains two-point correlation information on the composite microstructure. Indeed
T can be written as '

Tie = Z kike / eZmikte, (t) dt, (3.56)
Q

where cpy(t) is the two-point correlation,

ew(t) = /Q 1@ + ) (@) da. e

This function gives the probability that the ends of a rod of length and orientation
described by the vector ¢ lies in both phases. This representation for T is easy to
establish. Indeed from (3.29) and the formula for the operator N given by (3.30) we
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can write

kike, .
T =3 bl (3.58)
E#£0
Noting that [x;(k)|? = x1 * X1 (k) we see that |%,; (k)|? is simply the Fourier transform
of cys(t) defined by (3.57). The relation between geometric tensors of the type given
above and two-point correlations was observed in Willis (1982) and in the works of
Avellaneda & Milton (1989).
We are now in a position to display new upper bounds on the effective conduc-
tivity for anisotropic composites in terms of second order geometric parameters. We
introduce the tensors

R=¥/a

and carry out the optimization implied by (3.26) to obtain the upper bound. For any
constant current field ¥ one has

-1
(¢ —o5)7-7 > ( M+ A4 A ) ( b7 ) : (G‘T) , (3.59)
-A fBM+ A R7 R7
with A = 0'2(0192[ - T)

We note that M = 3 (3(tr J)I — J,,) where J,, is the moment of inertia
tensor for the surface of the mth particle. The two point correlation information
enters the bound through the tensor T'. When the composite is statistically isotropic
the tensor T is given by T' = (6,6,/d)I (d = 2,3), and the tensor M = d~lal,
where, a = tr M. It follows from the relation

a=trM=>" / ly™|2ds (3.60)
. Jaym

that the parameter « is equal to the sum of the polar moments of inertia of the
surfaces JY™ with respect to the reference points ™. For this case the bound given
by (3.59) reduces to

n®y™ds, M= / y"@ymds

ot é ICUlg(a,ﬁ), ’ (361)

where
6:8d2a + 62X 4 O505d™ 1 (d ~ 1) -
ABd~ta + 6,02d-1(d — 1)Ao; + 0,d-2(d — 1)o8a ’
(3.62)

It is easily seen that ICU,, is monotone increasing in the variables 8 and . In view
of this we may choose the reference points ™ so as to minimize « to obtain the
tightest bound. A straightforward calculation shows the best r™ is given by

r™ = (joy™|)~! /a L vds - (363)

where |0Y ™| is the surface area of the mth particle. For perfectly bonded conductors
B = oo; passing to the 8 = oo limit in the upper bound (3.62) we recover the
Hashin-Shtrikman (1962) upper bound for isotropic two phase composites. Denoting
the Hashin-Shtrikman upper bound by HS* we have from monotonicity

ICU (e, B) < HS*. (3.64)

ICUy3(a, B) = <0';1 +
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In the limit 8 = 0 the upper bound becomes

1-d!
IC = . .
Uy2(e, 0) = 6101 (1 g 020’1/02)d‘1) (3.65)
Noting that o, > o) implies (1 — 620, /o) > 1 — 0 = 0, we see that
1-d!
ICU2(a,0) > 9101 (_ITél__d'_‘) . (3.66)

Here the right-hand side is the upper bound derived by Bruno (1991) for a composite
with a matrix of o; in the volume fraction 6, filled with non-conducting material
with volume fraction ;.

(ii) Particles of low conductivity in a high conductivity matriz

For the case of inclusions of conductivity o; embedded in a matrix of conduc-
tivity g, we proceed as in the last section to obtain the upper bound for isotropic
suspensions given by

o¢ < ICUy (a, B), (3.67)
where
6:8d ‘o + Gf/\

-1
ICU. ={o;? .
2(@ f) <02 + MBd—1a + 6,6,d-1(d — 1)Ag2 + B2d~2(d — l)agﬂa)
(3.68)
This bound is monotone increasing in the parameters « and § and one has

1—-d!
02 (i—e—d—_f) = ICUzl(a, 0) < ICUzl(O(, ﬂ) < ICUgl(a, OO) = HS+ (369)
— b2
The left-hand side of the inequality (3.69) is precisely the upper bound derived
by Bruno (1991) for a composite with a matrix of o3 in the volume fraction 6, filled
with non-conducting particles in the volume fraction 6;.

(¢) Comparison with elementary bounds

A straightforward calculation shows that the basic upper bound Ujs(a, B) given
by (3.3) is not as tight as that given by ICUyx(a, B) derived in the last section.

We summarize the principal results in the following inequalities.

For isotropic particulate composites with matrix phase conductivity o, and particle
phase conductivity o, in volume fractions 8 and 8, respectively, we have

o1mg < ICLy2(mo, B) < 0° < ICU12(a, B) < Ura(e, B). (3.70)
01 92 S -t e +
— 4 =+ = < ICLya(mo, B) < 0° < ICU2(, B) € HS™. (3.71)
o1 09 dﬁ
When the phases are interchanged we have
-1
b + b + —'?—) < IC Ly (o, B) < 0° < ICUn (e, f) < HS™. (3.712)
o1 g9 dﬂ
Here HS* is the Hashin-Shtrikman upper bound for perfectly bonded isotropic
composites.

To fix ideas we plot in figure 1 the interface comparison upper bound (3.62) and
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stelc I
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Figure 1. Effective conductivity for ZnS-diamond composites. Interface comparison method
upper bound ICU and lower bound ICL compared with the elementary upper bound (3.3)
and the lower bound in (3.1) for periodic two-dimensional monodisperse suspensions of di-
amonds in a ZnS matrix with 03 = 174 Wm™ K™, 0 = 1000Wm K™}, 6, = 0.2,
B=6x10"Wm ' K~!, and radii @ < 10 pm. Here s = (1-4m/02)/2, S = (14 47/6,)/2
and the elementary upper and lower bounds are denoted by U and L respectively.

lower bound (3.17) for periodic monodisperse suspensions of spheres. In the figure
these upper and lower bounds are referred to as ICU and I CL, respectively.

In the next sections we analyse the behaviour of the bounds I CLys, ICL,; at
fixed volume fraction when the interfacial surface area is allowed to become infinite.
We also present inequalities relating the geometric parameter « to interfacial surface
area and analyse the behaviour of ICU,9, ICUs; in « for fixed volume fraction.

4. Size effects and extremal microgeometries

The monotonicity of the upper and lower bounds in the geometric parameters of
the interface are used to obtain new theoretical predictions of size effect phenomena.
We also exhibit microstructures with extremal properties.

For convenience we express a useful inequality between the geometric parameters,
that easily follows from two applications of Cauchy’s inequality

d20,(6,/5) € . (4.1)

Thus for fixed volume fraction we see that when a — 0 we have s — co. We note
that equality holds in (4.1) for monodisperse suspension of spheres.

(a) Asymptotic behaviour of the bounds with interfacial surface area
We consider the behaviour of the bounds as the interfacial surface area is increased
for fixed volume fraction. It is interesting to note that all bounds in these limits
reduce to bounds on the effective conductivity associated with composites formed
from non-conducting inclusions.
For isotropic particulate composites with particles of o5 in a matrix of lesser con-
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ductivity o; we have the lower bound as given by equation (3.13). We fix volume
fractions and pass to the infinite interfacial surface area limit to find that the lower
bound behaves like oyme+0(s™) where o1y is the conductivity associated with the
same microgeometry but with non-conducting particles and a matrix of conductivity
gy.

The upper bound for such composites at fixed volume fraction depends upon the
a parameter and is given by (3.62). Passing to the a =0 limit the bound becomes

1-d!
o (1 — -6 /ag)d’l) ' (42

Since (1 — 6201/02) > 1— 62 = 6, it follows that the above limit is larger than
6,0:(1 —d~')/(1 — 6:d™") that represents precisely the upper bound on composites
of matrix conductivity o; with insulating inclusions given by Bruno (1991).

For particulate composites with particles of conductivity o1 in a matrix of higher
conductivity o3, the lower bound is given by (3.22). By fixing the volume fractions
and considering the limit as the interfacial surface area tends to infinity, the lower

bound behaves like
-1
aammo (9@ + (1 - Tﬂ) -”-3) +0(s7Y). (4.3)
p)

Since mg < 85 the first term in (4.3) is less than o2mg, which represents the effective

conductivity of a composite with the same microgeometry but with non-conducting

particles in a g, conductivity matrix. '
Similarly from the upper bound (3.68), when a — oo we get

1—-d7!
020, (1—:0—2‘1—:{) s (4.4)

which represents the upper bound for composites of conductivity o2 with insulating
inclusions (see Bruno 1991).

The behaviour of these bounds is physically consistent with the behaviour of ef-
fective properties for a large class of composites. Indeed, for any periodic particulate
composite with fixed proportions 6, and 6,, we rescale the geometry by the factor
k-! where k = 1,2,3,.... We then fill the unit cube with a rescaled, k~! periodic
version of the original geometry. Clearly, as k tends to infinity the volume fraction
of the inclusions remain fixed but the distribution of inclusions become increasingly
fine and the interfacial surface area tends to infinity. The behaviour of the effective-
property obtained through rescaling is explained by the following size effect obtained
by Lipton (1995, theorem 3.3)

Theorem 4.1. The effective conductivity of the k~! periodic composite con-
structed above is identical to that associated with the unrescaled composite with
thermal barrier resistance increased by the factor k.

Proof. We denote the electric potential in the k! periodic composite by ¥* and we
let ¢* be the potential in the unrescaled composite with interfacial barrier resistance
k/B. Theorem 4.1 follows from the field identity P*(x) = k~'¢*(kx) and a change
of variables in equation (2.5). |

Next, for a fixed geometry, we observe that if we take the thermal barrier resistance
to infinity, then the associated effective conductivity tends to the effective property
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for a composite with non-conducting inclusions. Thus from theorem 4.1 we see as
in Lipton (1995, theorem 3.4) that the effective conductivity of the k~! periodic
composite tends to that of the unrescaled composite with non-conducting inclusions
as k tends to infinity. In this way we observe that the bounds capture the asymptotics
consistent with effective tensors obtained by rescaling.

(b) Effective behaviour for monodisperse suspensions of spheres at critical particle
size

It is known from experiment that particle size affects the overall thermal trans-
port properties of composites (cf. Garret & Rosenberg 1974; Every et al. 1992). In
this section we consider a monodisperse suspension of spheres of good conductor o3
embedded in a matrix of conductivity o;. For prescribed barrier resistance B, we
exhibit a critical particle radius R for which the effective transport properties are
identical to the conductivity of the matrix material. At this critical size the effect
of the interface resistance is balanced by the higher conductivity of the particles.
Denoting the critical radius by R, we have

Ry =g Yo7 —0o3") 7" (4.5)

We begin with the obvious remark that for composites occupying the unit cube
we only consider parameter values 3, 02, o, for which the right-hand side of (4.5) is
less than 1/2.

To establish our formula for the critical radius we consider a dispersion of N
spheres of common radius ‘a’ with centres denoted by the vectors . We assume all
spheres are contained in the unit cube and do not touch. We show that for a = R,
there exists a periodic piecewise affine solution to the problem (2.2)-(2.4) of the form

-z in the matrix,
+ = . 4.6
o8 ?—lﬁ T — <1 — 2) 9—15 -7, in the ith particle. (4.6)
(D)) o1 09
For this choice of temperature field the effective conductivity given by (2.5) reduces
to 0¢ = 0;.
We start by looking for a solution of the form

Ea-T in the matrix,
x= 7
o+ { € - +¢; in the ith particle. (47
From (2.1), (2.3), and (2.4) it follows that
£+ / [¢)nds = 0,164 + 6265, (4.8)
F .
01§a-n=028p- M, (4.9)
oobp-n=—B{((s —€a) T+ci} (4.10)

From (4.9) we may conclude that (02/01)€p = €a- On the surface of the ith sphere
the unit normal is written n = (x — r;)/a, thus £ = an + r* on the surface and
(4.10) can be written as

€ - (o2 + Pa(l — 02/01)) = —-B((1 — 02/01)¢B T+ ¢). (4.11)
Proc. R. Soc. Lond. A (1996)
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It is seen from (4.11) that both sides must equal zero thus

€p(o2 + Ba(l — aa/a,)) = 0, (4.12)
(1-o02/01)¢p T +¢; =0. (4.13)
We observe from (2.4) that
o o z—r
[¢] = _762‘53 ‘= —FZEB : (4.14)
and (4.8) becomes
-1
[op)] 920‘2
={6,—= —= . .
s (1ol+92+ ﬂa) I3 (4.15)
It is evident from (4.12) that either
€8 =0, (4.16)
or
o2 + Ba (1 - 9) =0. (4.17)
o1
For finite values of §, 0,3, 6; we may rule out the case £5 = 0 as this implies £ = 0
from (4.15).

Equation (4.17) provides the relation defining the critical radius R., and is equiv-
alent to (4.5). For the choice of ‘a’ given by (4.17) we find

£s = %5. (4.18)

Last we deduce from (2.5) that
0°€ = 010164 + 6202 (4.19)

and from the relation 4 = (02/01)€p and (4.18) it follows that ¢ = o,& for any
choice of . Formula (4.6) follows from (4.13) and the above remarks.

The above analysis shows that at the critical radius the overall heat conductance
remains that of the matrix irrespective of the location and number of particles.

We point out that the differential effective medium model introduced by Every et
al. (1992) predicts that 0° = o, for spherical particles with radius o;/8. We remark
that in light of our exact calculation their result provides only an estimate of the
critical radius. However, for large values of the particle conductivity their estimate
approaches the exact value given by (4.5).

(c) Critical values of the geometric parameters and optimality

We show that monodisperse suspensions of spheres at critical radius, provide ex-
tremal conducting properties. Here we consider conducting particles of o5 in a matrix
of g;. When the total surface moment of inertia o = 6,dR,, the upper bound given
by (3.62) reduces to

ICUIQ(ngRcr, ﬂ) =0J;. (420)

Similarly when the surface area s = d6,R;' then the lower bound given by (3.13)
becomes

ICLys(myg, B) = o1. (4.21)
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Figure 2. Interface comparison method upper and lower bounds for periodic two-dimensional
monodisperse suspensions of diamonds in a ZnS matrix with oy = 17.4 W m-! K™,
g2 = 1000Wm™ K™, 6, =02, 8 = 6x 105Wm-~! K~', and radii ¢ < 10 pm (bere
Sm = (1=4%/8:)/2, S = (1 + 4r/6,)/2).

We observe from the results of previous section that for a monodisperse suspension
of spheres of critical radius ‘Re;’ of conductivity o, in a matrix of o; that

o° = 0. (4.22)

Moreover, for this suspension the associated geometric parameters o and s are given
by ‘

& = ngRc,, § = OQdR;l (423)
Thus among all isotropic particulate composites with 8, fixed and o specified by
(4.23) we see that monodisperse suspensions at critical radius give the greatest con-
ductivity. Similarly, among all Isotropic particulate composites with 8, fixed and s
specified by (4.23) we see that monodisperse suspensions of spheres of radius R..
give the lowest conductivity. To fix ideas we plot in figure 2 the upper and lower
bounds (3.62) and (3.17)) for monodisperse periodic suspensions of spheres in the
d = 2 case. For this case the upper and lower bounds touch when the common radius

is Re;.

(d) Size effect phenomena for polydisperse suspensions of spheres

For polydisperse suspensions of spheres the parameter o = dg, (r), where (r) is
the mean radius of the spherical inclusions given by

N
r=> ,—};zllrm. (4.24)
m=]

For polydisperse suspensions of spheres of o, in a matrix of o, with mean radius
{r) the upper bound (3.62) becomes

N 61828(r) + 62X + 8,05d"}(d — 1) ) -
02\Bd=1(r) + 6,62d-1(d — 1)Ao + 62d(d — 1)o2B(r)

ICUsa(df(r), B) = (af‘
(4.25)
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where A = 0103(02 — 07) 7.
This bound is strictly monotone increasing in (r) and for (r) = R,

ICUn(dechr, ﬁ) =01. (426)
From monotonicity and (4.26) we have the following theorem.

Theorem 4.2. (Size effect theorem). For polydisperse suspensions of spheres of
03 In a matrix o, with g2 > o, and any prescribed volume fraction 65, if (r) < Re
then

o® < oy (4.27)
One has equality in (4.27) only if
(r) = Re;. (4'28)

(e) Necessary conditions of optimal design

We consider suspensions of a g, particles in a matrix of ; with volume fractions
01, 65 of the constituent materials fixed. We recall the lower bound is given by

ot 2 0—’+€3+—S— B (4.29)
= g1 09 dﬂ )
o (1o =)
I 1+ 010287 (s/d6» — R3') )

From (4.30) we see the lower bound equals o; for s = dfR_!. It is evident from

(4.29) that the lower bound is strictly monotone decreasing in the total interfacial
surface area s. We collect these observations and state the following theorem.

(4.30)

Theorem 4.3. For an isotropic suspension of o, conducting particles in a matrix
of oy conductivity with o3 > o, and any prescribed volume fraction 65, if the total
interfacial surface is bounded above by df; R then

o> oy. (431)

We now consider the problem of the best isotropic distribution of good and bad
conductors. in the unit cell Q. Here the best distribution is the one giving the best
effective heat transport in all directions (i.e. the largest value of the effective con-
ductivity). It is assumed that the volume fraction of good conductor o, is fixed at
5.

In what follows we investigate the effect of scale in problems of optimal design.
To fix ideas we suppose that the volume fraction of the good conductor satisfies the
inequality
2(d—1
0y < %w?d, d=2,3. (4.32)
That is the volume fraction is less than that of a sphere (circle) of radius 1/2 inscribed
within the unit cell. Moreover we restrict the parameters 3, o, o, so that the critical
radius R, satisfies the constraint

3@-——1—)#33, <6, d=23. (4.33)

The above states that we consider only cases where the volume of a single sphere of
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Figure 3. Interface comparison method upper and lower bounds for ZnS—diamond composites as
a function of the volume fraction of the diamond, for different diamond particle sizes: a = 2 pm,
a= Ry =106 pm, a=0.25 pm.

critical radius is strictly less than the volume fraction 6, occupied by the polydisperse
suspension.

We consider the best distribution of an isotropic, polydisperse, suspension of
spheres of good conductor o, in a matrix of o;, for 8, prescribed and the given
constraints (4.32) and (4.33). We have the following theorem characterizing the op-
timal design.

Theorem 4.4. (Optimal design: necessary condition). The mean radius of the
optimal distribution of spheres maximizing the effective conductivity is greater than
R...

Proof. From theorem 4.2 we know that if the mean radius lies below R then
0° < 01. So to establish the theorem we construct a polydisperse suspension of
spheres with mean radius greater than R, such that the effective conductivity lies
above ;. The construction is trivial in view of (4.32) and (4.33). Indeed take a
suspension consisting of a single sphere of radius r such that

Z—(d—dj—l—)m‘d = 0,. (4.34)
Then for this suspension
s 1
o=, 4.35
dez r ( )
From (4.33) and (4.34) we see that
r~' < RZ}, (4.36)
therefore
s < df, R . (4.37)
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Figure 4. Interface comparison method upper and lower bounds for monodisperse suspensions
of diamond in a ZnS matrix as functions of volume fraction 62 and particle radius a.

We conclude from (4.37) and theorem 4.3 that the effective conductivity for this
suspension lies above o, and the theorem is established. |

We conclude this section by making an observation for isotropic monodisperse
suspensions of spheres of radius r. For this case o = dfr and s = df,r~!. Thus we
may apply theorems 4.2 and 4.3 to obtain

Theorem 4.5. For isotropic monodisperse suspensions of spheres of radius r at
prescribed volume fraction

0% >0, ifr> R (4.38)

and 0® <oy ifr < Rer.

Such a behaviour is illustrated for ZnS-diamond composites in figure 2.

We consider the effect of varying the volume fraction at a fixed particle size for
isotropic composites. The bounds on the effective conductivity given by (3.62) and
(3.17) are plotted in figure 3 for a periodic suspension of diamonds in a ZnS matrix.
We observe that the upper and lower bounds are increasing functions in volume
fraction for a particle of size 2 um, larger than R, = 1.06 pm, and that the bounds
are decreasing functions in volume fraction for a particle size of 0.25 um. For a =
R., = 1.06 pm the upper and lower bound are both equal to o;. These bounds predict
the same behaviour seen in the experimental results of Every et al. (1992).

Lastly we plot the interface comparison method bounds given by (3.62) and (3.17)
for a periodic suspension of diamonds in a matrix of ZnS as a function of particle
radius and volume fraction in figure 4.

The work of R.L. was supported by NSF grant DMS-9205158.
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