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We introduce new bounds and variational principles for the effective elasticity of
anisotropic two-phase composites with imperfect bonding conditions between phases.
The monotonicity of the bounds in the geometric parameters is used to predict new
size effect phenomena for monodisperse and polydisperse suspensions of spheres. For
isotropic elastic spheres in a more compliant isotropic matrix we exhibit critical radii for
which the stress state, external to the spheres, is unaffected by their presence. Physically
all size effects presented here are due to the increase in surface to volume ratio, as the
sizes of the inclusions decrease. The scale at which these effects occur is determined by
the parameters N;t, N;” and R§. These parameters measure the relative importance of
interfacial compliance and phase compliance mismatch.

1. Introduction

We examine the effect of imperfect bonding on the overall elastic properties of
two-phase composites. Imperfect bonding often occurs in technologically important
materials such as fiber reinforced composites. Such bonding cannot be modeled
by continuous tractions and displacements across phase boundaries. An imperfect
bond is characterized by a thin zone between phases. The elastic displacements
may be different on either side of the zone. Such a zone is often referred to as an
interphase. Two analytical approaches to modeling imperfect bonds between phases
have been considered. One approach describes the interphase between the inclusion
and matrix as a layer of finite thickness with elastic properties distinct from those
of the matrix and inclusion. The effect of the interphase on the overall elastic
behavior has been considered in Refs. 5, 15 and 16. Another approach is to model
the imperfect bond by an interface across which the displacements are allowed to be
discontinuous. In this model the tractions are continuous across the interface and
proportional to the displacement discontinuities. The constants of proportionality
characterize the stiffness of the interface. Effective properties for such “spring layer”
models were studied in Refs. 1, 2 and 4. Effective elastic behavior for both imperfect
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bond models was compared using the Mori Tanaka approximation by Jasuik and
Tong.? We note that all the aforementioned works studied the effects of imperfect
interface either for specific composite geometries or by modeling interactions be-
tween heterogeneties using approximate formulas. Recently the classical extremum
principles of minimum potential and complementary energies were extended to the
case of imperfect interface by Hashin.® By means of a clever choice of trial fields, the
variational principles were used to construct bounds on effective elastic properties.
The attractive feature is that any observation deduced from the bounds is not tied
to a particular composite geometry or aapproximate formula and will apply to a
large class of composite systems.

The variational principles introduced in Ref. 6 form the starting point of our
analysis. Hashin described the interface in terms of two tangential stiffnesses Dy,
D,, and a normal stiffness a. To fix ideas, we set the two tangential stiffnesses
equal, i.e. D, = D, = B. However we note that the methods developed here
easily extend to the case when the tangential stiffnesses are not the same. The slip
coefficient 3 relates the tangential component of the traction to discontinuities in
the tangential displacement and o« relates the normal component of the traction
to the jump in the normal displacement across the interface. We assume that
the composite is made from two isotropic elastic materials with bulk and shear
moduli specified by k; < k2 and 3 < po in the proportions 6; and 8 respectively.
In this work we adopt a rigorous approach. We derive new variational principles
describing the effective elastic properties of anisotropic composites with imperfect
interface. These principles are obtained with the aid of an interface comparison
method previously established by the authors in the context of heat conductivity
(Lipton and Vernescu!?). The advantage of this new formulation is that solutions
of the associated Euler equations involve fields that are not coupled at the two-
phase boundary. Most importantly the solution operators for these problems have
an explicit form or can be written in terms of solution operators for the perfect
contact problem, see Theorems 2.1 and 2.3.

We apply these principles to obtain new upper and lower bounds on the effec-
tive elasticity for anisotropic particulate composites with imperfect interface. The
lower bounds depend explicitly upon interfacial surface area, the interfacial slip
coefficient 8, the normal interfacial spring constant a and volume fraction. In addi-
tion the bound contains a scale-free tensor of parameters. This tensor corresponds
to the effective elasticity of a composite with void-like inclusions having the same
geometry as the original composite, see Theorem 3.1. We present an upper bound
for anisotropic composites in terms of volume fraction, the two-point correlation
function and the moment of inertia and surface energy tensors of the particle sur-
faces, see Theorem 3.4.

To illustrate our method we consider particulate suspensions of relatively stiff
particles in a more compliant matrix. We find new bounds on the bulk and shear
traces of the effective elastic tensor C¢ and compliance Ce~! for anisotropic com-
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posites. Here the bulk and shear traces are given by:
1
trCe = 2C5,; (1.1)
and by
€ 1 € 1 e
tr_gc = g cz]z] o ‘3‘c“JJ (1.2)
respectively. These bounds are given in Theorems 3.2, 3.3, 3.5 and 3.6. The bounds
given here are shown to be strict improvements on those of Hashin, see Sec. 5. A
subtle computational error in the upper and lower shear modulus bounds given in
Ref. 6 is found and corrected in Sec. 5.

The monotonicity of the upper and lower bounds in the geometric parameters
allow for the analysis of size effect phenomena (see Sec. 6). For monodisperse
suspensions of spheres at fixed volume fraction one uses the monotonicity of the
lower bound given by Theorem 3.2 to show that the estimate:

2uy < tr,C* (1.3)
holds for suspensions of spheres with radii “q” bounded below by
3Nt <a, (1.49)

see, Corollary 6.5. Here N} = p/A, where p = §(3 + &) and A, = (2p;)"! —-

Tl

(2u2)~. From the upper bound given in Theorem 3.5 it follows that
(2m)7t S () (1.5)
for
a< N, : (1.6)

where N = g/A,, with ¢ = 5(38 + 2a)~1, see Corollary 6.5. We note that A, is
a measure of the shear compliance mismatch between phases and the parameters
p and ¢ are measures of interfacial compliance. The ratios N} and N, express
the relative importance of the shear mismatch and the interfacial compliances. For
monodisperse suspensions of spheres we establish the existence of two critical radii.
The first critical radius RS, concerns the bulk trace. We define the critical radius
to be that for which the bulk trace equals that of the matrix material given by 3k;.
The critical radius R is given by

P |
a
Rg = Tb' N (1.7)

where Ay = (3k1)7! — (3k2)7! is a measure of the bulk compliance mismatch
between phases, see Corollary 4.5. When the slip coefficient and normal spring
constant are equal (i.e.f = a) we have 3N} = NI = RS, where

R=5 " (1.8)
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For monodisperse suspensions of spheres of radius RS we show in Corollary 4.6 that
the effective shear trace equals that of the matrix. These results follow from a more
fundamental interaction between interfacial and phase compliances. We consider a
sample of composite containing spheres of critical radius R} subjected to a homoge-
neous hydrostatic strain. We calculate the fields external to the spheres to observe
that the strain state is unaffected by the presence of the spheres, see Theorem 4.1.
For composites containing spheres of critical radius RS subjected to homogeneous
shear strain we also find that the strain state external to the spheres is unaltered
by their presence, see Theorem 4.2. In this way we see that the mismatch between
component elasticities together with the interfacial compliances conspire to make
the particles undetectable when the composite is subject to selected homogeneous
strains.

For polydisperse suspensions of spheres we apply the bounds to provide new
theoretical predictions of critical mean radii. It is shown that when the average
sphere radius (a) is less than N, then the shear trace of the effective compliance
lies above that of the matrix material. Similarly for suspensions with mean radius
less than Ry the bulk trace of the effective compliance lies above that of the matrix,
see Theorems 6.3 and 6.4. The results given in this paper, are to the best of our
knowledge the first theoretical predictions of critical radii for monodisperse and
polydisperse suspensions at nondilute concentration.

More generally we consider particulate composites with no assumption on par-
ticle shape or distribution. For stiff particles in a more compliant matrix we exhibit
upper bounds on the interfacial surface area to particle volume ratio for which the
bulk and shear traces of the effective tensor always lie above that of the matrix ma-
terial, see Theorems 6.1 and 6.2. The bounds are given in terms of the parameters
N and R;.

We summarize by noting that all of the size effects may be ascribed to the
increase in particle surface to volume ratio, as the sizes of the particles decrease.
The scale at which these effects occur is determined by the parameters N}, N~
and R;. These parameters measure the relative importance between interfacial
compliance and the mismatch between phase compliances.

To simplify reading of the text we introduce commonly used notation. Given
two 3 X 3 matrices  and ( we write the Hilbert-Schmidt inner product:

n:¢=tr(nCT). (1.9)

The inner product between two vectors u and v in R? is denoted by u-v. Contraction
between a fourth-order tensor 7 and a 3 x 3 matrix 7 is written:

(Tn)i; = Tijranwe (1.10)

where repeated indices indicate summation. Contraction between a 3 x 3 matrix
and a vector v in R? is written:

(nv); = ;. (1.11)
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Last, for vectors » and v in R® we write the symmetric dyadic product:

1
(vov),; = E(uivj + u;v;). (112)

2. Variational Principles for the Effective Elasticity Tensor
for Composites with Imperfect Interface
2.1. Mathematical and physical background and variational
principles of Hashin
For periodic elastic composites we may decompose the displacement field u into two
parts, a periodic fluctuation ¢ and a linear part €;;x; such that u; = ¢; + ;;1;.
The average strain

(eij(n)) = <%(U-i,j + u,-,,-)> (2.1)

seen by an outside observer is
{eij(u)) = /30(<1~5i + €isTs)n;dS = €35 (2.2)

Here Q is the unit cell occupied by the composite, dQ is the boundary of the cell
and n is the outward directed normal. The two-phase geometry can be arbitrar-
ily complicated. However, we do constrain the phase boundaries to be Lipschitz
continuous surfaces.

The cell is composed of two isotropic elastic materials occupying regions Y; and
Y> separated by an interface denoted by I

The materials occupying Y; and Y2 have elasticities C; and C; specified by:

C; = 3k;Pr + 2P 1=1,2, (2.3)

where k; and p; are the bulk and shear moduli and
1 1 2
(Pr)iju = 3 ik, (Ps)ijrr = 3 6651 + 6ubjr — §5ij5kz . (2.4)

We introduce the space V of @ periodic functions ¢ given by
V = {p € H (Y1 UY;)%|p Q-periodic}. (2.5)

For future reference we denote the normal trace of a vector field v on a surface
T with normal n by v, = v -n and the tangential projection by v; = v — vun.
The elastic displacement inside the composite has periodic fluctuation ¢ in V and

satisfies: )
div(C;(e(¢) +¢€)) =0 in ¥;, 1 =1,2 (2.6)

[C(z)(e(¢) +€)n=0 on T (2.7)

and _ ;
(C2(6(¢) + E)1'"‘)7 = _ﬁ[(ﬁ‘rﬁ on F, (2'8)
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(C2(e(d) +€)1n)n = —af,]? on T. (2.9)

Here n denotes the unit normal to I' and points into the interior of phase-1 and
(2.7) is the continuity of the traction across the interface. The numerical subscripts
indicate the phase in which the boundary trace is taken. Equations (2.8) and
(2.9) represent the Hooke law of the interface relating the tangential component
of the traction to tangential slip and the normal component of the traction to the
jump in normal displacement. We emphasize that Eq. (2.9) models the effect of an
interphase of finite thickness, so jumps in the normal direction are not discounted.
The problem (2.6)-(2.9) is well-posed mathematically. Its variational formulation
is given by:

/ C()(e(d) +¢) : e(8)dz + a / [Ballbnlds + 8 / 3] 6:1ds =0  (2.10)

YiuYa r r

for all 6 in V. Here the piecewise constant elastic tensor is given by C (z) =Cix1 +
Ca2x2 where x; are the indicator functions of Y;, 7=1,2. The solution is found to
exist and is unique up to a constant; this was established in Lene and Leguillon.1!
The limiting case # = a = oo corresponds to perfect contact between phases and

the case @ = oo corresponds to the problem addressed in Ref. 11.
The effective elasticity tensor for the composite is defined by:

Ce = / Cz)(e(d) + ¢)ds. (211)
Q
Generalizations of the Dirichlet and Thompson variational principles for compos-

ites with imperfect interface have been put forth in the work of Hashin.5 According
to these principles the effective elasticity is given by:

Ce:ec= glel‘l} {-/Q C(z)(e(P) +€) : (e(P) + €)dx

ta /r (@u))?ds + B /r ([¢,])2ds} . (2.12)
Introducing the space W of Q-periodic matrix fields 7 characterized by:

W = {'r € L*(Q)*3| divr =0in YUY, [rjn=0 on T,

/ 7dz =0, Q-periodic} . (2.13)
Q
The effective compliance is given by:

5= mig {/;2 C Y z)(r+5): (1 +5)dz + ot /r [(( + &)n)n|2ds

+ 1 fr (r + 6)n)T|2ds} , (2.14)

for all constant stresses &.
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2.2. Interface comparison method variational principles

We present two new variational principles describing the effective elastic tensor.
Before stating the first variational principle we introduce a comparison material
with elasticity tensor specified by:

¥ =371 + 7. Ps ©(2.15)

such that ¥ < (;, and formulate two auxiliary elasticity problems. For p €
L2..(Q)3*® the vector potential u? € H (Y1 UY2)? solves the comparison problem:

div(ye(u?P)) = —divp in Y; UYs, (2.16)

(ve(u?) + p)1n = (ye(u?) + p)an =0 on T. (2.17)

For v € L*(T')? the vector potential u” € HL, (Y1 UY2)? is a solution of the com-

parison problem:
divy(e(z”)) =0 in Y1UY; (2.18)

and
ve(u®)1n = ve(u’)an = —v on TI. (2.19)

We introduce the space P by
P = {(p,v) € (L3 (Q)*** x L*(T)?)}. (2.20)

Here the fields p and v are referred to as bulk and surface polarizations respectively.
Introducing the linear operators M and R given by:

Mp=e(u?)in YUY, (2.21)

and
Rv=e(u’)inY;UY>, (2.22)

one has the new variational principle:

Theorem 2.1. Comgparison Variational Principle. For any constant 3 x 3 strain €
one has,

Cée:e—ve:e+ [(2,3)‘1 / T (n)ds+a™?! /rf‘h(n)ds] e @ ye
r

= (;ﬁ-’?‘gp {2L_(€, pa'v) - Q(pvv)} ) | (223)

where

L(e,p,v) = / p:edz + Bt / vy -yends +a”! / Upt - YEN dS . (2.24)
Q r r



1146 R. Lipton & B. Vernescu

The quadratic form Q(p,v) is given by:
Q)= [(C@=0p:p ot [ orPds o [ foolids
Q r r
+/Q v(Mp + Rv) : (Mp+ Rv)dz. (2.25)
Here T's(n) and T'y(n) are tensor valued functions of the unit normal given by:

1
(Fs(n))ijkg = E(ni'lu&jk + ’n,'nk(s]'g + njng6,'k + njnk(sie) — NN Nk Tg (2.26)

and
(TCh(n))ijee = ninjngng. (2.27)

Remark. We note that the tensor I';(n) is precisely that appearing in the decom-
position of a second-rank tensor with respect to an interface introduced by Hill.”

Proof. Our starting point is the extension of the Dirichlet variational principle
for composites with imperfect interface put forth by Hashin.® In our context this is
given by (2.12). Noting that the solution ¢ of (2.6)-(2.9) is the minimizer of (2.12)
we write:

Ce:e= /;C(a:)(e(d;) +¢): (e() +€)dz + a/r([qzn])zds + ﬂ[\([&r])zds. (2.28)

Adding and subtracting the reference energy v(e(@)+¢) : (e(¢)+¢) to the right-hand
side of (2.28) and rearrangement gives:

(€ =meie= [ (€)= (e@) +e)s (@(F) + )iz + [ 2e(d): e(d)da
Q Q
+2 /Q 10(d) : ede+a [ (@Bal)ds+8 [ (G)ds. (229
Integrating by parts one obtains:
z/de(é) tedr = 2A[$n]n -yen ds + Z/P[d;f] -yen ds. (2.30)
Applying (2.30) and completing the square in the last three terms of (2.29) gives:
e _ ) -1 2 -1 2
Ce=v)e:e+8 /I‘I('ye'n,),| ds+a /rl(fysn)nl ds
= [ (€@ =@ +2): @) + s + [ 1e(d) s e()is
Q Q

+ ,3/ |[¢~ST]+ﬂ_1('yen)T|2ds+a/ l[#n] + @2 (ven)n|?ds. (2.31)
r r
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Introducing the bulk and surface polarizations p and v one has the elementary
estimates:

g / @] + 87 (ven)-[ds > / {20, - ([&:] + B (yen)r) = B o [P }ds, (2.32)
r r

a/ [[tz"Sn] + o~ (ven),|?ds > /{Zvn([dzn] + o~ (yen)y,) — o Yo, |?}ds, (2.33)
r r
and

[ ©@-neldr+e): (@) +reda 22 [ p: (e@r+elda- [ (Cw)=07p: i
¢ ° ° (2.34)
for any (p,v) € P. Introducing the Lagrangian L(p,v, ) defined by:

L{p,v,9) = 2/ p:edx+2ﬁ_1/vT-(’yen).,ds+2a*1/vn('yan)nds
Q r r
- RS T _ -1 27, -1 2
[ €@ -0 tpepz =g [ s - [nyias

+ 2/ p:epdr + 2/ vy - [p-]ds + 2/ Un[dn]ds
Q r r
+ /Q ve(4) : e(d)dz, (2.35)
and applying the estimate (2.32)-(2.34) to (2.31) gives the inequality:
(€ —e:e+ 87" / (ven)-[*ds + 0“1/ [(ven)nl?ds > L(p,v, ).  (2.36)
r r

Next we observe:

e _ . —1 2 -1 2
(C*=e:e+ /FI(’YE"M ds+ /rl('yan)nl ds
> £(p,0,6) 2 fnf L(p0,9) = L(p.v.6), (237)

*
where ¢ is the minimizer of

inf {2 /Q p:e($)dz +2 /r e [0rlds + 2 [ wnlgulds + /Q Ye(9) : e(¢)dx}
(2.38)
and satisfies

div 'ye(g)) = —divp in Y1UY2, (2.39)

and , .
(ve(@) + p)an = (ve(¢) + phin = —v. (2.40)
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Observing that ;5 is linear in the data (p,v) we have (; = ¢? + ¢” where ¢° and ¢
solve problems (2.16)—(2.17) and (2.18)—(2.19) respectively. Recalling the definitions
of the operators M and R given by (2.21) and (2.22), inequality (2.37) can be written
as the inequality:

(€ =meie+p /r ((yen).f7ds + ™t [ [(rem)a s

> 2:&(1’1 v, 5) - Q(pvv) . (2'41)

One observes for the choice of bulk and surface polarizations, consistent with the
actual displacements inside the composite, i.e.

p = (C(z) - 7)(e(d) +€), (2.42)
vr = (3] + B3 (7em)-, (2.43)

and
Un = [fn] + a7 (vER)n (2.44)

that (2.41) holds with equality.
To conclude the proof we show that the left-hand side of (2.41) agrees with the

left-hand side of (2.23). To see this we expand (yen), to find
1 .
|(ven): > = |(ven) = (yen - n)n|* = STu(n)7e : 7e, (2.45)

where I's(n) is given by (2.26). Similarly we find

(yen)2 =Tr(n)ye : 7¢, (2.46)
where T'y(n) is given by (2.27). Substitution of (2.45) and (2.46) into the left-hand
side of (2.41) gives the left-hand side of (2.23) and the theorem is proved. O

For the second new variational principle we introduce an isotropic comparison
material with elasticity given by (2.15) such that v > C; and formulate two auxiliary
elasticity problems. For p € L2,.(Q)**® the potential ¢” solves:

divye(y?) =divyp in Y1 UY; (2.47)
[ye(¥?) ~ypln =0, [¥"]=0 on . (2.48)
For a square integrable vector field v € L2(T')3, the potential 4 is a solution of
divye(¢*)=0 in Y1 UY; (2.49)
[ye(@*)In=0, [¥*]=-vonT. , (2.50)

We introduce the linear operators N and S defined by
Nyp=e(¥?)in Q, Sv=e(®®) in Y1UYa. (2.51)
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Since the measure of the two-phase interface T' is zero it follows that Sv lies
in Lge,(Q)“". From standard estimates one easily sees that the operators are
bounded, i.e. N € L(Lf,e,(Q):"X:", Lf,e,(Q)3X3) and S € ll(Lge,(I‘),Lf,er(Q)“-").
The operator N appears in the context of Hashin-Shtrikman variational principles
for anisotropic elastic composites with perfect contact as seen in Refs. 3, 10, 12 and

14.
In the sequel we shall need explicit formulas for the operators N and S, these

formulas are given as follows:
Lemma 2.2. The linear operators N and S are given by:

Ng= Y "% (70, (k) +rTn(k))d(k) (2.52)
E#0
and
Sv = Z kT (47T, (k) + rTh(k)y - T) / e~ 2"k Yy © nds
k#0 r

- / v © nds (2.53)
r

for any (q,v) in P. Here (k) is the Fourier transform of ¢ at wave vector k, k=
k/\k|, r=3/(3v1+27,), and I is the identity on symmetric 3 X 3 matrices.

Proof. The explicit formula for the operator N follows immediately from solution
of the comparison problem (2.47), (2.48) using Fourier expansions. To obtain the
desired representation for the operator S, we extend the function v defined on I to
the space Hpo (Y1 )3. Denoting the extension also by v we introduce the auxiliary
problem. We consider the potential w in H...(Q)? solving:

divy(e(w)) = divr(x1(e(v))) (2.54)

[ye(w) — yxae(@)n =0, [w]=0 on I. (2.55)

Observing that x1e(v) lies in L2,.(Q)**® we see that (2.54), (2.55) are equivalent
to the comparison problem (2.47), (2.48) with p = x1€e(v). Therefore:

e(w) = N(yx1e(v)) - (2.56)

From (2.54) and (2.55) we observe that the function:
w_{w—v in Y; (2.57)
w in Y2 (2.58)

is a solution of the problem (2.49), (2.50). Since the solution of the comparison
problem (2.49), (2.50) is unique up to a constant, we may take 9? to be represented
by (2.57) and (2.58). It follows that:

Sv = e(¥?) = e(w) — xae(v) in Y1 UYs. (2.59)
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Denoting the identity operator on L2,.(Q)**® by I we have from (2.56) and (2.59)
Sv=(Nvy—-1Dxie(v). (2.60)
Expanding N using (2.52), Eq. (2.60) reads

Sv =3 2= {(471T, (k) + 1Ta(k))y - DXE()(K) — e(@)(0) . (261)
ks#£0

From the divergence theorem we have
TE(v)(k) = / e~ Vy © ndS + 2mixo(k) © k. (2.62)
r

Lastly a lengthy but straightforward computation shows
{(3'T1,(B) + Tw(k))y - I} (xao(k) O k) = 0 (2.63)
and the theorem follows from substitution of (2.62) into (2.61). [I

We now give the second comparison method variational principle.

Theorem 2.3. Dual Comparison Method Variational Principle. For any constant
3 X 3 stress & one has:

(€~ e 5= max 2L(p,v,5) - Q(p,v), (2.64)
(Pi")ep
where the linear form L is given by:

L(p,v,5) = 2/

p:ddz + 2/ an-vds, (2.65)
Q

r

and the quadratic form Q is given by:
Q) = [(© @)= v ) pip+ B [ lorlids +ac [ foaPds
Q r r

+/Q*r_(5v+N7p—p— (Sv+ Nvp—p))
:(Sv+ Nyp—p—(Sv+ Nvyp—p))dz. (2.66)

Here (-) stands for the average of a quantity over the unit cell Q.

Proof. As before we start with the extension of the Thompson variational principle
to composites with imperfect interface as introduced by Hashin.® In this context it
is given by (2.14). We denote by & the minimizer of (2.14) and write

5= /Q €@ +2): @+ o)z +a7t [ [(@G+oIn)nfds

+p7! / (5 + a)n).[2dS . (2.67)
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Adding and subtracting the reference energy v(é + &) : (& + &) to the right-hand
side of (2.67) yields:

@ =Moo = [(€H) -7 G +0): @ +o)s+ [ 176 5 dd
Q Q
+ o /P (5 + &)n)2dS + B~ /F (& + &)n).[*ds . (2.68)
One has the estimates:
/ (€ Hz)— vy )G +7): (6 +5)dz > 2/ p: (6 +5)dz
Q Q

—/(C‘l(x)—v‘l)‘lp:pdz, (2.69)
Q

a™! /((& +&)n?),dS > 2/((& +&)n)pvnds — a/ vids, (2.70)
r r r
and
gt / (G +6)m),[2dS > 2 / (5 +)n)r - vrds — B / oo2ds.  (271)
r r r
We introduce the Lagrangian £(p,v,0) defined by
L(p,v,0) = 2/ p:adx +2/(6n)nvnds +2/(6n), - v,ds
Q r r
- / CHz)=vHp: pdz — a/ vids — ,B/ lvr?ds
Q r r
+ 2/ p:ods + 2/(&n)nvnds + 2/(&7»), cu,ds
Q r r
+ / v 16 : 6dx. (2.72)
Q

Application of the estimates to (2.68) gives:
€ =y Na:5 > L(p,v,5). (2.73)
Now we observe that

1

€ -y 162> Llpv,6) > inf L(p,v,0) = L(p,v,5), (2.74)
g

* . . . .
where o is the minimizer of

inf {2/ p:adz+/(6n)nvnds+2/(o"n)r -v.,.ds+/ 7 le: ad:v} . (2.75)
oceEW Q r T Q
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Calculation shows that & is given by

& =(e($) - p = (e() ~ 1)), (2.76)

where 4 is a solution of
divye(®) =divyp in YUY 2.77)
he(@) ~pln =0, []=-vonT. (2.78)

Noting that 12 is linear in the data (p,v) we write 12 = ¢F + 9", where 9? and
¥* are solutions of (2.47)-(2.48) and (2.49)—(2.50). Recalling the definition of the
operators IV and S given by (2.51), inequality (2.74) is written:

(€™ =)z > 2L(7,p,0) - Q(p,v). (2.79)

For the choice of bulk and surface polarizations, consistent with the actual stress in
the composite, i.e.

p=CH2) =7 )G +5), va=a (G +5)n)n, (2.80)
and
vy =BG + &)n), (2.81)
one observes that (2.79) holds with equality and the Theorem is proved. 0

3. Bounds on the Effective Elasticity for Anisotropic Composites

We apply the variational principles developed in Sec. 2.2 to obtain new upper and
lower bounds on the effective elastic tensor for anisotropic composites.

3.1. Lower bounds for particulate composites

To fix ideas, we use the new variational principles to obtain bounds on effective
elastic properties for a compliant matrix reinforced with stiffer particles, i.e. par-
ticles with elasticity C and matrix with elasticity C;. We consider a distribution
of N particles none of which intersect the boundary of the domain Q. The particle
region is denoted by Y2 and the matrix by Y;. We consider a comparison problem
with the particle region Y; filled by a soft elastic material, (i.e. zero stiffness) and
a matrix region with isotropic elasticity . We introduce the effective elastic tensor
C7 associated with this composite, defined by:

Cle:e= Lxg‘x} /y1 y(e(u) + &) : (e(u) + €)dy (3.1)

for all constant 3 x 3 strains ¢.
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We introduce the following tensor notation, let

D = 0,C7Co(C2 — C1) 7,

E= (2,6)_1/1‘I‘5(n)ds+a'1/rl"h(n)ds,

and C* is given by (3.1) for the choice ¥ = C;. The tensor inequality bounding the
effective tensor from below is given by:

Theorem 3.1. Lower Bound. For any constant 3 X 3 strain e:

Cée:e 2 (C; —CLEC)e: €
T -1
+ O2e D 9201_1 ( fs¢ ) (3.2)
C1Ee 6.C71  E+Ct-crteret GiEe) " ™

Proof. We make the choice p = x2i,v = rijn; in the variational principle given
by Theorem 2.1. Here y and r are constant symmetric 3 x 3 matrices, and n is the
unit normal pointing into phase 1. The associated bound is given by:

Céc:e—ve:e+ Evye:ne
> max {2L(e, xop,7n) — Qxz1,71)} - (3.3)

Setting the comparison elasticity v to C; the theorem follows from explicit compu-
tation of L and Q. The formula for L follows directly and is given by:

L=6u:e+CiEp:e¢. (3.4)

The formula for @ requires computation; we first display the formula and then
proceed with its computation:

Q=0(C—Ci) 'p:pu+Er:r
+ (BoC 4 20oCT p  r + (CTE = CLC*CT M o). (3.5)

The first three terms of Q follow directly from substitution of the polarizations
P = X2#,v = rn into the formula for @ given by (2.25). The last three terms of
(3.5) follow from solution of the comparison problems (2.16)-(2.19) and evaluation
of the nonlocal term in (2.25), i.e. we show:

/ Ci(Mp+ Rv) : (Mp+ Rv)dz
Q

= (0207 s p+20:C7 i + (CT = CTIC*C s ). (3.6)

For the choice p = xau the solution of (2.16), (2.17), yields Mxau = —C; *x2p and
therefore
/;ClM(sz,) : M(xep)dz = 6071 - . (38.7)
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Solution of (2.18), (2.19) provides the relation R(rn) = —C{'r in region 2, so

2/ CiM(xap) : R(rn)dz = 20,C7 s (3.8)
Q
Last, in region 1 we have R(rn) = e(u”) where u” is a solution of
V-Cie(u")=0 in Y, (3.9)
Cife(w")+Cr)»n=0 on T. (3.10)

Physically we see that u” is the periodic fluctuation in the elastic displacement
for a composite made from soft elastic material in Y> and an elastic material with
Hooke’s law C; in Y;. Here the composite is subject to a constant strain C;° L,

Integration by parts and using (3.9), (3.10) gives:

CiR(rn) : R(rn)dz + [ Cie(u”):Ci'r =0. (3.11)
Y Y,

Completing squares gives:

et éciirir= [ alew) + 67 (ew) + e
T

=6,C;Yr i — v C1R(rn) : R(rn)dz. (3.12)
Thus
/(;ClR('rn) : R(rn)dz = /y CiR(rn) : R(rn) + ’ C1R(rn) : R(rn)
2 1
=6C7 i + 5 C1R(rn) : R(rn), (3.13)
and applying (3.12) gives
/QClR(rn) : R(rn)dz = Ctr v — Cf1 56’1‘11' T {3.14)

Using the identities (3.7), (3.8) and (3.14) we have established the desired formula
(3.6). The Theorem follows upon maximization of (3.3) over all 3 x 3 symmetric
matrices r and p. O

The lower bounds given in Theorem 3.1 hold for any anisotropic particulate
mixture and is a tensor inequality. On the other hand, similar methods yield lower
bounds on selected traces of the effective elastic tensor. In this direction we provide
lower bounds on the bulk and shear traces given by (1.1) and (1.2) respectively.

For isotropic composites the bulk and shear traces correspond to 3x° and 2u°
respectively, where u® and k¢ are the effective shear and bulk moduli for an isotropic
composite.
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To generate trace bounds we return to the lower bound (3.3), with L and @
given by (3.4) and (3.5). Group averaging the left- and right-hand sides of (3.3)
over the isotropic group and choosing € =& where tré = 0 yields:

tr,C° — 21 + éH—%-s + —Sﬁis (€:¢) > max{L - 2Q} (3.15)
: ST R T i * '
where 4 8
— N o WO ot BVE BN
L=20(E:&)+ 53 s(f: &)+ 156xs('r 1 E) (3.16)
and

Q = Ozp2/pm(2p2 —~ o)~ (@ : B) +202(2m) 7 (71 )

+(5—35 + 1%5% + (2u1)"1 —(2m)7%2 i ) (F:7). (3.17)

Here 2/t = tr, 5, s is interfacial surface area and fi, T are the trace free parts of
p and r. Optimization of (3.15) yields:

Theorem 3.2. Lower bound for the shear trace.

trsC® > 21 — 2p1 (1 — (2m1) 712 £~ + (2mb2c)™) 7, (3.18)
where
c=sp/02 — As (3.19)
and
p=t(5+2) Ae=m - (3.20)

Proceeding in a similar manner we obtain a lower bound for the bulk trace:

Theorem 3.3. Lower bound for the bulk trace.
t1,C° > 31 — 3k ((1 — (3k1) '3 )71+ (36160717, (3.21)

where
L= 3/(3a02) — Ay, (3.22)

and 35 = tr,C*, DAy = (3k1)" — (3k2) ™"

We denote the lower bound in Theorem 3.2 by ICLS (ﬁ, p) and investigate
its behavior in the geometric parameter [ and interfacial material compliance
parameter p.

FElementary estimates give

0< i< B (3.23)

and we have p > 0.
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Analysis shows for fixed /i I CLS(ﬁ, p) is monotone decreasing in p and
tr,C® > ICLS(f,p) > ICLS(it,00) =2 It . (3.24)

On the other hand, for p > 0 analysis shows that the bound is monotone increasing

. *
in & and

tr,C® > ICLS(&, p) > ICLS(0,p), (3.25)
where L
ICLS(0,p) = (il— sy ps) ) (3.26)
P 2p2 - 2p2 ' )

We investigate the behavior of the lower bound on the bulk trace given by
Theorem 3.3. The lower bound is denoted by ICLB(k,a~!). Elementary estimates
give

0< K <6ik (3.27)
and we note a=! > 0. For & fixed analysis shows that ICLB is monotone decreasing
in o1 and

tr,C¢ > ICLB(k,a" 1) > ICLB(K,0) = 3 k . (3.28)

On the other hand, for a~! fixed the bound is monotone increasing in % and

-1
tr,C® > ICLB(k,0"') > ICLB(0,071) = (3071 + 5%— + 522) . (3.29)
1 2

We observe that ITCLB(0,a~!) agrees with the bound obtained by Hashin.®

3.2. Upper bounds for particulate composites

We consider a compliant matrix with elasticity C; reinforced with particle of elastic-
ity Co. As before we consider a distribution of particles none of which intersect the
boundary of the domain Q. We denote the region occupied by the mth particle by
Y., and its boundary by 8Y,,. The center of mass of the mth particle is denoted by
™ and for a point  on the particle surface we introduce the normalized coordinate
y™ =z — r™. We now introduce the following tensors:

1
Bye=Y" / 9T G0 + gy S + may By + ngyPSa)dS,  (3.30)

m Joym

1
Mijke = /a o JTUT B + UPUT 0+ YU B + VD E)AS, (3.31)

m
1
Rijke = Z / Z(y:“ nYR e + YNy e + YT R e + Y7 nayy ne)dS , (3.32)
. Joym

T= 2/ X1C2NC2X1d$ —/ X1C2N62N62X1dm, (333)
Q Q



Elastic Composites with Imperfect Interface 1157

and
A - 91026’2 - T (334)

The tensor 7 defined by (3.34) contains two-point correlation information on the
composite microstructure. To see this we introduce the two-point correlation func-
tion:

oft) = /Q x1(@)xa (@ + £)dz .

This function gives the probability that the ends of a rod of length and orientation
described by the vector ¢ lies in both phases. Noting that |{1(k)|Z = x1 * x1(k) we
see that é(k) = [%1(k)|? and a computation shows that 7 is written:

T =2 &k)Ca((2p2) T (k) + rTa(k))Ca
k0

— 7 &(k)Ca((202) " T (B) + A (R))Ca( (2112) T (B) + 1T (B))C2
k#0

The tensor inequality bounding the effective tensor from above is given by:

Theorem 3.4. Upper bound. For any 3 x 3 constant siress &:

c ' —c;Ye e
0:6\" (61CT - C) "t + A -A X
Z(é&) (1 ' —,24 ﬂM+(a—ﬁ)R+A) (Bla—) (3:35)

Proof. For any pair of 3 x 3 symmetric matrices we make the choice p = x1p
and v = r;;47 on dY,. Upon substitution into the variational principle given
by Theorem 2.3 and choosing v = C; we apply (2.52) and obtain after a tedious
computation the bound:

c 7 -c;Ya:e > fnaa)({2f/(p., r) - 0(u,1)}, (3.36)
. IL‘T
where
Lip,r)=6,6:p+ B :r (3.37)
and

Qu,r) =01(CT =C) e p+ (BM +(a— B)R)r : 7+ A(p—r) : (u—7). (3.38)
The theorem follows upon maximization of (3.36) over p and r. O

The upper bounds hold for any anisotropic particulate mixture. Similar methods
yield upper bounds on the bulk and shear trace for the effective tensor. Returning
to (3.37) we average both sides over the isotropic group of rotations. Choosing
€ = £ where tré = 0 and optimization over trace-free choices of i and r gives the
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upper bound on the shear trace of the effective tensor. After a straightforward but
tedious computation we obtain:
Theorem 3.5. Upper bound on shear trace of the effective compliance.

-1, _ 02 — 020, )(1 + Ag(1 —t5)2u2)
tr,C° 1< (9 1y (63 — g:024, s s
( ) - (( ﬂl) gs(l + 02As(1 - t5)2u2) + 9192(1 - t5)2p,2

where A, = (2p1)7t ~ (2p2) Y, ts = (6/5) (k2 + 2u2) /(3K2 + 4p2), and

) N , (3.39)

= ftr,M + (a — B)trsR

=6EGE [ W ras-gY [ @t

8Y'"
+ (a/5)(§ 3 /a Ll Pds+ Z /a S n)2dS).  (3.40)

We note that application of Cauchy’s inequality to the integrands in (3.40)
implies that g, is increasing in the interfacial stiffnesses o and 8 and g, > 0.
Proceed in a similar fashion we obtain

Theorem 3.6. Upper bound on bulk trace of the effective compliance.

-1, 62 — 902 28:)(1 + Ap(1 — tb)3l§2)
t CC 1 < -1 ( 2
( o ) - <(3K1) + gb(l + 02Ab(1 - tb)3-‘i2) + 9192(1 - tb)3li)2

)_1 , (3.41)

where Ap = (3k1)~! — (3k2) 7Y, ty = 3ka/(3kg + 4uz), and

9 = Bt M + (a — B)tr, R
— 2 (0.’ m 2
= (ﬂ/3)(; /a . ™ 2 dS) + —— Z /a - dSs. (3.42)

Here an application of Cauchy’s inequality shows that g, is increasing in the para-
meters a and B and g, > 0. We denote the upper bound in Theorem 3.5 by
ICUS(gs) and note that for 6, fixed it is monotone increasing in g;. In the limit
as either 8 or a goes to oo one has that g, = co and

6

1 + 362(ka+42us) 7
2u1—2pn2 ' Spz(3r2+4pz)

ICUS(00) = 2y + (3.43)

The expression given above is precisely the upper shear modulus bound for isotropic
composites with perfect interface obtained by Hashin and Shtrikman.” Analogously
we denote the upper bound given by Theorem 3.6 by ICUB(gs). For fixed 6, this
bound is also monotone increasing in g and in the limit as either 8 or o tends to
00, one has:

ICUB(00) = 3Kz + — 2 — (3.44)

3k1—3Kg + 3Ko+4u0
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This expression is the upper bulk modulus bound obtained by Hashin and
Shtrikman? for isotropic composites with perfect interface.

4. Effective Behavior for Monodisperse Suspensions of
Spheres at Critical Particle Size

In this section we consider a monodisperse suspension of relatively stiff isotropic
elastic spheres with elasticity C; embedded in a softer matrix with isotropic elasticity
C;. For prescribed interfacial spring constant o, we exhibit a critical particle radius
R§ for which the effective bulk trace tryC® of the composite is identical to that of
the matrix. We show that:

Ri=a1/A,. (4.1)

Whenr the interfacial spring constants a and 3 are equal, we exhibit a critical particle
radius RS for which the effective shear trace tr;C* equals that of the matrix material.
We show that:

RS = B7Y/A, . (4.2)

At these critical radii the effect of the interface is balanced by the greater elastic
stiffness of the particles.

We begin with the obvious remark that for composites occupying the unit cube
we only consider parameter values k1, K2, #1, 2 for which both R} and RS are less
than one-half. We consider a dispersion of N spheres of common radius ¢ with
centers denoted by r¢. We assume all spheres are contained in the unit cube and do
not touch. The formula for the critical radii follow from the following two theorems.

Theorem 4.1. Given a prescribed hydrostatic strain AI, if the common radii of
the particles equal R§ then there ezists a periodic piecewise affine solution to the
problem (2.6)-(2.9) given by:

AT in the matrix,

3. 4z = 43
¢; ’ % AE; + <1 — ——) A'r in the ith particle. 43)
2

Theorem 4.2. Given a prescribed trace free constant strain e, if the interfacial
spring constants a, 3 satisfy a = 8 and if the common radii of the particles equals
RS then there exists a periodic piecewise affine solution to the problem (2.6)—(2.9)
given by:

EjkTk in the matrix,
Rl &Ejkxk + (1 - &>Ejk'ri: in the ith particle.
b2 2

Remark. We point out that Theorems 4.1 and 4.2 show that the elastic field in
the matrix remains undisturbed when the spheres are at critical radius!
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Substitution of (4.3) and (4.4) into (2.11) yields the following:

Corollary 4.3. For a fized and for any value of B if one applies an average
hydrostatic strain M of the form (2.2) to a suspension of N spheres each at critical
radius R, then the resulting average stress is given by

3k1(A). (4.5)

Corollary 4.4. For a = [3 fized, if one applies an average derivatoric strain
eP (treP = 0) of the form (2.2) to a suspension of N spheres each at critical radius
RS, then the resulting average stress is given by

2ueP . (4.6)

It follows that:

Corollary 4.5. Critical radius for the bulk trace. For a fized, if the common radius
of the suspension equals R, then

tr,C® = 3K1 . (47)

Corollary 4.6. Critical radius for the shear trace. For a = (3, if the common
radius of the suspension equals R;, then

trsCC = 2[1,1 . (48)

Proof of (4.1) and (4.2). Fora prescribed average strain & we look for a solution
of (2.6)—(2.9) of the form

. sfka:k in the matrix (4 9)
i +EjkTe = X .
A eﬂmk +vj in the ith particle.
From (2.2), (2.7)-(2.9) it follows that:
e+ /[cﬁ] O ndS = 6162 + 0267, (4.10)
r
CieAn = CyeBn, (4.11)
(CoeBn), = —B{(B —e*)z + v'}s, (4.12)
and
(CaeBn)n = —af(eB - ez +v'}n. (4.13)

We solve the system (4.10)~(4.13) to find the unknowns eA B v i=1,2,...,N,
and the sphere radius.
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From (4.11) we may conclude that C7'Cae® = €. On the surface of the ith
sphere the unit normal is written n = (z — r*)/a, thus z = an + r* on the surface
and (4.12), (4.13) are written as

({aaa1-2) rern) + ({amnesu(1-52) "),
= —,3{ ((1 - %)P;eBri)T + ((1 - Z—j) PssBr")T + vi} (4.14)
({352 + aa(l - :—j) }IP’IeBn)n + ({m +oa (1 - %) }lP’seBn)n
= —a{ ((1 - 2—?) ]PjeBr’)n + ((1 - -‘l:—j)lPseBr")n +vi}. O (4.15)

We observe that (4.14) is an equation of the form

and

(Ln)r = gr, (4.16)

where L is a constant symmetric matrix and g is a constant vector. Here (4.16) holds
for all unit vectors n. It is evident that (4.16) is not satisfied by every symmetric
matrix L or vector g, indeed one has

Lemma 4.7. Equation (4.16) holds for all unit vectors only when ¢ =0 and L is
o multiple of the identity.

Proof. To show ¢ = 0 we let n = ¢*,i = 1,2,3 where ¢ are eigenvectors of L
associated with eigenvalues L;,i = 1,2,3. Substitution into (4.16) gives

Liei —-q= L,’ei - qiei (4.17)
or
g=qe! = @t =ge’, (4.18)

where ¢; are the components of g. Since ¢' are all pairwise orthogonal we conclude
that g; = 0. Thus we have
ILn=(Ln-n)n (4.19)

for all unit vectors n. Next we show that all eigenvalues of L are identical to
conclude that L is a multiple of the identity. Choosing two unit vectors v!,v? such
that v* - v2 # 0 we observe that Lv* -v? = Lv? - v' and apply (4.19) to obtain

(Lot - ot — Lo? - 0?0 -2 =0, (4.20)

hence Lv! - v! = Lv? - v2. From continuity it follows that the function Ln - n is
constant for all unit vectors and so all eigenvalues of L agree. [0
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Application of Lemma 4.7 to Eq. (4.14) shows that there exists a constant ¢ such

that:
{3»:2 + fa (1 - :_2)}1?,53 =cl, (4.21)
1
{2#2 + Ba ( - ﬁz—) } P.e® =0, (4.22)
251
and
(1 - @) P;eBri 4 (1 - ﬂ) Pefri+v' = 0. (4.23)
K1 131

Since Pre? = (1/3treB ), it is evident that Eq. (4.21) is satisfied for all values
of 8,a,ky and ky. On the other hand, Eq. (4.15) is of the form:

h+g-n+In-n=o0 (4.24)

for all unit vectors n, where h is a scalar, g is a constant vector and trL = 0. We
adopt the frame of the eigenbasis of L and write (4.24) as:

h+gq-n+ Lin? +L2n2+L3n§ =0. (4.25)
1 2

Since trL = 0 we may assume Ly > Ly > L3 with L; 20and L3 <0. It is evident
that for Iy > 0 and Lz < 0, Eq. (4.25) never describes a sphere. Thus (4.24) holds
for all unit vectors only if

L=0, g=0andh=0. (4.26)

Applying (4.26) to (4.15) we recover (4.23) as well as the new identities given by,

(3152 + aa (1 - :—f)) Pref = 0, (4.27)
and
(242 + ea(l — %))PseB =0. (4.28)
We observe from (2.8) and (2.9) that:
(-] = ~B~Y(CaePn), = —g~1 (CzeBx ; TZ) : (4.29)
and ;
[a] = —a~1(Co¢Pn), = —a~ (ozeB ( 2or )) . (4.30)

Substitution of (4.29) and (4.30) into (4.10) together with a, long but straightforward
calculation yields:

3\ ~1
Pref = (91E + 0 + 6, ﬂ) Pre (4.31)
K1 ac
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and

-1
B M1 G120 (1 1
B g -+ Pe. 4.32
Pse (91ﬂ1 + 0, + 5 (2ﬂ+3a € (4.32)

To recover Theorem 4.1 we let € = AI. For this choice Ps¢ = 0 and from (4.32)
it follows that P,e® = 0 and Eqs. (4.22) and (4.28) are satisfied. From (4.31) it
follows that Pre? # 0, hence (4.27) holds only if

3kg + aa (1 - -’2) =0. (4.33)

K

Equation (4.33) provides the relation defining the critical radius. Indeed (4.33)
holds provided that @ = R§. For this choice Eq. (4.31) gives:

treB = St (4.34)
K2

As can be seen earlier we have ¢4 = C;1C;¢? and so

tre? = tre. (4.35)

Theorem 4.1 follows from substitution of (4.34) into (4.23) and Egs. (4.9) and (4.35).

Theorem 4.2 is established by setting ¢ = ¢P. For this choice P;e? = 0 and from
(4.31) it follows that P;e? = 0 and Eq. (4.27) is satisfied. From (4.32) it follows
that P,e® # 0 and so Eqs. (4.22) and (4.28) hold only if

23 + Ba (1 - &) =0, (4.36)
251
and
2ug + 0a (1 - ‘u—l) =0. (4.37)
1251

Equations (4.36) and (4.37) provide the relations defining the critical radius. Indeed
for oo = 3 (4.36), (4.37) hold provided that a = RS. For this choice we find

ef = Z—IED ande? = £P. (4.38)
2

Theorem 4.2 follows from substitution of (4.38); into (4.23) and Eq. (4.9).

5. Comparison with the Bounds of Hashin

Hashin® derives extensions of the classical variational principles for the case of
imperfect contact. The interface is described by two tangential stiffnesses D;, D;,
and a normal stiffness D,. For isotropic composites these principles are used to
obtain bounds on effective shear u® and bulk moduli k. When D, = D; = § and
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D,, = o the bounds reported in Ref. 6 are given by:

-1
HLS=(01 +0—2+f(3+1)) < 2uf

2u  2u2 S\B 3o
gmmuwﬂm(lj%)=ﬂva (5.1)
HLB = ( by B2 i) < ok < 013k + 8232 ( 1 ) — HUB, (5.2)
3k1 2k 3o 14+ .
where
as = 6022u2/(6 + gs) (5.3)
= 023k2/gp (5.4)

with s denoting interfacial surface area and

6=(a/10)3 /6 (P - s+ (8100 /a (s,

(5.5)
The upper and lower bounds for the shear modulus reported in Hashin® (i.e. HLS
and HUS) are incorrect due to a computational error. The corrected upper and
lower bounds are given by:

Ls=(2r 0  s(1, 2 T o < 0,21 + 622 ( 1 )—US
2#1 22 5\B " 3a S et S Viain 2442 1+a,) )
(5.6)

where
513 = 922/1,2/93 . (5.7)

We first show that the parameter § appearing in (5.3) is redundant. We introduce
the tensor P as given in Ref. 6 by:

P=aJ"+B(J" + J°), (5.8)
where
LVEDY / niy; Yy ds, (5.9)
. Joym™
1.]k.£ E/ ty] tkye (510)
and

1_7k£ Z/ 1'yj skyl (5'11)
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Here t and s form an orthonormal basis in the plane tangent to the two-phase
interface. Noting that P is a symmetric map on 3 x 3 matrices we see for isotropic
suspensions that P is isotropic and is written

5
P =gPr+gsPs + 8P4, (5.12)
where P4 is the projection onto antisymmetric matrices given by
1
(Pa)ijee = 3 (6:x65e — 6iebjk) (5.13)
and ]
9 = gPiijj , (5.14)
1/1 1
9s=% (5 (Pijij + Pijgi) = gPiia‘j) , (5.15)
5 1
39 = 5 Puis = Piggi) - (5.16)

We point out that Eq. (28) of Hashin® is incorrect. Indeed, in (28) of Ref. 6 the
restriction of P to 3 x 3 symmetric matrices is written as:

3PP, + 2POP, (5.17)
where
3p(t) = %.Piijj (5.18)
and
2P = % (Pijij - %Piijj) =gs+4. (5.19)

We see from (5.12) and (5.15) that the trace given by 2P®) is in error. It should
instead be computed as in (5.15). We apply the correct formula for P given by
(5.12)~(5.16) and proceed as in Ref. 6 to obtain the corrected upper bound “US”
given by (5.6). ‘

A similar computational error is present in the lower bound displayed in (5.1).
Introducing the tensor Q given by Hashin®:

1 1
==—L"+ Z(L*+ L%, 5.20
Q o + ﬁ( + L*) (5.20)
where
%kezfninjnknldsy (5.21)
r
ijke=/5injsknld3, (5.22)
r
and

szkl =/t¢njtkn£ds. (523)
r
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We observe as before that @ is a symmetric map on 3 X 3 matrices. For isotropic
suspensions, @ is isotropic and is written

Q = AP;r+ ApPs + AaPa, (5.24)

where

1 s :
Ar = EQiijj =3 (5.25)
1/1 1 sf1 2
Ap = s (—2—<Q,~jij +Qijji) - 5Qiijj> =3 (E + a) : (5.26)
and
1 s

A = 5(Qugij — Qujsi) = 3 (5.:27)

We note that in Eq. (39) of Ref. 6 the restriction of @ to 3 x 3 symmetric
matrices is written as

3QWP; +2Q¥P,, (5.28)

where
w1

3QV = 5Quj; (5.29)

and
1 1 s(2 2
@1 1o Y_5(2_2) ,
20 = (@ - 30u5) = 3 (5 + =) (5.30)

We see from (5.24) and (5.26) that the trace given by 2Q(® is incorrect and should
be computed as in (5.26). Applying the correct formula for Q given by (5.24)—
(5.27) and proceeding as in Ref. 6 we obtain the corrected lower bound on the
shear modulus “LS” given by (5.6).

We now compare the bounds developed in the previous sections to the Hashin
bulk modulus bounds given in {5.2) and with the corrected shear bounds given by
(5.6) and (5.7). For fixed values of volume fractions 8y, 02 and g, a straightforward
calculation shows:

(te,C* )L < ICUS(gs) < US(gs) (5.31)

and
tr,C® > ICLS(k,p) > ICLS(0,p) = LS, (5.32)

where ICUS is the upper bound given in Theorem 3.5 and JCLS is the lower bound
given in Theorem 3.2. We remind the reader that the geometric parameters g., 4
lie in the ranges 0 < g;,0 < & < 81y and that, US(gs), ICUS(g,), ICLS(k,p) are

monotone increasing in g, and K.
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0 002 0.04 .06 0.08 o1

a

Fig. 1. Comparison between the new effective shear trace bounds ICUS, US and LS for monodis-
perse suspension of graphite spheres in an epoxy matrix. The volume fraction of spheres is fixed
at 50% and the sphere radius is less than 0.1 m.

The new upper bound ICUS together with the corrected upper and lower
bounds US and LS are plotted in Fig. 1 for a monodisperse suspension of graphite
spheres in an epoxy matrix. For monodisperse suspensions of spheres of radius a,
the parameters g, = -;-(3ﬂ +2a)fza and 5/6; = 3/a. The bounds on the shear trace
are plotted for radii between 0 and 0.1 X 10~2 m, with sphere volume fraction fixed
at 50%. The interfacial stiffnesses are chosen to be a =8 =1 X 106 MPa/m. Here,
the shear moduli and Poisson’s ratios of the spheres are py = 0.7 x 10® MPa and
v = 0.33; the moduli for the matrix are pz = 5.5 X 10® MPa, v, = 0.25. Note that
for sufficiently small sphere radii the bounds indicate that the shear trace drops
below that of the matrix. This topic is pursued in the following section.

For fixed values of volume fractions and g, we have:
(tr,¢*”)~ < ICUB(gs) < HUB(gv) (5.33)

and
tryC® > ICLB(k,a™ ') > ICLB(0,0") = HLB, (5.34)

where ICU B is the upper bound given in Theorem 3.6 and ICLB is the lower bound
given in Theorem 3.3. Here, g, > 0,0 < k < 6151 and ICUB(g), ICLB(k,a™ 1)
are strictly monotone increasing in g, and P respectively. In this way we see that
the new upper and lower bounds ICUB and ICLB are always tighter than the
upper and lower bulk trace bounds in Ref. 6.
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6. Size Effects

We apply the bounds given by Theorems 3.2, 3.3, 3.5 and 3.6 and make use of
their monotonic behavior in the geometric parameters gs,gs and surface area. The
monotonicity is used to predict new size effect phenomena for elastic composites with
imperfect interfaces. We consider first anisotropic particulate suspensions with no
assumption on the distribution or shape of the particles. We introduce the ratios

Ni =p/As, N7 =4/Bs, (6.1)

RS =al/A,. (6.2)

Here p = %(% +&), ¢=5038+ 20)7, A, = (5,1—5 - 5—,1‘—2) is the contrast

between matrix and particle shear compliances, and Ap = (3—}6—1 - 371;) is the contrast
between matrix and particle bulk compliances. The quantities p,q and a1 are
measures of the interfacial compliance.

We point out that the parameters N;,N} and Rj estimate the relative
importance of the contrast between phase compliances and the interfacial com-
pliance. In what follows we illustrate how these parameters influence the overall
elastic properties of composites with imperfect interface.

It is evident that the lower shear trace bound given by Theorem 3.2 is strictly
monotone decreasing in the interfacial surface to particle volume ratio “s/63”.
Moreover the lower bound equals 2u; for s/8 = (N} )~1. We collect these ob-
servations and state the following theorem.

Theorem 6.1. For suspensions of particles with elasticity C3 in a matriz of elas-
ticity C1: if s/62 < (NF)™1, then

tr,C° > 24 - (6.3)

Noting that the lower bulk trace bound given by Theorem 3.3 is also strictly
monotone in /6; and equals 3k, for /85 = 3(Rg)™*, we have:

Theorem 6.2. For suspensions of particles with elasticity C, in a matriz of elas-
ticity Cy: if s/02 < 3(R§)™, then
tr,C% > 3Ky . (6.4)

We consider polydisperse suspensions of spheres of Ca material in a matrix of Ci.
The volume average radius of the suspension of N spheres Yu,m=1,2,...,N, each
of radius a., is given by

N
(@) =651, Ymlam - (6.5)

m=1
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For such suspensions the geometric parameters g, and g, defined by (3.40) and
(3.42) reduce to:

g, = -;;(3/3 +20)65(a) (6.6)
and
g = afz{a). (6.7)

For this case the upper bounds on the shear and bulk traces are given respectively
by

62(1 — (a) /N7 )1+ Ds(1 — ) 22) )‘1
)242

_ -1
1005 (9.) = ((2”1) " 02(8 + 22)(a)(1 + 0244(1 — t5)20s) + 61621 — £

. (6.8)
and
02(1 — 42)(1 + Ap(L — t5)3K2) -
ICUB(gy) = | (3k1)7" 2
(95) (( k)" + afs (a.)(l +0:04(1 — tb)3l62) +6,0:(1 — tp)3ke
(6.9)
These bounds are strictly monotone increasing in {(a) and for (a) = N[,
ICUS =21 , (6.10)
and for (a) = R§ we have
ICUB =3k, . (6.11)

Thus from monotonicity we have:

Theorem 6.3. Size effect theorem for the shear trace. For polydisperse suspensions
of spheres of elasticity Cz in a matriz of elasticity C; and if {(a) < N, , then

tro(C°) = (2p1) (6.12)

Theorem 6.4. Size effect theorem for the bulk trace. For anisotropic polydisperse
suspensions of spheres of elasticity C2 in a matriz of elasticity Cy and if (a) < Ry
then:

trp(Ce) > (3k1) " (6.13)

For monodisperse suspensions of spheres of radius a the geometric parameters
gs and g, are given by

gs = %(3[3 + 20)82a, g» = abaa, (6.14)

and the interfacial surface to particle volume ratio s/ is:

s/6, =3/a. (6.15)



1170 R. Lipton & B. Vernescu

We apply Theorems 6.1-6.4 to this case to obtain:

Corollary 6.5. For anisotropic monodisperse suspensions of spheres of radius a

trsC® > 2u; if a > 3NJF, (6.16)
tryC® > 3k, if a > R§, (6.17)
tr,(C7) > 2m) ! if a < NI, (6.18)
try(C°) > (3ky)~! if a < RE. (6.19)

Here we note that Jensen’s inequality gives 3N} > N;". Moreover, when the
interfacial coefficients o and f are equal, we have 3N} = N, = RS. Here the
critical radius RS is given by (4.2) and

tr,C® > 2y if a > RS (6.20)

and
tr,(C) > (2m1)tifa < RS (6.21)

In Fig. 2 the shear trace bounds are plotted for the monodisperse suspension
of graphite spheres in epoxy for small sphere radii, i.e. @ < 0.12 x 10~* m. Here
a = f3=1x10% MPa/m. Note that the shear trace upper bounds lie far below that
of the matrix shear trace. In Fig. 3 we plot the shear trace bounds near the critical
radius RS = 0.0016 m.

ot 0.0002  0.0004 0.0006  0.0008 0001 0.0012

Fig. 2. Shear trace bounds ICUS, US and LS for monodisperse suspensions of graphite in an epoxy
matrix for particle radius less than critical: RS = 0.0016 m.
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2t 2p%2p Us, o
15+
o5y , ,
0.002 0.004 0.006 0.008

Fig. 3. Ilustration of the comparison between the bounds ICUS and US in (5.31) for radius a
close to the critical value R = 0.0016 m.

For cubic composites we observe that tr,C® = 3x° and tr,(C°7) = (3k%)71,
where k° the effective bulk modulus of the composite. In this case we deduce from
Corollary 6.5 that

24 2u92p,
22}

£33 Us
184
1.6+
141 Icus
12% o 4

8202 0.4

030 0.01 002 0.03 0.04

Fig. 4. Interface comparison method upper bound ICUS compared with the corrected upper bound
US in (5.31) for 3-D monodisperse suspensions of graphite spheres in an epoxy matrix in terms of
volume fraction 83 and radius a.
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K7k

15¢

5 001 o2 0.03 004

Fig. 5. Illustration of Corollary 6.6. Interface comparison method upper bound ICUB compared
with Hashin’s upper and lower bulk modulus bounds (HUB and HLB) (see 5.33 and 5.34) for cubic

composites.

Corollary 6.6. For cubic monodisperse suspensions of spheres:

k° > Ky ifa> R (6.22)

k® < k1 ifa < R, (6.23)
and

k®*=k;ifa=R;. (6.24)

We note that (6.24) also follows from Corollary 4.5.

The interface comparison upper bound ICUB is compared to Hashin’s® upper
and lower bulk moduli bound for cubic composites in Fig. ¢5. The suspension
consists of graphite spheres in an epoxy matrix. The volume fraction of spheres is
fixed at 50% and the sphere radii range from 0.04 m to infinitesimal. One sees that
the bounds are tangent and touch precisely at the critical radius Rj = 0.00683 m.
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