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Abstract--For a prescribed area fraction of stiffeners, we characterize the set of stiffener reinforced 
Mindlin plates with extremal overall stiffness. The method rests upon the derivation of optimal 
bounds of the Hashin-Shtrikman type. Our method is distinct from the usual Hashin-Shtrikman 
approach. We make use of the underlying variational structure behind the Hashin-Shtrikman 
method to show that the use of a comparison material is redundant. We do this by proceeding 
directly and express the equilibrium equations in terms of positive definite integral operators. The 
positivity of the operators is used to obtain a new Hilbert space variational principle for the effective 
stiffness. The associated bounds are shown to be realized by effective rigidities associated with 
hierarchical laminar arrangements of stiffeners. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

We consider a Reisner-Mindlin plate of  thickness hi reinforced using ribs or stiffeners of  
thickness h2 > hi. For  the purposes of  structural design the problem is to find the distribution 
of  ribs providing the stiffest response to a prescribed Ioad. Problems of  this type have been 
treated extensively in the literature. Since the early 80"s it has been known that the optimal 
reinforcement of  Kirchoff plates may include infinitely fine arrangements of  ribs, as indi- 
cated in the work of  Cheng and Olhoff, (1981), Lurie et al. (1982), and Olhoff et al. (1981). 
Such optimal layout problems are found to be made well-posed by extending the class of  
designs to include effective rigidity tensors. It is within this class that a globally optimal 
design can be found, see Cheng and Olhoff (1981), Lurie et  al, (1982), and Murat  and 
Tartar  (1985). The effective rigidity tensor captures the overall limiting behavior of  an 
optimizing sequence of  layouts with increasingly oscillatory arrangements of  stiffeners. This 
tensor may be anisotropic and depends on the local geometry of  the stiffeners. 

For  optimal compliance design it is of  key importance to have an explicit charac- 
terization for the set of  extremal effective rigidity tensors that maximize or minimize sums 
of strain energies, see Allaire and Kohn  (1993), Jog et  al. (1994) and Diaz et al. (1995), and 
the recent papers of  Allaire et al. (1995) and Cherkaev and Palais (1995). 

In this article we provide such a characterization for stiffener reinforced Reisner- 
Mindlin plates, see Sections 6 and 7. To obtain the characterization we start by finding 
explicit bounds on the effective rigidity tensor for periodically reinforced plates, see 
Section 4. 

We remark that the assumption of  periodicity is general since any effective rigidity 
tensor can be approximated arbitrarily well by that associated with a suitable period 
geometry. Such observations hold generically for perfectly bonded linear elastic and heat 
conducting materials and can be found in the work of  Golden and Papanicolaou (1983) 
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(in the context of random media) and DalMaso and Kohn (in preparation), in the context 
of G-convergence. 

The effective rigidity tensor for Reisner-Mindlin plates has two components : an effec- 
tive shear stiffness D~ and an effective membrane stiffness D$. 

For a set ~ ,  ~2,...,~,v of constant curvatures and constant transverse shears 7,, 
72 . . . . .  ~?~ the sum of energies is written 

N 
e - , - e -  ° - (Ds~cj. ~cj+ DsTj 7j). 

j =  1 

The bounds on the effective tensor are given in terms of two geometric parameters charac- 
terizing the composite structure. The first is the area fraction of the stiffeners 02 and the 
second is a probability measure on the unit circle p describing the anisotropy of the 
composite. 

Similar measures describing the anisotropy of composites have appeared earlier in the 
context of multi-phase elastic composites, see Willis (1982), and Avellaneda and Milton 
(1989). For fixed values of 02 and p the bounds on the effective tensor are given by tensors 
(D +, Ds-), (D~, D s )  that depend explicitly upon 02 and p, see Sections 4 and 6. For fixed 
values of 02 and/a we show that the estimate 

N N N 

j = l  j = l  j = l  

holds for all finite sets of constant curvatures and transverse shears, see Sections 5 and 6. 
Our bounding method follows the approach of Lipton (1994a) given in the context of 
reinforced Kirchoff plates. The approach taken here is distinct from the usual Hashin- 
Shtrikman method for obtaining bounds. Unlike the Hashin-Shtrikman method, we do not 
use a comparison material or solve an associated homogeneous elastic problem. Instead, 
we tackle the problem head on and write an integral equation for the local curvatures and 
transverse shears. The equations relate volume averaged curvatures and transverse shears 
to local curvatures and transverse shears through integral operators. The spectrum of these 
operators is analyzed, and it is shown that the operators are positive definite (see the 
Appendix). The positivity of  the operators is used to obtain a Hilbert space variational 
principle for the effective stiffnesses. For the simple choice of constant trial fields, we arrive 
at the upper and lower estimates on the effective properties in terms of 02 and/t. We remark 
that the integral operators appearing here are the analogues of those introduced in the 
work of Golden and Papanicolaou (1983), for problems of heat conduction. In fact, the 
spectral estimates given in the appendix, allow one to write explicit analytic representation 
formulas for the effective rigidity. This topic is not pursued here, however we note that 
bounds obtained from such formulae would naturally agree with the ones presented here. 
Lastly we note that the usual Hashin-Shtrikman method can be used to obtain the bounds 
presented here. 

To complete the characterization of the extremal set of rigidity tensors we introduce a 
special class of effective rigidities associated with hierarchical "laminar" arrangements of 
stiffeners, see Section 5. These are the analogies of the well known finite rank laminar micro 
geometries introduced in the contexts of elasticity and heat conductivity by Francfort and 
Murat (1986), Tartar (1985), and Lurie et al. (1982). 

The effective tensors for such geometries have been found to be extremal in the context 
of Kirchoff plate theory and elasticity, see Gibianskii and Cherkaev (1984), Avellaneda 
(1987), Milton and Kohn (1988), Kohn and Lipton (1988), Allaire and Kohn (1993), and 
Lipton (1988). For every choice of volume fraction 02 and probability measure # we exhibit 
laminates whose effective rigidity tensors are identical to the tensors (D~, D s )  or (D~-, 
D~-), see Sections 5 and 6. These observations provide us with the necessary closed form 
characterization of the set of extremal effective rigidities. This characterization has been 
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used in the numerical approach to optimal reinforcement of Reisner-Mindlin plates given 
in the work of  Diaz et al. (1995). 

The paper is organized as follows : in Section 2 we introduce the effective rigidities in 
the context of  periodic microstructure. To obtain bounds we write the effective tensors in 
terms of  positive definite integral operators, see Section 3. Explicit formulae for the oper- 
ators are obtained in Section 3. The positive definiteness of  the operators is used to obtain 
a Hilbert space variational principle describing the effective rigidities, see Section 4. Bounds 
are obtained from the principles via suitable choices of  trial fields. Closed form charac- 
terization of the sets of  extremal rigidities are given in Sections 5 and 6. 

2. EFFECTIVE RIGIDITY TENSORS 

For  our purposes we consider a unit period cell I 7 in R z. Let Ph and Ps denote the 
projections onto the spaces of hydrostatic and shear strains, respectively. Then the rigidity 

(Ds, Ds) and ~ B, s J, tensors of  the unreinforced and reinforced plate are given by l 1 tO2 OZ-t 
respectively, where : 

Dis = (2/3)h~E((l+v)- 'Ps+(1-v)- 'Ph),  i= 1,2, 

D~s=hiE(l+v)-~I, i= 1,2, 

and I is the 2 x 2 identity. To fix ideas we have assumed that the Young's modulus and 
Poisson ratio of the stiffener are identical to those of  the plate. However, the methods given 
here extend to the case when the stiffener and plate ha,¢e different isotropic elastic properties. 
The periodic rigidities are given by 

(DB, Ds) = x1(DIs, D l~±'SlT ~2t'D2n, D2Xs) (1) 

where ~2 is the indicator function of  the stiffeners and Z1 = 1 -)~2. The volume fraction of 
stiffeners 02 is given by 

02 = f~)~2dY. 

We denote the average curvature and transverse shear by ~ and 9, respectively. The local 
curvature is given by ~c = g: + ~: where 

= ~f l  =-- (1/2)(~yfli-.]- 6~yflj), 

and fl is the mean zero part of  the transverse fiber rotation. The local transverse shear strain 
is V = 9 + Y where 

7 = V w - / ~ .  

Here w is the transverse displacement of the mid-plane. 
The effective properties in bending D~, and shear D~ are defined via equations 

D~R = fr Da(g + ~¢) d Y (2) 

D~s~ = f~,Ds(~+ ~) dY. (3) 
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Lastly, the fluctuating parts of  the local fields are seen to satisfy the equilibrium equations 

Dn(g+~)  : ~ d Y +  D s ( y + V ) ' ~ d Y = O  (4) 

for all square integrable mean zero curvatures k and shear strains 9. 

3. EFFECTIVE PROPERTIES 1N TERMS OF INTEGRAL OPERATORS 

In this section we provide a second formulation for the effective rigidity tensor in terms 
of  integral operators. This will be used in the sequel to develop a suitable variational 
principle describing the effective stiffnesses. We introduce the operators As and As defined 
by 

and 

Asg = (D2s- D ~s)(~+R) 

As~ = (DE--DI) (~+ ~7). 

From the cell problem (4) we have 

V "(Dn(~+ ~)) = 0 

or, equivalently, 

since 

or 

and 

V" [(D2 + x~ (D Js-- DZs) )(g + ~:)] = 0 

Ds = z 1 D ~ + z 2 D  2 2 1 2 = D s + g I ( D s - D s ) .  

On the other hand, ~ = Vfl and it follows that 

V" D~fTfl = - V "  [Z, (D~s-- D2s)(g + ~)1 

fl = -- (V" D~V)- 'V" [)~, (D~ - D~)(R + ~:)] 

= ~fl = -~ (V .D2s~ ' ) - 'V  • [ x , (D~-D~) (R+~) ] .  

We denote the space of 2 x 2, Y-periodic, square integrable symmetric matrix-valued 
fields by Hs. The space of  Y-periodic, square integrable vector fields is denoted by Hs. For 
any q in Hn we define Pn as the operator 

Psq = ~'(V'D2s~)-1V'q 

so that 

~: + • = R-- PBx, (D ~s-- D2s)(g + ~) 
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and formally, we have 

Since 

we obtain the final expression 

+ ~ = [I- PBZ, (D 2n- D ~)1-I (g). 

( D I - D ~ ) ( ~ + g )  = ABg 

AB = (D 2 - - D ~ ) [ I - P s z ,  ( D 2 -  D~)] - '  (5) 

We proceed in identical fashion to derive 

As -- ( 0  2 - D ~s)[I - PsZ~ ( ° 2  - Ok)]-1 (6) 

where the operator Ps is defined on the space of  Y-periodic square integrable vector fields 
and is given by 

PsP = V(V. Ds2V)-'V -p 

Applying (1), (2) and (3) write 

t '  

(D~--D~)R : R jr Z, (D~ ~ * = - D n ) ( g + x ) d Y  

(D2-D~s)7 Y f zt(D~ ' • • = - D s ) ( ~ + y ) d Y .  
J r  

From the definitions of  An and As, it follows that 

and 

(7) 

D2 De'~'v'~'T fF s -  sJ~ r = Z i A s ~ ' T d Y .  (19) 

The identities (8) and (9) provide a second formulation for the effective rigidity tensor. The 
operators An and As  are shown in the Appendix to be well defined and positive definite. 

4. EXPLICIT FORMULAE FOR NONLOCAL OPERATORS 

Here we find explicit formulas for the nonlocal operators Ps and Pa using Fourier 
methods. Consider first the equation 

(v-D2V)w = V .  v (iO) 

where v is Y-periodic with mean zero. Write V" v as 

V" v = ~ eik'yk • O(k) 
k # O  

( D ~ - D ~ ) R :  ~ = f F z I A a R ' R d Y  (8) 
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and w as 

w = ~ e'~"rff~(k) (11) 
k¢O 

where 

ik .  ~(k) 
~ (k )  = . (12) 

k.(D~k) 

Recalling the definition of  the operation Ps, it follows from (10), (1 1) and (12) that '  

Psv = Vw = Z ie~k'r~(k) k = S" k:~(k)  e~k.rk" 
k~o k~o k "(D2k) 

Rearrangement gives, 

Psv = ~ eik'yfis(k)t3(k) 
k#O 

where 

tSs(k) _ k ® k 
.(D~k) 

Proceeding in a similar way we obtain 

PsP = ~ e~k'Y/58(/~)/)(k) 
k¢O 

where 

k 3(1 +v)  
-IkP' Co 2 h ~ E  ' 

and 

fis(/~) = Co [~(6mol~,~Zp + 6,,pl~,l~o + ,~,ol~,jcp + 6,pkml~o) - (1 + v)(l~ml~,l~ol~p) ]. 

5. UPPER BOUNDS ON THE EFFECTIVE RIGIDITY 

In the section we introduce a Hilbert Space variational principle describing the effective 
rigidity. This principle is used to obtain upper bounds on the effective properties. From (8) 
and (9) it follows that for any constant curvature ~ and transverse shear 7 that 

We observe that the operators A~ and As are positive definite (see Appendix), from 
which it follows 

0 I ( ~ - A ~ t p ~ . ( R - A s ' P ~ d T > ~ O .  
f•z'[Ao B A s l k f - A s ' q )  \ f - A s l q )  

(13) 
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(Dan-D~)g::g:+(D2s-Des)~l .~>/2fe)~l(Pq).(~)dY-I xIIA~ 10Asll(q ) ' p  (~)dY 

for any q in HB and p in Hs. It is easily seen that this variational principle is tight. Indeed, 
one has equality for the choice p = Asrc and q = As% The variational principle is used to 
obtain lower bounds. We consider a constant 2 x 2 matrix ~/and constant vector ~ in R 2. 
We let q = r/and p = ¢ and apply (5) and (6) to obtain 

( D 2 - D ~ ) g : ~ +  (D~-Des)f'y >1 20~(rt: g + ~ ' f ) - f ~ , ) ~ , ( D ~ - D  1) ~rl'rldY 

+I~XlPBXlrl:rldY-I~,)~l(D2-Dls)-ldy~'~+I~,)~lPs)~l~'~dg. 

Expanding the tensors 

f x1Pez, dY and feX,Ps~,dY, 

gives 

Ie x ~ P B z ~  dY= ~ (~(k)[2/~B(k) 
k~0 

and 

f z,PsZ, dY= ~ l~(k)12Ps(k) 
k:#O 

where 

~, I~l(k)l 2 = 0,02. (14) 
k~0  

We find now that 

(D~ --D~)~ : g+ (D~ -- D.~)~" "7 >~ 201 (r/" K+ ¢ "7) -- [0, (D~--D~)-' 

- ~ L~ (k)12:,,(k)]rl:n-[0, (D2s-D~s) -~ - ~ I:~, (k)12Ps(k)]¢ • 
k#O k#O 

(15) 

which holds for any ~ and r/. Introduce now tensors D~- and D~- defined via 

1 
OI(D~-D~)-' =(D~-D~) -1 -02 ~ 0--~I~,(k)I2PB(/~) 

k#0 
(16) 
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1 
O, (D~--D+) -' = (D~-D~)-' -02 ~, E~-I~, (k)12 fis(fC) • (17) 

k ~ 0  V l  u 2  

Using D~" and Ds- we may write (15) as 

"D z D e ' -  ? > ~ 2 0 , ( q : x + ~ ' ? )  ( D ~ - D ~ ) ~ : e + t  s -  s)7" 

2 2 + . 2 2 + . - O ~ ( D s - O B ) r l . q - O ~ ( O s - O s ) ¢  ~ ¥¢,r/ (18) 

and hence, 

(O ~ -- D~)~ : R + (Ds 2 - O~)y" y ~> sup [20~ (t/: x + ~" 7) 
~,g 

2 2 + - O , ( D s - D s ) q : r l - O ~ ( D 2 s - V + ) ~ ' ~ ] .  (19) 

From stationarity, the supremum (19) is achieved when 

1 
t 1 = ~ ( D ~ - D + ) ~  

and 

1 
= ~T (Ds: -- D~-)y. 

From this choice the bound is given by 

(D~ -- D~)~ : R+ (D~ -- O~)~" : ~< (D~ -- D+)R : ~+  (O~ - D~)y" y. 

In the next section we show that the tensors D + and D + in (16) and (17) correspond to 
the effective properties of  a suitably chosen finite rank laminate. To facilitate this identi- 
fication, we follow Willis 0982) and Avellaneda and Milton (1989), and write the sums in 
(16) and (17) as 

~ ~ I~ (k)12/ss(/~) = fin(n) d#(n) 
k ¢ : 0  l V 2  1 

' fx ~ - I ~ 1  (k)[2fis(/~) = fis(n) dp(n) 
k ¢ : 0  V l  v 2  I 

where n is a unit vector on the circle S ~ and the positive correlation measure p is given by 

1 

and from (14) it follows that ~s' dp(n) = 1. 
We indicate the dependence of  the tensors D$ and D~- on area fraction of  the stiffener 

reinforced plate 02 and the correlation measure p by writing, D$ (p, 02), D~-(p, 02) and (16), 
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(17) are written 

( Y 2 -1 2 /~a(n) d#(n) (20) D-~ (#, 02) D n -- 02 = Oi ( D n - D l s )  - l -  
1 

( O fs ), D~(#,02)  = D 2 -  OF~(D~-D~)  - ' -  ~ , : s ( n ) d p ( n )  (21) 

Collecting results it follows from (5) that for composites with specified volume fraction 
02 and correlation measure ~ we arrive at the : 

Theorem 5.1. For given values of volume fraction and anisotropy measure one has : 

for all 2 x 2 symmetric matrices ~ and vectors ~) in R 2. 

6. CHARACTERIZATION OF EFFECTIVE TENSORS MAXIMIZING SUMS OF ELASTIC 
ENERGIES 

To complete the characterization of the set of external effective rigidity tensors we 
introduce a special class of rib geometries whose effective rigidities will prove to be extremal. 

We now introduce the notion of a finite rank stiffener reinforced Mindlin plate. To fix 
ideas we describe a rank 2 reinforced plate. We consider a family of uniformly spaced ribs 
of thickness 2h2 normal to a given direction hi. The family is assumed to oscillate on a scale 
of order e 2. Next we consider strips of order e containing the finitely ribbed material. The 
normal to the strips is specified by n:. 

These strips are uniformly interleaved with the stiffened plate on a scale of order e. 
The effective properties are obtained asymptotically in the e = 0 limit. Higher rank stiffeners 
are defined iteratively. We provide explicit formulas for/~n and/ )s  for such micro structures. 

One observes that the formulae (20) and (21) are mathematically analogous to those 
defining effective heat conductivity and elasticity. Indeed, a direct transcription of the finite 
rank laminate formulae of Murat and Tartar (1985) for heat conductivity and those of 
Francfort and Murat (1986) for elasticity deliver the following formulas for/~s and / ) s  

02  - 1 
(22) 

l)s(V, 02) = D2s - O.~(D~_D~s)_ ~ _ 02 ff s(n)dv(n) 
l 

(23) 

where the positive measure v(n) on the unit circle S ~ is defined by 

J 

v(n) = ~ pi6(n--ni). 
i ~ l  

The extremal nature of the effective rigidity tensors of finite rank stiffener reinforced plates 
is seen in the following : 

Lemma 6.1. For prescribed 0 2 and correlation measure #, the geometric tensors D ~ (#, 02), 
D~- (#, 02) correspond to the effective bending stiffness and transverse shear stiffness of a 
suitably constructed finite rank stiffener reinforced plate. 
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To prove the Lemma we follow the approach given by Avellaneda (1987) in the context 
of  two phase elasticity. Let p be any correlation measure and we consider the set S of  all 
pairs of  the form 

We introduce the 6-dimensional space L of totally symmetric fourth order tensors and the 
3-dimensional space T of  symmetric 2 × 2 matrices. The surface S is defined by the map 

(l~e(n),Ps(n)) : S ' ~ L x T 

and we consider the convex hull of  the surface denoted by C(S).  It  is evident that S is a 
subset of  convex hull C(S). From the definition of  C(S) we have that all extreme points lie 
on the surface S contained in the 9-dimensional space L × T. Thus, for a given correlation 
measure/ t  it follows from Carathedory 's  theorem that there exists a laminate with measure 
v of  at most  rank 10 for which 

(24) 

The Lemma follows immediately from (24) and the formulae for D~,  D + and Ds, Ds. 
Combining Theorem 5.1 and lemma 6.1 gives : 

Theorem 6.1. For  all composites with prescribed volume fraction of  stiffeners 02 and 
anisotropy measure /t, there exists an effective rigidity tensor (/)~,/)s) of  a finite rank 
stiffener reinforced plate for which 

N N 

(D~R~ " ~ + D~s~ • ~)i) ~ 2 (I~BKi : l~i ~- Os~)i " ~i) 
i = 1  i - - I  

holds, for any set of  constant curvatures x~, x2 , . . . ,  ~ N  and transverse shears 7~, 72 . . . .  , ~ N .  

This theorem shows that extremal rigidities maximizing sums of  energies can be found 
within the class of  finite rank laminates. 

Theorem 6.2. For  fixed area fraction of stiffeners 02 and for a given set of curvatures ~:~, 
gz,. • •, gu and transverse shears 7t, 72, • •. ,  ?N one has the upper bound : 

( D ~ i "  ¢i + D~L) ~< max ~ei : el +/~s?~" ~, . 
i = l  ' i =  

7. N E W  V A R I A T I O N A L  PRINCIPLES A N D  E N E R G Y  M I N I M I Z I N G  SETS OF EFFECTIVE 
RIGIDITIES 

We develop lower variational principles for the effective rigidity tensor. F rom these 
we follow the procedure given in Sections 3-5 to describe the set of  energy minimizing 
effective rigidities. Introducing the operators Cs and Cn defined by 

Ceg = (D 2 -- D~ ) [ I+  PBT~2 (D~--  D~,)] --1 
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and 

p -  tD2 DlXl-I Cs~=(D2s-Ols)[I+ s~2~ s -  s)J • 

The effective rigidity tensor is written 

I °lC) (D~-O~s)g:g+(O~s-D1)~'~= ~2 0 Cs (25) 

One can show as before that the transforms Ca and Cs are positive definite. Proceeding as 
in Section 4 we obtain the variational principle : 

(D~-D1)g:g+(Des-Dls)f"~>~ 2 f Z 2 ~ p ) ' ( ~ ) d Y  

- f ) ~ 2 I C ~  l 0 l ( ~ ) ' ( ~ ) d Y  (26) 

Cs  

for all q in HB and p in Hs. One can use hierarchical grooved geometries to construct 
compliant effective rigidities. Here we start with a thick plate (of thickness h2) and cut 
uniformly spaced grooves of  depth hE--hi normal to a given direction hi. The grooves are 
assumed to oscillate on a scale of  order e N. Next we consider strips of  order e ~¢- 1 containing 
the grooved material. The normal to the strips is denoted by n2. These strips are uniformly 
interleaved with wider grooves on a scale of  order e N- i. This process is carried out iteratively 
until we arrive at a structure with characteristic length e. The effective rigidity is obtained 
in the e = 0 limit. The formulae for the effective rigidities D(~, D_D_s) are given by 

( s )_1 Ds = D~ + O;~(D2s-D1)-i + l~s(n)dv(n) 
I 

(O_~tD: Dla_~ ±Ol f s )-1 Ds= Dls+~ 2 ~ s-- sJ ~--~2 ~ l~s(n)dv(n) 

Proceeding as in the previous sections we obtain the following theorems. 

Theorem 7.1. For  all composites with prescribed volume fraction of  grooves 01 and ani- 
sotropy measure #, there exists an effective rigidity tensor (DB, Ds) associated with a finite 
rank grooved plate for which 

N N 
~. (Ds~, : g, + 19s~," 7,) <~ ~. (Desg, : g, + Des~i " ~i) 

i =  i i =  i 

holds, for any set of  constant curvatures ~1, ~2 . . . . .  ~N and transverse shears ~?l, 92 . . . . .  ~N" 

This theorem shows that extremal rigidities minimizing sums of energies can be found 
within the class of  finite rank laminates. 

Theorem 7.2. For  fixed area fraction of  grooves 01 and for a given set of  curvatures ~:1, 
~2 . . . . .  ~N and transverse shears ~?1, ~?2 . . . .  , ~?~ one has the lower bound : 

min (13B~,:e,+Ds~,'?,) <~ ~(D~sg,:~,+D~s~i'~,). 
i i = l  
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8. CONCLUDING REMARKS 

The effective stiffnesses of finite rank reinforced plates can be written in terms of four 
independent scalar variables, these being moments of trigonometric functions, see Diaz et  
al. (1995). Such transformations have been introduced earlier and the set of moments 
characterized for problems in two dimensional elasticity and Kirchoff plate theory by 
Avellaneda and Milton (1989). The inverse problem of finding layer widths and orientations 
from the moments is solved in Lipton (1994b). These results can be applied in the present 
context to show that at most third rank stiffener reinforced plates span the extremal set of 
effective tensors. This was done in the recent work of Diaz et  al. (1995). 
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APPENDIX 

We establish invertibility and positivity for the operators AB and As introduced in Section 3. We start by 
formally writing AB and As as : 
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where 

On = 2 I 9 2 D 1 Dn-Dn,  6s = s -  s 

and 

= Ls =,,- ses l,Fss. 

Here 6n and 6s are positive definite and so their square roots are well defined. We establish that An and As are 
well defined and invertible by showing that the inverses L~ t and Ls I exist. We denote the usual inner products 
for the spaces Hn and Hs by (', ')n and (., ')s, respectively. One easily sees that the operators Ln and Ls are 
symmetric and invertibility for the linear operators L~ and Ls follows from the spectral estimates : 

(Lsq, q)n >1 (1 - ts)(q, q)n, (A.l) 

(Lnq, L~q)B <~ 2(1 + t~)<q, q)s, (A.2) 

for all q in Hn and 

<LsP,P>s >1(1--ts)(P,p>s (A.3) 

(Lsp, LsP)s <~ 2(1 +t~)(P,p)s (A.4) 

for all p in Hs. 
Here tn and ts are positive, satisfy ts ~< 1, ts ~< 1 and are given by 

h~-h~ h2-h l  
tn= , ts = (A.5) 

h~ h2 

To fix ideas we show how to obtain the estimates (A.1) and (A.2) on Ln. Expansion of (Lsq, q)n, noting that 
(ztq, q)s ~< (q, q)n and application of Cauchy's inequality gives : 

(Lnq, q)n >1 (q, q ) n -  (q, q)~n/2((,v/~Benx/~n)2q, q)~:2. 

Expansion of (Ls q, Lnq)n and application of Cauchy's inequality gives 

(A.6) 

(Lnq, Lnq)n <~ 2{(q, q) + ( (X/~BPnx/~B)2q, q)s}. 

From (A.6) and (A.7) we see that (A. 1) and (A.2) follow easily from the following estimate: 

(A.7) 

((V/~aPnx//~a)2q, q)n ~< t2(q, q)n. (A.8) 

We remark that (A.8) amounts to an upper bound on the eigenvalues for the operator -v~nPnx/~8. To obtain 
(A.8) we apply Parseval's identity to write 

((x/~sPnx/~s)q, q)n = ~ (V/~Bfin(k)v/~a)q(k) : ~(k). 
k~O 

(A.9) 

We estimate each term in the series to find 

(x/6~Bfis(k)~/~n)O(k):4(k) <~ tsl4(k)[ 2, (A.10) 

and (A.8) follows from a second application of Parseval's identity. 
The estimate (A.10) follows by computing the eigenvalues of the tensor x/~nfiB(k)~/~n. The eigenvalues are 

found to be independent of the wave vector and have the values 0 and ta. Here ts is an eigenvalue of multiplicity 
two. A computation shows that the operator x/6nJan(k)x/6n is written : 

, / ~ ( k ) , , / ~ ,  = tBe(;O, (A.ll) 

where [c = k/Ikl and P(/c) is the projection onto the subspace spanned by the matrices 

p/~± ®/~±+fl/~®/~, 4 ( / ~ ±  ®/~+/~®/~) ,  (a.12) 

where 
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and 

and 
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p = 1/2(  (A. 13) 

fl = l /2(x/ l  + v +  lx/~-v-v). (A.14) 

Last, we recover the necessary positivity properties for the transforms A~ ~ and As ~ . These are: 

()~As~ q,q)B >>- 0 (A.15) 

(~  As ~p,p)s >1 0 (A. 16) 

We prove (A. 15) noting (A. 16) follows along the same lines. Expanding A~ l, we see that (A. 15) is established 
through the following string of equalities : 

(Z,A~'q,q)s=(X,(xf~s) 'LB(x~B) 'q,q)s 

= (X, ( ~ s )  ~(1- x~sPsx, ~ ) ( x / T ) -  ~q, q) 

= ((I--xf~BPsxIXf~B)(X~s) ~X,q,(x~s) 'x~q)n 

= (LB(x~s)  ' z , q , ( x ~ s ) - ' z l q ) 8  

~> (1 - tn)((x/~s) '•, q , (x~s)  -'Z~ q)s, 

(A.17) 

(A.18) 

(A. 19) 

(A.20) 

(A.21) 

where the last inequality follows from (A.1). It is evident that the necessary positivity properties for As and A s 
follow immediately from those on A~ ~ and As ~. 


