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Optimal design and relaxation for reinforced
plates subject to random transverse loads
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We consider a Kirchhoff plate subject to a random transverse load. We reinforce
the plate with stiffeners. For a prescribed area fraction of stiffeners we seek their
" optimal layout so that on average, the plate is as stiff as possible with respect to
the random load. We provide a mathematical formulation of this problem. To
ensure the existence of a solution we relax the problem to include generalized
designs. The relaxation procedure rests upon the derivation of new optimal lower
bounds on the compliance energy for the effective elasticity of composites made
from stiffeners on multiple scales. Our bounding method follows the program of
Hashin and Shtrikman. However our method is novel as no fictitious comparison
material is used in the derivation. This relaxation is new and is the extension to
the two-dimensional setting of the relaxation given by Cheng and Olhoff (fnt. J.
Solids Struct., 17 (1981) 305-23, 795-810) for one-dimensional plate problems,
when the plate thickness is allowed to take two values. The relaxed formulation of
the problem can be solved numerically.

We suppose that the plate is clamped at the edges, so
that

-1 INTRODUCTION

We suppose that a plate of midplane thickness 4; is
reinforced using ribs or stiffeners of thickness A, > ;.
The resulting structure is subjected to a stochastic
transverse loading. For a prescribed area fraction of
stiffeners we seek the optimal layout that minimizes the
average compliance. For example, if we suppose that the

)
Here 8, represents the outward normal derivative. The
tensor M introduced in (1) is the bending rigidity of the

plate and relates the bending moment oy to the
midplane curvature 62 w. We shall assume that both

w(x,w) = ,w(x,w) =0 on OR

loading is Gaussian with prescribed mean and covar-
iance the idea is to build a structure that on average is
stiffest subject to the load. What makes this case distinct
from the deterministic one is that we must design for an
ensemble of loads for which there exists infinite
fluctuation in the loadings.

This problem is one of distributed parameter optimal
control. Here the objective function is the average
compliance, i.e. average work done by the load. Let the
plate domain be given by R, then for a random load
f(x,w) (where the realization w is taken from some
probability space () the midplane deflection w and the
bending moment o satisfy

Mijkl a)zthl W(x, w);

8%+, 037 (x,w) = f(x,w) on R

o (x,w) =
(1)
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plate and stiffeners are made from the same isotropic
elastic material with Young’s modulus and Poisson’s
ratio E and v respectively. Let P, and Py denote the
projections onto the spaces of hydrostatic and shear
strains, respectively, then the rigidity tensors of the plate
and stiffeners are given by

= 11} (2uP; + 2xPy) (3)
and

(4)

respectively. Here u = E/2(1 + v) is the shear modulus
and k= E/2(1 — v). Thus, for a reinforced plate the
rigidity M is given by

M = 1M, +x2M;

M2 2 h2(2,LLIP + 2K,Ph)

(5)

where x; and x; are the indicator functions of plate and
stiffeners respectively and x; = 1 — x». The area fraction
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of stiffeners is given by
[ o ax ©)

The average compliance or work done by the load
S(x,w) is given by

J= <JR W, w) £ (x, ) dx> o

Here () denotes the average over the ensemble.
The control variable for this pfoblem is the rigidity M

M= { M; ?n the pl.ate (8)
M, in the stiffeners

We indicate the functional dependence of the average
compliance J on the rigidity M by writing J = J(M).

The constrained optimization problem is to minimize
the average compliance subject to a constraint on the
area fraction of the stiffeners. Introducing a Lagrange
multiplier A > 0 for the area fraction constraint the
optimization problem is given by

rr&n{J(M) +/\JR x2(x) dx}. (9)

From a theoretical standpoint it is known that a

' problem of the type given by (9) is not well posed.! > It

is well understood that the regularization is accom-
plished by extending the space of controls to include
composite plates. It is within this class of designs that a
global optimum can always be found.!”*®” In the
context of our problem a composite plate exhibits an
effective rigidity tensor; this tensor captures the overall
limiting behavior of a sequence of plates reinforced with
increasingly odcillatory arrangements of stiffeners.
Indeed, as the length scale of the local geometry of the
stiffeners goes to zero we may replace the detailed local
elastic behavior with that of an effective rigidity tensor.
This tensor may be anisotropic and depends upon the
local microgeometry of the minimizing sequence of
stiffeners. The notion of an effective tensor is a natural
one for this problem as optimal designs are frequently
approached by such sequences.!*” We emphasize here
that the extension of the design space to include effective
rigidity tensors is not equivalent to introducing isotropic
plates with an effective thickness. Indeed, introduction
of isotropic plates with an effective or averaged
thickness would constrain the control M to be in the
space of isotropic tensors. This is clearly inadequate for
the purposes of relaxation as minimizing sequences are
known to possess spatial anisotropy for asymptotically
small length scales."®*

The regularization in the context of reinforced plates
was studied by several investigators.">* These investi-
gators treated the one dimensional problem of an
annular plate reinforced with circumferential stiffeners.
Their regularization amounted to understanding all
possible effective rigidities. We remark that at this time

the set of all effective rigidities for the general two
dimensional reinforced plate is unknown. Fortunately,
for the problem at hand it is sufficient to use only an
extremal subset. The use of such subsets in the
regularization of optimal design problems is called
partial relaxation (cf. Refs 1, 2, 5, 8). The set of
effective rigidities necessary for the partial relaxation of
our design problem is the analogue of the well known
finite rank laminates. Such composites have been
discussed by many authors”~!! and have been applied
to the partial relaxation of problems in conductivity and
elasticity (cf. Refs 4, 7, 12). In the context of plate
theory Gibianski & Cherkaev!® have obtained the
partial relaxation for plate problems involving one
energy. For the random loading problem discussed
here we find in Section 3 the partial relaxation for a
weighted infinite sum of energies. This relaxation is new
and is the extension to the two dimensional setting of the
relaxation given by Cheng & Olhoff'? for one
dimensional plate problems, when the plate thickness
is allowed to take two values.

In physical terms the composites used in the partial
relaxation are those whose effective rigidity provides the
stiffest compliance in response to the local midplane
curvature. This is illustrated in Section 2.

We note here that deterministic optimal compliance
design problems have received much recent attention
and the reader is referred to a review.!? The relaxation
provided here for the random problem also applies to
the deterministic case. This is illustrated in Section 2
where it is seen that the weighted infinite sum of energies
associated with the random case can be written as a sum
of just three energies.

In the following sections we provide the relaxation of
the design problem for a general random load f(x,w).
However, as most physically measurable processes are
of the second order type it is practical to consider the
loading as a second order random process. For this case
the load f(x,w) can be written in terms of its average
f(x) and a mean zero random fluctuation f(x,w) in the
form

flx,w) = f(x) + F(x,w) (10)

The mean zero fluctuation f can be expanded in a
Karhunan—Loeve expansion (cf. Refs 14, 15) given
by

Foow) = V() (1)
n=]

Here, f is determined by its covariance function
T(x1,x;). The deterministic functions f, and the
numbers are the eigenvectors and eigenvalues of the
integral equation

|, T ax = ot (12)
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The mean zero random variables ,(w) are determined
by

6@ =5 [ Fonefix) s W)

The functions f,,(x) and £, (w) satisfy the orthonormality
conditions

(é-n(w)gm(w)) = 6nm (14)
and
[ F17) i = b (15)

It follows immediately from (1) and (2) and the
orthonormality relations (14) and (15) that the mid-
plane deflection w is of the form

w(x,w) = W(x) + > _ &n(w)an(x) (16)
n=1
where
anc,-x,»Mijkla:%xx, W(x) =f(x) (17)
and

Ry M@ ay() =fulx), (1=1,2,...)  (18)

and W, a;, ap,... satisfy the clamped boundary
conditions (2). We see that w is the deflection due to
the average loading and }_,2; &,(w)a, is the response to
the random fluctuations in the load.

We approximate the random load by truncating the
series (11) at the Nth term. The associated midplane
deflection due to the truncated load is given by

w(x, w) = w(x) + Zén )an(X) (19)
The average compliance (7) is then approximated by
J(M), where

N
i) = [ P70+ Y Ve a0
n=1

For problems of practical interest we may consider the
optimization problem for the approximate average
compliance (20). This problem may be interpreted as
an optimal control problem for multiple independent
deterministic loads. In terms of the approximate average
compliance, problem (9) becomes

mNiIn{j(M) +2 JR x2(x) dx} (21)

The relaxation of the approximate problem follows
immediately from the methods developed for the general
problem given in Sections 2, 3 and 4. To illustrate
minimum compliance design we include a numerical
example, see Section 5. We remark that the plate model
treated in this example is not a stiffener reinforced
Kirchhoff plate, but instead, a stiffener reinforced

Mindlin plate model introduced by Soto & Diaz.!® We
choose this model as there exist numerical codes for the
solution of minimum compliance problems for this plate -
model. The numerical calculations were carried out by
Diaz & Soto using the structural optimization. code
developed in Refs 16 and 17. We remark that the model
of Diaz and Soto has not yet been proven to be a
rigorous relaxation for the random loading case.
However it enables the layout problem to be formu-
lated as a sizing problem that can be solved using the
optimality criteria method, see Refs 1, 2 and 17. The
numerical implementation of the rigorous relaxation of
problem (9) for Kirchhoff plate theory given by (36)
follows the same lines as the example given in Section 5
and is the focus of joint work with Diaz and the author.

2 RELAXATION OF THE DESIGN PROBLEM

We formulate the relaxed version of the problem (9). To
relax the problem we allow the control variable M to
assume as before the values M; and M, associated with
the plate and stiffener; and in addition we allow M to
take values in the set of effective rigidities. The set of
effective rigidities corresponds to a ‘composite’ material
with local area fraction 6, of stiffeners. The optimal
design now allows for regions of stiffeners, for which,
6, = 1; regions of pure plate, for which 8, =0; and
regions of ‘composite’ associated with the intermediate
values, 0 < 6, < 1. The total area fraction of stiffeners is
given by

J 05(x) dx (22)
R

We denote the set of all effective rigidities associated
with local area fraction 6, of stiffeners by Gj,. The
extended set of controls is then described by the pair
(62,M), where M € Gy,. We note for §, =1 and for
0, =0 that the Gp, set reduces to M, and M
respectively. In terms of the extended set of controls
the relaxed problem becomes

min {J(M) + )\J 6y(x) dx} (23)
[ (x) R
Me ng (%)

As was mentioned earlier, a complete characterization
of the set Gy, is not available, however, for this problem
we do not need to know the full Gy, set. To see what we
need we develop a minimum complementary energy
principle for the bending moment appearing in the
composite plate. We introduce the following class of
moment tensors.

€ ={nj|lm= ‘i;aizj’fij(x w) = f(x,w);
(1) 7;in LZ(R) almost everywhere in {2

(2) 7 in L*(Q) almost everywhere in R and along
curves ‘S’ of discontinuity (in the x variable) of 7:
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(3) @g]=0

(4) [Mp]=0 .

(5) Imjtfnf — 767 n;7 ] = 0 at the corner points

‘x;’ of the curve S} (24)
Here Q is the Kirchhoff shear force

Q = =0, 11 — O(1y;t;m;) (25)

and M3y is the bending moment

MB = TN (26) :

where ¢ and # are the tangent and normal vectors to the
curve respectively and g, is the tangential derivative
along the curve. At the corner points x;, the vectors ¢
and n change discontinuously from ¢~ and n~ to ' and
nt. One easily obtains after integration by parts (cf.
Ref. 2) and standard arguments that

J S, ww(x,w)dx = minJ M (x, w) - T(x,w) dx
R TEL JR

-

(27)
Ensemble averaging (27) gives
J(M) = min <J M_lT'de> o (28)
T €€ \JR ‘

Upon interchanging operations of averaging and
integration we obtain

J(M) = min JR (M7 7) dx (29)

TE¥

Since M~! is deterministic we have (M‘lq—-q—) =
M,Tj,i, (7ij7ir) and defining

M (@) = Mih(ryma) (30)
gives
J(M) = mi JR(M“I o (r @) dx (31

Here is it easily checked that (7 ® 7) is a positive definite
fourth order tensor. Substitution of (31) into (23) and
rearrangement shows that the relaxed design problem
may be written as :

minmin{J (M. (r @ 7)) + 26y dx} (32)
TEZ 0,(x) | JR
M€ Gyy(x) )
We denote the minimizer of the variational principle
(31) by 7%, so that
J(M) = J M. . (FeT)dx (33)
R

Then from (33) we are able to argue as in Ref. 12 that
the best design is one for which the form

M. FeF (34)

is smallest at each point in the design. Indeed, suppose
that the ‘best’ design M did not minimize (33) at each

point then there would exist a design N in Gy,(y) such
that

M. .FohH>NT..(feh (35)
from which we see that

s =[ M- Fefax> [ N (Fefar

> minj N7 (r®@7)dx = J(N)
T€¥ )R
contradicting the optimality of M.

From these arguments it is evident that we need only
consider an extremal subset of controls in Gy, for which
the local compliance form (34) is minimized. It is now
well known for two phase composites that finite rank
laminates have effective tensors that minimize one or
more compliance energies.'5~*

In this treatment we shall introduce an extremal set of
effective rigities that minimize the form (34). These
effective tensors are analogous to the finite rank
laminates used in two phase elasticity. We shall denote
this set of controls associated with the area fraction 6,
by GLg,. In view of the fact that the optimal design
minimizes the local energy form (34) at every point we
see that the relaxed optimal design problem can be
written as .

min L Hy((r& ) dx (36)

7eC
where

= i 1 _1 . 8
Hy((r®7))= oé’}airél(mlé‘é‘i,z(M (T®T)) + 26,)

(37)

It is evident from (37), that the effect of randomness
in the loading dictates the optimal choice of control in
GLyg, for each point in the plate. We observe that since
the tensor (7 ® 7) appearing in (37) is positive definite it
has the spectral representation given by

3
(ren =Y pmen (38)
s=1

where 7° are the eigentensors associated with the
eigenvalues p° > 0, therefore,

3
. -1 : saq—1,5 s
«. = M d
W2 (M7 r@m) = i D pM

(39)

It now follows that the problem of minimizing the local
energy from (34) for the random case reduces to
minimizing the sum of three compliance energies.

In order to complete the relaxation we will fully
disclose the extremal set GLg, for reinforced plates. To
this end we introduce a class of effective rigidity tensors
associated with geometries that we call finite rank



Optimal design and relaxation for reinforced plates 171

laminates. It is shown in the sequel that effective tensors
in this class minimize sums of compliance energies.
These effective rigidities constitute the GLg, set. To
prove this, we derive in Section 3 Hashin—Shtrikman®!
type variational principles for reinforced plates and
obtain a new lower bound on the sum of compliance
energies over the set of effective rigidity tensors with
prescribed area fraction 8, of stiffeners (i.e. Gp,) (see
Theorem 3.1). We remark that we provide here a new
way of deriving Hashin—Shtrikman variational principles
that make no use of comparison materials. Our method
uses integral operators associated with response func-
tions. In Section 4 we introduce the set of effective
rigidities associated with finite rank laminates (see
Definition 4.1). We show that the lower bound on sums
of compliance energies is always attained by an effective
rigidity in this class (see Section 4.2, Theorem 4.1). In
Section 5 we provide an illustrative numerical example for
the plate model of Soto & Diaz.'¢

3 BOUNDS OF HASHIN-SHTRIKMAN TYPE FOR
REINFORCED PLATES

In this section we obtain Hashin—Shtrikman bounds on
the effective compliance for plates with periodic
arrangements of stiffeners. The assumption of periodi-
city is general provided that the variation in plate
thickness is small with respect to the period cell.® We
remark that our derivation is new as it makes no use of

comparison materials. For our purposes we consider a

unit period cell Q in R. The periodic bending rigidity is
then given by M = x;M; + x,M,, where x, is the
indicator function of the stiffeners and x; =1 — x».
Here M, and M, are the bending rigidities for the plate
and stiffeners respectively.

We denote the average bending moment over the unit
period cell by the constant symmetric 2 x 2 matrix e.
The local curvature is given by 85w -+ ey where w is the
Q periodic vertical displacement field. The local bending
moment solves

aazc,.xj M |02, w+ey] =0, inQ (40)
and the effective bending rigidity M® is defined by
Mee-e:J M(E+¢)- (B+e) dx (41)
Jo

where E = 8i2jw denotes the oscillatory part of the
midplane curvature.

For the purposes of bounding effective moduli it is
convenient to work in a Hilbert space setting. Let 3#
denote the space of all square integrable Q-periodic
symmetric 2 x 2 matrix fields with the standard inner
product, [P, R] given by

[P,R] — JQ P(x)-R(x)ds (42)

it can be decomposed into the orthogonal direct sum
H=UDED I 43)

of three subspaces: the three dimensional space # of
constant 2 x 2 matrices; the infinite dimensional space &
of all Q-periodic fields E(x) characterized by

E;j(x) =‘9:'ZJ‘P’JQde=0 (44)

for some Q-periodic function ¢; and the infinite
dimensional space # of all Q-periodic fields J(x)
characterized by

Ty = o,J Jdx=0 (45)
0

We remark that in (44) the relation [, Edx = 0 follows
immediately from Ej;=J;;¢ and by integration by
parts.

We shall denote by Ty, I'; and TI'; the orthogonal
projections of # into & and # respectively. In Fourier
space the operators I'y, I, are local. Indeed given a

square integrable Q-periodic matrix field o=
S k€™ *5(k), 'y and T, are defined by

L= ™ Iik)ok) i=1,2 (46)

k#0

where k = k/|k|, and

k) =kekoksk (47)
and

Dk =1-kokokok (48)

. Here I denotes the identity operator on 2 X 2 symmetric

matrices.

For the optimal design problem at hand we are
interested in a lower bound on the compliance (Me)‘l.
To this end it is convenient to obtain an upper bound on
the rigidity M°. The lower bound on the compliance
(M®)~! then follows from algebraic manipulation.

To obtain an upper bound on the effective rigidity we
note that oscillatory part of the midplane curvature
satisfies the following integral equation

* 1 X
BTy (My — M) (E+ 49
%h%(ﬂ k) IXI( 2 1)( 6) ( )

From which it follows that
(M, - Ml)(E*' +¢) =Ae (50)

where A is the positive definite operator given by

-1
: )F1X1) (51)

A={(Mp-M) ' =

Here, the operator A relates the polarization field inside
the plate to the average midplane curvature e.
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Expansion of M and substitution of eqn (51) into
eqn (41) for the effective rigidity gives

(My; — M®)e- € = [x A€, €] (52)
For any Q in # we see that
[XlAE) 6] 2 2[X1Qa E] - [XIA—IQa Q] (53)

Here (53) follows immediately from expansion of the
left-hand side of the inequality

DaiA(e—AT'Q), (e~ AT'Q)] 2 0 (54)
Substitution of Q =7 where 7 is any 2 x 2 symmetric
matrix into (53) yields

(My = ME)e : € > 2616+ — [x1 A7 n, 7] (55)
From (51) we expand A™! in (54) to obtain
(M; —M)e-€ > 20in-€ — ;(M — M;) 'n-n

: J
+ x1I'1x; dxn-n 56)
TG+ R Jo T (

Inequality (56) is the Hashin—Shtrikman type bound on
the effective bending rigidity for plates with stiffeners.
We remark that this derivation makes no use of a
comparison medium as is customarily done. It is based
solely upon the positive definiteness of the operator A.
- This method of deriving Hashin—Shtrikman bounds for
anisotropic composites can be immediately applied to
two and three dimensional elastic composites.
For our purposes we write (56) in a more convenient
form
(M; — MC)e- € > sup{26;7- € — 6}(M, — M) 'pp- 7}
(57)
where M is defined by

(M, - M)~ =67 (M, — M)

1 J xil'ix dx
. [
W(u+x) &

It now follows from (57) and the Legendre transform
that for any 2 x 2 symmetric constant matrix e

(M; —M)e-e > (M, — M)e- €
or

MP-¢ < Me-¢€ (59)
From (59) it follows that the lower bound on the
effective compliance (M®)~! is given by

Moo < (M) lo.0 (60)

(58)

Similarly for a sum of compliance energies we have the
lower bound

/ R -
YoMl <Y vy e o (61)
i=] i=1

We see from (58) that the tensor M encodes partial

information on the microstructure through the tensor
Jo xaT1x1 dx. Expanding this tensor using Plancherel’s
equality we obtain

[, T dr = Yl wPEu(8) (62)
o k#£0
where '
Y ) =66 (63)
k20

Following Ref. 24 it is convenient to make use of (63)
and write the sum in (62) as

|, aroar =00, [ tean (64)
) s

where 7 is a unit vector on S' and the positive measure 7
is given by

Pan) = Y o (Z G n)dn) (65
k=n

[f]=1

It is easily seen that 4 is a probability measure.
We indicate the dependence of the tensor on the
measure P by writing M = M(P) and (58) becomes

M, —M(P))™ =67' (M, —- M)}

_2113—0(2;{%7)Ll L(m)P(dn)  (66)
3

Collecting the results above we have the following.
Theorem 3.1

The lower bound on the sum of compliance energies
J_ M) 16" 6" over all composites with prescribed
area fraction 6, of stiffeners is given by

m;n{ Z(M(P))_lai-ai} <> eyl (67)
i=1 i=l

where P is any measure defined by (65) and M(P) is
given by (66).

4 OPTIMALITY OF THE LOWER BOUND ON THE
COMPLIANCE ENERGIES BY FINITE RANK
LAMINATES

Attainability of the bound given in Theorem 3.1 will be
established with the aid of microstructures analogous to
the finite rank laminates used in two and three
dimensional elasticity. There are several different
attainability proofs for the Hashin—Shtrikman bounds
on anisotropic elastic composites using laminates, see
Refs 18-20. In this presentation, as we seek to optimize
bounds on sums of energies, our arguments are
motivated by those given in Ref. 19.
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L
=
G
=2
N=3

[ 62 8, L Y
N N N N

Fig. 1. A rank 1 reinforced plate. The stiffeners are of width

6,/N and equally spaced by 6,/N. Here n' is the direction

perpendicular to the stiffeners and h, and A; denote the
midplane thickness of stiffeners and plate respectively.

4.1 The effective rigidity of finite rank laminates

We start by deriving an explicit formula for the effective
rigidity tensor of a square plate of unit length reinforced
with parallel uniformly spaced identical stiffeners. We
suppose that the area fraction occupied by the stiffeners
is given by 8, and consider N stiffeners of width 6,/N
equally spaced by the distance §,/N. We shall denote
the unit vector perpendicular to the orientation of the
stiffeners by n{) (see Fig. 1). The rigidity tensor for the
reinforced plate is given by

M = xiM; +xoM; (68)

where x5(x) = x2(n-x) and x; = 1 — x,. The associated
local displacement solves (40) with M given by (68) and
the effective rigidity for this geometry is denoted by Mt
where '

Mbe = J M(E + ¢) dx (70)
0

and E,-j = 8,2]w Due to the one dimensional nature of
the thickness variation we argue that the curvatures in
the plate and stiffeners are constant and given by ¢, and
€; respectively. Thus the problem of computing the
effective rigidity reduces to an algebraic one. The system
of algebraic equations is given by

Mle = 0,M;¢, + 6,Mye, (71)

€ =016 + be; (72)

(Ml,.,-k, €1, — Mo, €, )min; =0 (73)
and |

fi—&=0an®n (74)

Here, n is the unit vector perpendicular to the stiffeners,
eqns (71) and (72) represent the average stress and
strain respectively, eqn (73) is the continuity of the

effective bending moment between plate and stiffener,
and equation (74) is the compatibility condition
requiring that the jump in strain be a scalar multiple
of the dyadic n ® n.

We now solve the system (71)—(74) to obtain a
formula for M“ in terms of the layer normal n.
Eliminating ¢, in (71) using (72) yields

(M, = M")e = 8;(M; — My)e; = Oir (75)

Here we have introduced the ‘polarization matrix’ r. We
use (74) to write €, = ¢, — an ® n and substitution of
this expression into (73) gives

_ (M, ~M,;)en-n

(76)
IR (p+ k)
From (74), (76), and (72) it is evident that
e=¢ — {6,(M; —M))ein-n}n®n )

$h(u + )
We use (75? to write € =60;(M, —M")7!r and ¢ =
(M; —M;)" r and from (77) it follows that
_G(tn-ntn@n
3 (u+ k)
(78)
We observe from (47) that n ® n ® n ® n is precisely the
symbol for the operator I'; and collecting our results, we

see that the effective rigidity M* for this microstructure
is given by

6,(M; - M") 'r = (M, - M) 'r

02

— 1Y)
3 (u + x)

01 (M — MM~ = (M, — M) ™!

(79)

At this point we could further reinforce the plate
using parallel stiffeners perpendicular to a second
direction n® (see Fig. 2), the idea being that the
additional reinforcement will stiffen the plate in two

Fig. 2. A rank 2 reinforced plate. The stiffeners of width € are
aligned perpendicular to direction n' the stiffeners of width €
are aligned perpendicular to direction n*.
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directions. In what follows, we shall obtain a mathe-
matical formula for the effective rigidity for such
geometries. However, implicit in the formula is the
supposition that families of stiffeners associated with
different directions oscillate on widely different length
scales. The motivation for considering these structures is
that they turn out to be a class of microgeometries that
achieve the lower bound on the sum of compliance
energies. We note that it is of great practical significance
to see if there exist other simpler microgeometries for
which the lower bound on the compliance energy is
attained. We remark that it follows from (56) that a
necessary condition for attainability is that the curva-
ture tensor be homogeneous in the unreinforced plate
regions of the composite.

We shall call a plate reinforced with j families of
parallel stiffeners such that each family is perpendicular
to a direction n(i)(i =1,...,j), a finite rank j laminate.
A finite rank j laminate is defined iteratively. To fix ideas
we show how to construct a rank 2 laminate. Let
0 < p; < 1 and consider a plate of midplane thickness #,
reinforced with stiffeners of thickness /4, and width p,e’
separated by (I — p;)e’. We suppose the stiffeners are
perpendicular to a prescribed direction n1). We then
take this finely ribbed plate and along strips of width p,e
separated by (1 — p,)e we replace the finely ribbed plate
with stiffeners of thickness #,. We suppose that these
stiffeners are perpendicular to a second direction #%. The
€ = 0 limit of this geometry is called a rank 2 laminate
(see Fig. 2). Finite rank laminates of higher rank are
constructed in the same way.

To derive the formula for the effective rigidity for a
rank j laminate we first consider an anisotropic elastic
plate with rigidity M < M, reinforced with stiffeners of
rigidity M. If we assume that there are N stiffeners of
thickness 6,/N separated by a distance 6, /N perpendi-
cular to a direction n®, then we obtain using the same
analysis as before that the associated effective rigidity
M°® is given by :

(M, — M)~ = (M, — lik’I)—l - Lf‘l(ﬁ)
| 383 (n+r)

(80)

We see from formulas (79) and (80) that by choosing
M+MYin (80) we obtain the formula for the effective
rigidity M™ of a rank 2 laminate with two families of
stiffeners perpendicular to ¥ and n® given by

0;(My = M"™) ™' = (M, —M;)~!

0:(piL1(n') + pol' (7))
- 3 (u+ k) (81)

Here py +py = 1, p1, p, > 0 and 6, p; and 6, p, represent
the increase in the area fraction of stiffeners as we first
reinforce the plate with stiffeners of width O(c?) and
then with stiffeners of width O(e) respectively.

For a rank j laminate the formula for the effective
rigidity MY associated with a microstructure of j
families of stiffeners each of width O(¢') i=1,...,j

perpendicular to the directions ' i = 1, ..., jis given by
J "
) 1 ) 21 pil'(n;)
61 (M, — MY)~! = (M, M)
W+ k)
(82)

Here, 6, is the total area fraction of stiffeners and 6, p; is
the increase in area fraction of stiffeners due to the
stiffeners of width O(¢').
We conclude with the definition: }
Definition 4.1. The set of all compliance tensors with
effective rigidity tensors associated with rank j laminates
given by (82) is denoted by GL,,.

4.2 Optimality using finite rank laminates

The key observation in proving optimality of the
compliance bound given in Theorem 1 is to notice the
connection between the effective rigidity tensor of a rank
J laminate and the tensor M(P) appearing in the bound.
To see this we rewrite the convex sum in the last term of
(82) as

> piln) = [ Tpien (83)
i=1 s

where P/(dn) is a probability measure on the unit
sphere defined by

P/(dn) = ipié(n —n')dn (84)
i=1

Thus the effective rigidity is written

(M - MY)~ =671 (M, - M) ™!

3

Now we consider the set of all tensors of the form
Ll £, (n) P(dn) .. (86)

appearing in (66). This set is a convex four dimensional
set. The tensors I'(n) are extreme points for the set,
therefore from Catheadory’s theorem all tensors of the
form (86) can be represented as a convex combination
of at most five extreme points. It now follows
immediately from (83), (85) and (86) that the set of all
tensors M(P) given by (66) corresponds to the set of all
effective rigidity tensors for finite rank laminates and
attainability of the lower bound in Theorem 3.1 is
established. Summing up we have Theorem 4.1. .

Theorem 4.1. Given the j bending moments o,
i+1,...,Jj, the lower bound on the sum of effective
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compliance energies (66) is always attainable by finite
rank laminates. Moreover, it 1follows that for any
effective compliance tensor Me in Gy, there exists an
effective compliance tensor M! of a finite rank laminate
in GLo such that for any set of bending moments o,
09,...,0 one has

J R R
Zl\_’[_la’-a’ < ZMe ‘oo (87)
i=1

i=1
5 NUMERICAL EXAMPLE

To illustrate optimal compliance design we give a
numerical example. Instead of a Kirchhoff plate we
consider here the stiffener reinforced Mindlin plate
model of Soto & Diaz.!® The plate and stiffeners are
made from isotropic elastic material with Young’s
modulus E; = 100 and Poisson’s ratio »; = 0-3. The
plate thickness is 0-05 and the stiffener reinformed plate
is of thickness 0-1. The stiffened plate possesses effective
elasticities associated with rank 2 laminates, with two
orthogonal layer directions. The design variables for the
layout are the relative volume fractions of stiffeners in
each laminate and the orientation of the composite
material.

The plate is clamped at the edges and the plate
domain is the rectangle —1 <x <1, =} <y <1 The
~ area fraction occupied by the strong elastic material in
the two outer plies is 35:0% and we consider the
problem of minimizing the mean compliance of the plate
subject to this constraint.

The plate is subjected to a random transverse load
defined by a second order random process with two
point correlation given by the Markovian kernel

(f(x1) f(x2)) =T(x1,%2)
(n (1) 1,2} (2
=exp{_|x1 - JER ;xz i}(gs)

Here (x!,x3) and (x},x3) are the coordinate vectors of
the points x; and x, and the correlation lengths are 4
and 3 along the (1,0) and (0, 1) directions respectively.
The mean load is a point of magnitude b applied at the
origin

f(x) = bé(x) (89)
The mean zero fluctuations g,(x) and eigenvalues A, are
found by solving the integral equation (12) with the
kernel given by (88). We calculate the first five terms in
the expansion for the mean zero random fluctuation and
solve the approximate minimum compliance problem
given by:

minJ w(x)B8(x) +Z\/_ g, (ay )] dx  (90)

Layouts

subject to the area constraint on the amount of strong
elastic material used in the two outer plies.

Here w(x), a;(x),...,as(x) are the midplane deflec-
tions associated with the loads f, g, £,...,85. The
mean zero fluctuations are given by

gi(x) = Sin(% (1))5111(‘41 x® ))/duelz
g(x) = COS(W(I)X(I))Sln(w(Z) @ )/dners
g5(x) = sin(wxD) sin(w{?x?) /dysers 1)
g4(x) = sin(w; 2 (1))0 s(w; % ())/duezz
g5(x) = cos(w{"xM) sin(w{?x?) /dyer,
where
dyy = (1 - sin(2uf")/20{")"/?
dip = (1 +sin(2u})/247)'?
dys = (1 — sin(2wiV) /2052 (92)
dy + (1 +sin(24”) /212
e1s = [1/2 — sin(2?) /2]
= [1/2 + sin(2w{?) 2P/
and
WV =257043, i) = 393516, W) = 535403
W = 681401, WP =434925, W = 708433

Fig. 3. Deterministic load case; pomt load of unit magnitude at
origin.
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Fig. 4. Random load case (1); mean load of 0-01 at origin with
fluctuations given by (91).

The associated parameters /X, are given by

VA = 027578
VA; = 023368
Vs = 019620
VAs = 018940

Vs = 016595

We illustrate the associated minimum compliance
layouts for three different values of the mean load. We
display the density of strong elastic material in the outer
two plies. Regions of pure strong material are shown as
black, regions of pure weak material are shown as white.
and composite regions are colored grey. The darkness of
the grey regions reflects the local density of strong
material in the design. Figure 3 illustrates a purely
deterministic load case. Here a point load of magnitude
1 is applied to the origin. Figure 4 illustrates a random
loading. Here the mean load is a point load of
magnitude 0-01 at the origin and the mean zero
fluctuations are given by (91). Figure 5 illustrates mean
Ioad of magnitude 0-001 at the origin with mean zero
fluctuations given by (91).

Fig. 5. Random load case (2); mean load of 0-001 at origin
with fluctuations given by (91).
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