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Abstract

New variational principles are developed for the e}ective heat conductivity tensor of aniso!
tropic two!phase composites in the presence of coupled mass and heat transport processes at
the two!phase interface[ We focus on physical situations where an imposed temperature gradient
causes impurities or lattice defects to concentrate on the two!phase interface and di}use along
it[ This is accompanied by the release and absorption of heat as the impurities\ respectively\
enter or leave the interface[ We investigate the e}ect of the inclusion geometry on the overall
thermal conductivity[ For randomly distributed inclusions new size e}ects are given in terms
of the inclusion size distribution and nearest neighbor distribution function for the included
phase[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

We consider the overall thermal conductivity of two!phase composites in the pres!
ence of coupled mass and heat transport processes at the two!phase interface[ We
focus on physical situations where an imposed temperature gradient causes impurities
or lattice defects to concentrate at the two!phase interface and di}use along it[ This
process is accompanied by the release and absorption of heat as the impurities enter
or leave the interface[ The heat release and absorption\ due to the segregationÐsurface
di}usion of impurities\ provides a heat ~ux in addition to the heat ~ux due to thermal
conduction[ This type of process was proposed in the work of Litovsky and Klimovich
"0867#\ to explain the anomalous decrease in the e}ective thermal conductivity of
porous ceramics at low pressures and temperatures around 0999>C[
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The physico!mathematical model for heat transfer considered in this paper is the
one introduced by Gambaryan et al[ "0882#[ Their model is given in the context of
porous ceramics\ but it applies to two!phase particle reinforced composites as well[
To _x ideas and to make connection with earlier work\ the analysis and results
presented here are given in the context of porous ceramic materials[ However\ our
results apply immediately to two!phase particle reinforced materials in the presence
of a segregationÐsurface di}usion process on the two!phase interface[

We investigate the e}ect of the micro!geometry on the overall thermal conductivity
in the presence of segregationÐsurface di}usion[ Most often the composite geometry
can only be characterized statistically[ For randomly distributed inclusions new size
e}ects are given in terms of the inclusion volume fraction\ size distribution and nearest
neighbor distribution function for the included phase] see Sections 4Ð6[ These results
provide guidelines for the design of porous ceramics and particle reinforced com!
posites in the presence of coupled heat and mass transport at the two!phase interface[

We consider a porous ceramic material where the pore phase is _lled with a gas of
isotropic thermal conductivity sp[ Away from the pore boundary the ceramic matrix
has isotropic thermal conductivity sm[ Normally\ the thermal conductivity sp of the
gas is less than the matrix sm and in this article we suppose

sm ×sp[

The di}usivity associated with the di}usion of impurities in the ceramic matrix is
denoted by D[ The temperature _eld in the porous ceramic is continuous across the
poreÐmatrix interface and is denoted by T[ The volumetric concentration of impurities
inside the matrix is C[ On the matrixÐpore interface the surface concentration of
impurities Cs is assumed to be a decreasing function of temperature and increasing
with the local bulk concentration C[ The explicit formula for Cs\ in terms of the
variables T and C\ depends upon the model used to describe the equilibrium surface
concentration at the interface\ see Kingrey "0863# and Kingrey et al[ "0865#[ For now
we linearize and write

Cs �Cs9¦aT"T−T9#¦aC"C−C9#\ "0[0#

where Cs9 is the equilibrium surface concentration and the coe.cients

aT � 0
1Cs

1T 1bC9\T9

\ aC � 0
1Cs

1C1bC9\T9

"0[1#

are evaluated at their equilibrium values C9\ T9[ The coe.cient aT is negative since Cs

decreases with temperature[
The surface di}usivity on the poreÐmatrix interface has dimensions of length

×di}usivity and is denoted by as[ The temperature _eld inside and outside the pores
satis_es Fourier|s law of thermal conduction]

DT� 9[ "0[2#

The volumetric concentration of impurities in the ceramic matrix satis_es

DC� 9[ "0[3#
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It is assumed that the mass transfer occurs on the pore surface and that the
impurities do not penetrate into the gas within the pore[ Conservation of mass for
impurities on the pore surface is given by

9s = "as9sCs# �−Dn =9C[ "0[4#

Here n is the unit normal vector directed into the matrix phase and 9s is the surface
gradient[ The heat and mass ~uxes are coupled on the pore surface through the
relation

smn = "9T# =matrix−spn = "9T# =pore �−QDn =9C[ "0[5#

Here Q is the speci_c heat release of the segregation process[ Equation "0[5# accounts
for the release and absorption of heat as the impurities enter or leave the interface[
Equations "0[0#Ð"0[5# constitute the physico!mathematical model for heat and mass
transport in two!phase "or multi!phase# materials in the presence of surface seg!
regationÐdi}usion processes[

We consider a cube V of side length L containing the porous ceramic material[ No
assumptions on the distribution of pores within the interior of the cube are made[
One can think of the cube as representing a "possibly very complicated# period cell
for a porous ceramic[ Prescribing the average temperature gradient E across the cube\
the net heat ~ux j is measured and the e}ective conductivity tensor se provides the
linear relation between the average temperature gradient and net heat ~ux passing
through the porous ceramic]

j�seE[ "0[6#

Our approach to characterizing the e}ective conductivity is variational and is not
tied to a particular composite geometry\ approximate formula\ or dilute approxi!
mation[ New variational principles are introduced from which new bounds on the
e}ective conductivity are obtained through simple choices of trial _elds "see Sections
1\ 2\ 4 and 5#[ The attractive feature is that any observation deduced from the bounds
is not tied to a particular geometry or approximate formula and will apply to a large
class of statistically de_ned composite systems[

We introduce Dirichlet and Thompson!like variational principles describing the
e}ective thermal conductivity se[ From these we build two more variational principles
that implicitly contain extra information on the composite geometry] see Theorems
2[0 and 2[1[ The approach is motivated by the idea that variational principles con!
taining extra geometric information provide tighter bounds than those obtainable
from the Dirichlet or Thompson!like variational principles for any given class of trial
_elds[ The variational principles introduced here incorporate geometric information
through the solution operators of simpler comparison problems[ These operators
admit an explicit representation either in terms of gradients of simple layer potentials
supported on the poreÐmatrix interface\ projection operators on the space L1"V#2\ or
are associated with simple Dirichlet or Neumann problems in each phase "see Section
2#[ New bounds and variational principles have been derived using this approach in
the context of two!phase conductors separated by a highly conducting interface in
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Lipton "0886#[ For two!phase composites with interfacial thermal barriers this
approach has been used to derive new bounds and variational principles by Lipton
and Vernescu "0885#[ Moreover\ this approach has been successful in the context of
two!phase elastic composites with imperfect bonding at the interface[ See Lipton and
Vernescu "0884#[

Substitution of simple trial _elds into the upper variational principle delivers a new
upper bound on the e}ective conductivity that depends upon pore volume fraction\ a
surface energy tensor and a scale free matrix of parameters[ The scale free matrix of
parameters corresponds to the e}ective thermal conductivity s� associated with the
pore phase _lled with a perfect heat conductor and a matrix phase of unity conduc!
tivity[ The surface energy tensor is proportional to the surface energy tensor intro!
duced by Chandrasekhar "0854# for the stability analysis of rotating liquid drops held
together by surface tension\ see Theorem 4[1[ The lower variational principle\ The!
orem 2[1\ delivers a lower bound in terms of the pore volume fraction\ the harmonic
mean of the surface to volume dissipation of the pore phase\ the two point correlation
function associated with the pore phase and a second scale free matrix of parameters\
see Theorem 5[4[ Here the surface to volume dissipation of a pore\ denoted by b\
provides an estimate of the thermal energy dissipated inside a particle for a given
thermal energy dissipation on its surface\ see eqn "5[06#[ For a sphere of radius a\
b�1:a[ The surface to volume dissipation was introduced in Lipton "0887# to describe
new size e}ects for particle reinforced conductors with a highly conducting interface[
The scale free matrix of parameters corresponds to the e}ective thermal conductivity
s9 associated with the pore phase _lled with a perfect insulator and a matrix phase of
unit conductivity[

When the composite geometry is statistically isotropic the bounds simplify[ To _x
ideas we consider the pore geometry to be given by a suspension of spheres of N
di}erent radii\ a0\ a1\ [ [ [ \ aN[ For a prescribed pore volume fraction up we suppose
that the volume fraction occupied by pores of radius ai is given by the pore size
distribution function V"ai# where SN

i�0 =V"ai# � up[ We write the mean of the radii as

ðaŁ� u−0
p s

N

i�0

aiV"ai# "0[7#

and the mean of the reciprocal radii is given by

ða−0Ł� u−0
p s

N

i�0

a−0
i V"ai#[ "0[8#

The upper bound on the e}ective conductivity is given in terms of the dimensionless
constants

AT �
"−aT#asQ
sm−sp

ða−0Ł\ AC �
aCas

D
ða−0Ł 0

s�−0
up

−01
−0

[ "0[09#

The factor "ð"s�−0#:upŁ−0#−0 is positive^ this follows from the harmonic mean lower
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bound s� − "0−up#−0 and the estimate "0−up#−0 × 0¦up[ We introduce the variable
Z de_ned by

Z� "sm−sp# 0
1AT

0−1AC

−01[ "0[00#

The upper bound is given by]

Theorem 0[0[ Upper bound on e}ective thermal conductivity for polydisperse sus!
pensions of spheres[

se ¾
sm"upZ¦sm"0−"s�#−0##

upZ"s�#−0¦sm"0−"s�#−0#
[ "0[01#

The lower bound is given in terms of the dimensionless constants

A	T �
"−aT#asQ
sm−sp

ðaŁ−0\ A	C �
aCas

D
ðaŁ−0 0

0−s9

up

−01[ "0[02#

Positivity of the factor "ð"0−s9#:upŁ−0# follows from the arithmetic mean upper
bound 0−up −s9[ Introducing the variable t de_ned by

t� up"sm−sp#−0 0
0¦1A	C

1A	T 1\ "0[03#

the lower bound is given by]

Theorem 0[1[ Lower bound on e}ective thermal conductivity for polydisperse sus!
pensions of spheres[

se −sp¦
"0−up#t¦

u1
p

sm−sp

¦
up

2sp

0
up

2sp

¦
0

sm−sp1 t¦
up"0−up#

2sp"sm−sp#

[ "0[04#

The upper and lower bounds are monotonic in the parameters Z and t\ respectively[
Several conclusions follow from the monotonicity and are given in Sections 4 and 5[
The principal result is given in the following Theorem[

Theorem 0[2[ Energy dissipation inequality[

For any value of the pore volume fraction up we have the following]

If

1AT

0¦1AC

¾ 0\ "0[05#

them
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se ¾sm[ "0[06#

On the other hand\ when

1A	T

0¦1A	C

− 0\ "0[07#

then

se −sm[ "0[08#

It is emphasized that this theorem holds for all statistically isotropic porous ceramics
and that no approximations have been made[ In physical terms\ the parameters AT

and A	T characterize the relative enhancement of the heat ~ux across a pore due to the
segregationÐdi}usion process\ while AC and A	C are measures of the mass transfer of
impurities from the matrix to the pore surface relative to the ~ux of impurities in the
neighborhood surrounding the pore[ The physical interpretation for these parameters
and their relation to the parameters derived in Gambaryan et al[ "0882# is discussed
in Section 6[

For _xed values of the parameters sm\ sp\ D\ as\ aT\ aC and Q\ Theorem 0[2 implies
a particle size e}ect[

Theorem 0[3[ Pore size e}ect[

For any value of the pore volume fraction up we have the following]

If

ða−0Ł−0 −
1Qas "−aT#

sm−sp

−1as 0
aC

D1 0
s�−0

up

−01
−0

\ "0[19#

then

se ¾sm[ "0[10#

On the other hand\ when

ðaŁ¾
1Qas "−aT#

sm−sp

−1as 0
aC

D1 0
0−s9

up

−01\ "0[11#

then

se −sm[ "0[12#

For a su.ciently large average pore radius\ Theorem 0[3 shows that the e}ective
conductivity drops below the thermal conductivity of the matrix\ while if the average
pore radius is su.ciently small the e}ective conductivity is greater than that of the
matrix phase[ When the ratio aC:D vanishes the average pore size at which the e}ective
conductivity changes from being lower than the matrix conductivity to being greater
than that of the matrix is given by]
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1Qas "−aT#
sm−sp

\ "0[13#

and Theorem 0[3 recovers the size e}ect theorem for composites with a highly con!
ducting interface given in Lipton "0886a#[ When aC �9 and all pores have the same
radius\ Theorem 0[3 predicts the existence of a critical pore radius
R� ð1Qas"−aT#:"sm−sp#Ł for which the e}ective conductivity equals that of the
matrix material[ It is evident from Theorem 0[3\ that nonzero values of the ratio aC:D
lower the average pore size at which the transition occurs[ This e}ect is seen most
clearly for dilute suspensions of pores[ For a dilute suspension of pores all having the
same radius a we expand the e}ective conductivities s� and s9 in their dilute expan!
sions given by]

s� � 0¦2up¦O"u1
p# and s9 � 0−2

1
up¦O"u1

p#[ "0[14#

Substitution of the expansions into the formulas for AC\ A	C\ AT and A	T gives]

Theorem 0[4[ Pore size e}ect for dilute pore concentrations[

When up ð 0 we have]

If

a−
1Qas "−aT#

sm−sp

−
asaC

D
"0¦O"up##\ "0[15#

then

se ¾sm[ "0[16#

On the other hand\ when

a¾
1Qas "−aT#

sm−sp

−
asaC

D
"0¦O"up##\ "0[17#

then

se −sm[ "0[18#

Theorems 0[0Ð0[3 are generalized to statistically isotropic composites containing
pores of arbitrary shape in Theorems 4[2\ 4[3\ 5[5 and 5[6[ In this general context the
bounds are given in terms of the speci_c interfacial surface area and the harmonic
mean of the surface to volume dissipation of the pore phase[

The e}ective conductivities s� and s9 appearing in the bounds "0[01# and "0[04#\
are bounded by expressions containing statistical information on the pore geometry[
For monodisperse suspensions of spherical pores we use the security sphere bounds
of Torquato and Rubinstein "0880#[ These provide upper and lower bounds on s�

and s9 in terms of the nearest neighbor distribution function[ The nearest neighbor
distribution function for spherical pores can be calculated using the methods
developed in Torquato et al[ "0889#[ For polydisperse suspensions of pores we use the
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bounds derived by Bruno "0880#[ These bounds are given in terms of the parameter
{q|[ Here\ q is de_ned to be the minimum\ over all pores in the suspension\ of the ratio
of pore radius to distance from the pore center to its nearest neighbor in the suspen!
sion[ The bounds "0[01# and "0[04# are monotone in s� and s9[ Thus\ substitution of
bounds on s� and s9 into "0[01# and "0[04# delivers bounds on se in terms of the nearest
neighbor distribution function or q[ These observations are applied in Theorems 4[4
and 4[5 in Section 4 and Theorems 5[7 and 5[8 in Section 5[ These bounds deliver new
pore size e}ects for the e}ective thermal transport properties and are in terms of
partial statistical information on the pore con_guration[ These bounds are plotted
for random\ monodisperse suspensions of spherical pores in Section 6[

1[ New Dirichlet and Thompson variational principles

For a prescribed average temperature gradient E\ the temperature _eld T is decom!
posed into a periodic ~uctuation 8½ and a prescribed linear part E =x\ i[e[\ T�8½¦E =x[
The average temperature gradient seen by an outside observer is]

E� =V=−0 g1V
Tnds[ "1[0#

Here 1V is the boundary of the cube of side length L\ n is the unit outer normal to
the boundary and =V= �L2 is the volume of the cube[ Denoting the local conductivity
in the porous ceramic by s"x#\ the overall heat ~ux j measured by an outside observer
is given by

j� =V=−0 g1V
"j½ = n#xds\ "1[1#

where j½�s"x#9T[ The associated e}ective conductivity of the sample is de_ned
by "0[6#[ Integration by parts\ application of "0[0#Ð"0[5# and the natural boundary
condition for the heat and concentration ~ux yields]

seE =E� =V=−0W"8½ \C#[ "1[2#

Here W"8½ \C# is given by

W"8½ \C# � gV
s"x# =98½¦E=1 dx

¦
aC

"−aT# gVm

QD=9C=1 dx¦
0

"−aT# gG
asQ=9sCs "8½ \C# =1 ds\ "1[3#

where Vm is the part of the sample occupied by the matrix phase\ G is the union of all
pore boundaries and the surface concentration on the pore boundary is given by
Cs"8½ \C# � aT"8½¦E = x−T9#¦aC"C−C9#[ We introduce the space of trial _elds U
de_ned by]
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U� ""8\C# such that 8 is in H0"V#per and C is in H0"Vm#per#\ "1[4#

where H0"V#per comprises all periodic continuous square integrable _elds with square
integrable derivatives and H0"Vm#per are all such _elds restricted to the matrix phase[
The Dirichlet!like variational principle for the e}ective conductivity is given by]

Theorem 1[0[ Dirichlet!like variational principle[

seE =E� =V=−0 min
"8\C# in U

W"8\C#[ "1[5#

Existence of the minimizer "8½ \C# for the variational principle follows easily from the
direct method of the calculus of variations[ Stationarity conditions show that the
minimizer is precisely the temperature and concentration satisfying the equilibrium
equations "0[0#Ð"0[5#[ The minimizer is easily seen to be unique up to a constant
temperature and concentration[

We represent a jump in a quantity {f| across the poreÐmatrix boundary by ð f Ł � f=pore

−f=matrix[ The boundary of the ith pore is denoted by Gi and G�QiGi[ The set of all
points in V not on the poreÐmatrix interface is denoted by V:G[ The space of functions
that are square integrable and have square integrable tangential derivatives in the
poreÐmatrix interface is denoted by H0"G#[ We consider porous ceramics for which
the pores do not intersect the boundary of the domain V[ We make this assumption
for convenience only and to keep the exposition focused[ "What follows applies to
any periodic porous geometry[# We introduce the space of trial _elds V given by

V� p½ in L1"V#2\

where]

div p½ � 9 in V:G "1[6#

g1V
"p½ = n#xds� 9\ "1[7#

gGi

ðp½ = nŁ ds� 9\ "1[8#

p½ is periodic on 1V[ "1[09#

Next we introduce the solution ` in H0"G# of the Poisson equation on the interface
given by

aTDs`� ðp½ = nŁ on Gi[ "1[00#

Here Ds is the LaplaceÐBeltrami operator on the surface Gi and ` is determined
uniquely up to a constant for p½ satisfying the solvability condition "1[8#[ We also
consider the periodic function w satisfying the Neumann problem

Dw� 9 on Vm "1[01#



R[ Lipton : Journal of the Mechanics and Physics of Solids 36 "0888# 0588Ð06250697

−9w = n�
aC

aT

ðp½ = nŁ on Gi[ "1[02#

The Thompson!like variational principle is given by]

Theorem 1[1[ Thompson!like variational principle[

For any prescribed constant heat ~ux p¹ in R2]

"se#−0p¹ = p¹ � =V=−0 min
"p½ in V#

L"p½#\ "1[03#

where

L"p½# � gV
"s"x##−0 =p½¦p¹ =1 dx¦a−0 gG

=9s`=1 ds¦"D
�
#−0 gVm

=9w=1 dx\ "1[04#

D
�
�

aC

"−aT#
QD and a�

0
"−aT#

asQ[ "1[05#

Proof] We introduce the space of all square integrable periodic vector _elds on V
and denote it by L1"V#2

per[ The space of periodic square integrable vector _elds de_ned
on the matrix phase is denoted by L1"Vm#2

per[ The space of all square integrable vector
_elds restricted to the poreÐmatrix interface is denoted by L1"G#2[ Starting with the
Dirichlet!like variational principle we take the convex dual of each term in the
functional W"8\C# to obtain

seE =E�min
"8\C#

max
p$L1"V#2per

max
f$L1"Vm#2per

max
v$L1"G#2

=V=−0H"8\C\ p\ f\ v#\ "1[06#

where

H"8\C\ p\ f\ v# � 1 gV
p = "98¦E# dx−gV

"s"x##−0p = pdx

¦1gVm

f =9Cdx−"D
�
#−0 gVm

=f=1 dx¦1gG v =9sCs"8\C# ds−a−0 gG =v=1 ds\ "1[07#

and we recall that

Cs "8\C# � aT"8¦E = x−T9#¦aC"C−C9#[ "1[08#

Exchanging max and min implies that the trial _elds p\ f and v must be chosen such
that

min
"8\C# 01 gV

p =98dx¦1 gVm

f =9Cdx¦1 gG
v =9sCs "8\C# ds1×−�[ "1[19#

Integration by parts reveals that "1[19# is equivalent to the constraints\ div p�9\ for
all points not on the poreÐmatrix interface\

ðp = nŁ � aT"9s = v¦"n = v#I# on Gi\ "1[10#
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−f = n=matrix � aC"9s = v¦"n = v#I# on Gi\ "1[11#

gGi

ðp = nŁ ds� 9\ and gGi

f = n=matrix ds� 9[ "1[12#

Here the mean curvature at any point on the poreÐmatrix interface is written
I�−div n\ and for any v in L1"G#2 the surface divergence 9s = v is de_ned in the
distributional sense[ Substitution of these identities into "1[07# together with the
identity

gV:G
div ""E = x#p# dx−g1V

"E = x#"p = n# ds� gG
"E = x#ðp = nŁ ds "1[13#

gives

seE =E− 1 g1V
"E = x#"p = n# ds

−gV
"s"x##−0 =p=1 dx−"D

�
#−0 gVm

=f=1 dx−a−0 gG
=v=1 ds\ "1[14#

for all choices of trials p\ f\ v[ We write

p¹ � =V=−0 g1V
"p = n#xds\ "1[15#

and p½ � p−p¹[ Setting p¹ �seE\ or equivalently E� "se#−0p¹\ gives

"se#−0p¹ = p¹ ¾ =V=−0 0gV
"s"x##−0 =p½¦p¹ =1 dx

¦a−0 gG
=v=1 ds¦"D

�
#−0 gVm

=f=1 dx1[ "1[16#

For the choice p¹¦p½ �s"x#"98½¦E#\ E� "se#−0p¹\ v� a9sCs"8½ \C# and f�D
� 9C one

satis_es the constraints implied by "1[19# and one obtains equality in "1[16#[ Last we
note that the optimal choice of v and f are of the form 9s` and 9w\ respectively\ where
` satis_es "1[00# and w satis_es "1[01# and "1[02# and the theorem follows[

2[ New variational principles

In this section we introduce new variational principles for the e}ective conductivity
tensor[ These principles encode geometric information on the pore structure through
the solution operators of simpler conductivity problems[ The variational principles
provide the tools used to establish new pore size e}ects for the e}ective conductivity[
Before introducing the _rst variational principle we introduce a homogeneous com!
parison material with conductivity g×sm and formulate three auxiliary conductivity
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problems[ For any constant vector c in R2 we introduce the potential cc in H0"V#per

which solves

cc¦c = x� const0i on Gi\ "2[0#

Dcc � 9 in V:G "2[1#

and

gGi

ð9cc = nŁ ds� 9[ "2[2#

Inside each pore we note that the boundary conditions "2[0# together with "2[1# imply
that cc is linear inside each pore and is given by cc �−c = x¦const0i [ We introduce
the space H"div\V:G# of periodic\ square integrable vector _elds h for which div h is
de_ned on V:G and is square integrable[ We denote by P the space

P� "h in H"div\V:G#\ such that h is periodic on V#[ "2[3#

For h in P and l in H0"G# we introduce the potentials cl and ch that are the solutions
of

cl � l¦const1i on Gi\ "2[4#

Dcl � 9 in V:G\ "2[5#

gGi

ð9cl = nŁ ds� 9\ "2[6#

and

ch � const2i on Gi\ "2[7#

Dch �div h in V:G\ "2[8#

and

gGi

ð"9ch−h# = nŁ ds� 9[ "2[09#

The potentials de_ned above are unique up to a constant[ The constants const0i \
const1i and const2i are determined by the conditions "2[2#\ "2[6# and "2[09#\ respectively[
We introduce the linear operators M\ R and P de_ned by

M"c# �9cc on V:G\ R"l# �9cl on V:G\ "2[00#

and

P"h# �9ch onV:G[ "2[01#

Next\ we de_ne the constant 2×2 tensor s� by
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s�c� =V=−0 g1V
"9cc¦c# = nds\ "2[02#

for any c in R2 and introduce the surface energy tensor given by

G�−=V=−0 gG
"n&x#Ids[ "2[03#

One argues as in Lipton "0886a# to conclude that s� is invertible[ It is easily seen that
s� is precisely the e}ective conductivity tensor for the case when the pores are _lled
with a perfect conductor and the matrix has unit conductivity[ We denote the 2×2
matrix identity by {I| and introduce the space of trial _elds U¦ given by
U¦ �P×H0"Vm#per×H0"G#[ The new upper variational principle is given by the
following]

Theorem 2[0[

For any prescribed constant heat ~ux p¹ in R2

"se#−0p¹ = p¹−g−0p¹ = p¹¦
aa1

T

g1
Gp¹ = p¹ � =V=−0 max

""h\u\q# in U¦#
L¦"h\ u\ q#\ "2[04#

where

L¦"h\ u\ q# � 1 0gV
p¹ = hdx¦

a"−aT#
g gG

9sq = "I−n& n#p¹ ds1
−gV

""s"x##−0−g−0#−0 =h=1 dx−a gG
=9sq=1 ds−"D

�
# gVm

=9u=1 dx

−g gV
=M"s�−0

"h¹¦h¹##¦R"l#¦P"h#¦s�−0
"h¹¦h¹#−h=1 dx[ "2[05#

Here\ D
�

and a are de_ned in "1[05#\ l� a−0
T q−"aC:aT#u and the vectors h¹ and h¹ are

de_ned by

h¹ �−=V=−0 g1V
""9ch−h# = n#xds\ and h¹ �−=V=−0 g1V

"9cl = n#xds[

"2[06#

This variational principle represents the extension of the variational principle\ given
in Theorem 2[0 of Lipton "0886# to the case of coupled heat and mass transport on
the two!phase interface[ We introduce a second equivalent version of this variational
principle in Theorem 3[0 of Section 3 that allows for easy comparison with Theorem
2[0 in Lipton "0886#[ Substitution of simple trial _elds into the variational principles
given by Theorems 2[0 and 3[0 delivers bounds on the e}ective conductivity in terms
of statistical information on the pore geometry "see Section 4#[

Before introducing the lower variational principle we select an isotropic comparison
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material with conductivity g³sp and formulate three auxiliary conductivity prob!
lems[ For any vector _eld p in L1"V#2

per we introduce the potential fp in H0"V#per which
solves

ðg"9fp¦p#Ł = n� 9 on Gi\ "2[07#

and

−gDfp �div p in V:G[ "2[08#

For any vector _eld v in L1"G#2 we introduce the potentials fv $H0"V#per and
Cv $H0"Vm#per that are solutions of]

ðg"9fv#Ł = n� "9s = v¦"v = n#I# on Gi\ "2[19#

−gDfv � 9 in V:G\ "2[10#

and

−
aCQD
"−aT#

9C v = n� aC"9s = v¦"v = n#I# on Gi\ "2[11#

DC v � 9 in Vm[ "2[12#

We introduce the linear operators N\ S and K de_ned by

N"p# �9fp on V\ S"v# �9fv on V:G\ "2[13#

and

K"v# �9C v on Vm[ "2[14#

The operators N and S admit explicit formulas[ For any periodic vector p in
L1"V#2

per\ we have N"p# in L1"V#2
per\ where

N"p# �−
0
g

s
k�9

e
1pik=x

L
"p¼ "k# = k#k

=k=1
\ "2[15#

and for any vector _eld v in L1"G#2 we have S"v# in L1"V#2
per\ where

S"v# �−
L

1pig
s

k�9

e
1pik=x

L
k

=k=1
=V=−0 gG

e
−1pik=y

L Tvds[ "2[16#

Here Tv is given by]

Tv�9s = v¦"v = n#I\ "2[17#

and

p¼ "k# � =V=−0 gV
e

−1pik=x

L p"y# dy[ "2[18#
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We introduce the space of trials U− �L1"V#2
per×L1"G#2[ The new lower variational

principle is given by

Theorem 2[1[

For any prescribed average temperature gradient E in R2]

"se#E =E−gE =E� =V=−0 max
""p\v# in U−#

L−"p\ v#\ "2[29#

where

L−"p\ v# � 1 0gV
p = Edx¦aT gG

v = "I−n& n#Eds1
−gV

""s"x##−g#−0 =p=1 dx−
"−aT#
asQ gG

=v=1 ds

−0D
�

gVm

=K"v# =1 dx¦g gV
=N"p#¦aTS"v# =1 dx1\ "2[20#

and D
�

is de_ned in "1[05#[
We remark that the operator N is proportional to the projection of L1"V#2

per onto
the space of periodic curl!free _elds[ This operator is well known and forms the basis
for the HashinÐShtrikman bounds for anisotropic conductors with perfectly bonded
interfaces given by Milton and Kohn "0877#[ The S operator is the gradient of the
simple layer potential with density Tv on the poreÐmatrix interface[

3[ Derivation of the variational principles

Before giving the derivation of the variational principles we given an equivalent
statement of the upper variational principle 2[0[ We introduce the following {convex|
set of trial _elds for ceramics containing N pores]

U"u\q# �

F

H

j

J

H

f

c $H0"V#per\ c $R2\

and any choice of N constants c0\ c1\ [ [ [ \ cN\

such that c¦c = x� a−0
T q−

aC

"−aT#
u¦ci on Gi[

Theorem 3[0[

For any prescribed constant heat ~ux p¹ in R2]

"se#−0p¹ = p¹−g−0p¹ = p¹¦
aa1

T

g1
Gp¹ = p¹ � =V=−0 max

""h\u\q# in U¦#
L¦"h\ u\ q#\ "3[0#

where L¦"h\ u\ q# admits the alternate formulation given by
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L¦"h\ u\ q# � 1 0gV
p¹ = hdx¦

a"−aT#
g gG

9sq = "I−n& n#p¹ ds1
−gV

""s"x##−0−g−0#−0 =h=1 dx−a gG
=9sq=1 ds−"D

�
# gVm

=9u=1 dx

−gmin
U"u\q# gV

=9c¦c−h=1 dx[ "3[1#

To derive the upper variational principles given by Theorems 2[0 and 3[0 we start
with the Thompson variational principle given by Theorem 1[1[ Choosing g×sm we
add and subtract the reference energy g=p½¦p¹ =1 to the right!hand!side of "1[04# to
obtain

"se#−0p¹ = p¹−g−0p¹ = p¹ � =V=−0 min
p½$V 6gV

""s"x##−0−g−0# =p½¦p¹ =1 dx

¦g−0 gV =p½ =1 dx¦1g−0 gV p½ = p¹ dx¦a−0 gG =9s`=1 ds¦"D
�
#−0 gVm

=9w=1 dx9[ "3[2#

Since aTDs`� ðp½ = nŁ\ integration by parts gives

1g−0 gV
p½ = p¹ dx� 1g−0 gG

ðp½ = nŁ"p¹ = x# ds� 1g−0 gG
aTDs`"p¹ = x# ds[ "3[3#

Integration by parts on G yields

1g−0 gV
p½ = p¹ dx� 1g−0 gG

"−aT#9s` = "I−n& n#p¹ ds[ "3[4#

Next we apply "3[4# and complete the square in "3[2# to obtain

"se#−0p¹ = p¹−g−0p¹ = p¹¦
aa1

T

g1
Gp¹ = p¹ � =V=−0 min

p½$V 6gV
""s"x#−0−g−0# =p½¦p¹ =1 dx

¦g−0 gV =p=1 dx¦"D
�
#−0 gVm

=9w=1 dx¦a−0 gG b9s`−
aTa

g
"I−n&n#p¹ b

1

ds7[ "3[5#

Introducing the bulk and surface polarizations h in P\ u in H0"Vm#per and q in H0"G#
we have the elementary estimates

gV
"s"x#−0−g−0# =p½¦p¹ =1 dx− 1 gV

"p½¦p¹# = hdx−gV
"s"x#−0−g−0#−0 =h=1 dx\

"3[6#
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"D
�
#−0 gVm

=9w=1 dx− 1 gVm

9u =9wdx−D
�

gVm

=9u=1 dx\ "3[7#

and

a−0 gG b9s`−
aTa

g
"I−n& n#p¹ b

1

ds− 1 gG
9sq = 09s`−

aTa

g

"I−n& n#p¹1ds−a gG
=9sq=1 ds[ "3[8#

Application of these inequalities to "3[5# gives

"se#−0p¹ = p¹−g−0p¹ = p¹¦
aa1

T

g1
Gp¹ = p¹ − =V=−0 min

p½$V
M¦"p½\ h\ u\ q#

� =V=−0M¦"p½
�
\ h\ u\ q#\ "3[09#

where M¦ is de_ned by

M¦"p½\ h\ u\ q# � 1 gV
p¹ = hdx¦1 gG

9sq = 0
"−aT#a

g
"I−n& n#p¹1ds

−gV
"s"x#−0−g−0#−0h = hdx−D

�

gVm

=9u=1 dx−a gG
=9sq=1 ds

¦1 gV
p½ = hdx¦1gVm

9u =9wdx¦1 gG
9sq =9s`ds¦g−0 gV

=p½ =1 dx "3[00#

and p½
�

is the minimizer of

T�min
p½$V 61gV

p½ = hdx¦1 gVm

9u =9wdx¦1 gG
9sq =9s`ds¦g−0 gV

=p½ =1 dx7[
"3[01#

Since aTDs`� ðp½ = nŁ and −9w = n� "aC:aT#ðp½ = nŁ\ integration by parts in the middle
two terms in "3[01# gives

T�min
p½$V 6gV

1p½ = hdx¦1 gG 0"−aT#−0q¦
aC

aT

u1 ðp½ = nŁ ds¦g−0 gV
=p½ =1 dx7[

"3[02#

Taking the _rst variation\ one _nds that the minimizer is given by

p½
�
� g"9c

�
¦c�−h#\ "3[03#

where c
�

is in H0"V#per and c� is a constant vector[ The function c
�

and the constant
vector c�\ together with N constants c�0\ c�1\ [ [ [ \ c�N is the solution of the system
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c
�
¦c� = x�l¦c�i on Gi\

9 = "9c
�
¦c�−h# � 9 on V:G\

gGi

ð"9c
�
¦c�−h#Ł = nds� 9\

and

g1V
"9c

�
¦c�−h# = nxds� 9\ "3[04#

where l� "aT#−0q−"aC:aT#u[ To solve for c
�
\ c and c�0\ [ [ [ \ c�N simultaneously in "3[04#

we make use of the linearity inherent in the problem and form the three auxiliary
problems given by "2[0#Ð"2[09#[ One readily sees that the choice

c� �s�−0
"h¹¦h¹# "3[05#

and c
�
�cc�¦cl¦ch is the solution to the system "3[04#[ Recalling the de_nitions of

the operators M\ R and P we have the inequality

"se#−0p¹ = p¹−g−0p¹ = p¹¦
aa1

T

g1
Gp¹ = p¹ − =V=−0 max

"h\u\q#
M¦"p½

�
\ h\ u\ q#

� =V=−0 max
"h\u\q#

L¦"h\ u\ q#[ "3[06#

For the choice of bulk and surface polarizations\ consistent with the actual heat ~ux\
volumetric concentration ~ux and surface concentration in the porous ceramic\ i[e[\

q�Cs "8\C#−
"−aT#

g
p¹ = x

� aT"8½¦E = x#¦aCC−
"aT#
g

p¹ = x

9u�9C\ "3[07#

and

h� "s"x#−0−g−0#"s"x#"98½¦E##\

where E�se−0p¹\ we _nd that c
�
�8½ \ c� � "se−0−g−0#p¹ and "3[06# holds with equality[

This establishes Theorem 2[0[ To establish Theorem 3[0 we evaluate T at the min!
imizer p½

�
and write

T� g gV
=9c

�
¦c�−h=1 dx\ "3[08#

where c� is given by "3[05#[ We show
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gV
=9c

�
¦c�−h=1 dx�min

U"u\q# gV
=9c¦c−h=1 dx[ "3[19#

Indeed\ for any choice c\ c and c0\ [ [ [ \ cN in U"u\q# we write c�c
�
¦dc\ c� c�¦dc\

ci � c�i¦dci[ The variations satisfy dc¦dc = x� dci on Gi[ We have

gV
=9c¦c−h=1 dx� gV

=9c
�
¦c�−h=1 dx¦gV

=9dc¦dc=1 dx

¦1 gV
"9dc¦dc# = "9c

�
¦c�−h# dx[ "3[10#

Since c
�
\ c� and c�i is the solution to "3[04#\ the last term of "3[10# vanishes and Theorem

3[0 follows[
Next we establish Theorem 2[1 for the choice of isotropic comparison material

g³sp[ Starting with the Dirichlet!like variational principle given by Theorem 1[0 we
add and subtract the reference energy g=98¦E=1 to obtain

seE =E−gE =E� =V=−0 min
"8\C#$U 6gV

"s"x#−g# =98¦E=1 dx

¦g gV
=98=1 dx¦

aCQD
"−aT# gVm

=9C=1 dx¦
asQ

"−aT# gG
=9sCs "8\C# =1 ds7[ "3[11#

One has the elementary estimates

gV
"s"x#−g# =98¦E=1 dx− 1 gV

p = "98¦E# dx−gV
"s"x#−g#−0 =p=1 dx\

"3[12#

and

asQ
"−aT# gG

=9sCs "8\C# =1 ds− 1gG
v =9sCs ds−

"−aT#
asQ gG

=v=1 ds\ "3[13#

for all polarizations p in L1"V#2
per and v in L1"G#2[ Application of these inequalities to

"3[11# gives

seE =E−gE =E− =V=−0 min
"8\C#$U

M−"p\ v\8\C# � =V=−0M−"p\ v\8�\C
�
#\ "3[14#

where M−"p\ v\8\C# is de_ned by

M−"p\ v\8\C# � 1 gV
p = Edx¦1aT gG

v =9s "E = x# ds

−gV
"s"x#−g#−0 =p=1 dx−

"−aT#
asQ gG

=v=1 ds
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¦1 gG
v = "aT9s8# ds¦1 gG

v = "aC9sC# ds¦1 gV
p =98dx

¦
aCQD
"−aT# gVm

=9C=1 dx¦g gV
=98=1 dx\ "3[15#

and "8�\C�# is the minimizer of

W�min
8\C 61 gG

v = "aT9s8# ds¦1 gG
v = "aC9sC# ds¦1 gV

p =98dx

¦
aCQD
"−aT# gVm

=9C=1 dx¦g gV
=98=1 dx7[ "3[16#

Taking the _rst variation one _nds that the minimizer "8�\C�# is the solution of

gD8� �−div p in V:G\ "3[17#

ðg98�¦pŁ = n�9s = v¦"v = n#I on Gi\ "3[18#

and

DC
�
�9 in Vm\ "3[29#

−
QD

"−aT#
n =9C

�
�9s = v¦"v = n#I on Gi[ "3[20#

Since "3[17# and "3[18# are linear we write 8� �8p¦8v where both 8p and 8v are
elements of H0"V#per and

gD8p �−div p in V:G\ ðg98p¦pŁ = n� 9 on Gi\ "3[21#

and

gD8v � 9 in V:G\ ðg98vŁ = n�9s = v¦"v = n#I on Gi[ "3[22#

Writing N"p# �98p\ S"v# �98v\ K"v# �9C
�

and observing that 9s"E = x#
� "I−n&n#E on G we have the inequality

seE =E−gE =E− =V=−0 max
"p\v#

M−"p\ v\8�\C
�
# � =V=−0 max

"p\v#
L−"p\ v#[ "3[23#

Equality in "3[23# holds when the polarizations "p\ v# correspond to the actual _elds
in the porous ceramic given by

p� "s"x#−g#"98½¦E# and v�
asQ

"−aT#
9sCs "8½ \C#[ "3[24#
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The explicit representation of the operator S given by "2[16# is derived in Lipton
"0886a#[ The representation of the operator N given by "2[15# is well known and the
derivation is provided in Milton and Kohn "0877#[

4[ Upper bounds and energy dissipation inequalities

In this section Theorem 2[0 is applied to obtain upper bounds and energy dissipation
inequalities for the e}ective conductivity tensor[ Explicit upper bounds are given for
the e}ective conductivity tensor for anisotropic porous materials] see Theorem 4[1[
For isotropic composites we present an upper bound given in terms of the speci_c
surface area of the poreÐmatrix interface] see Theorem 4[2[ The upper energy dis!
sipation inequality is given in Theorem 4[3[ Theorems 4[4 and 4[5 give bounds on
their e}ective conductivity in terms of statistical information on the pore geometry[

The region occupied by the ith pore is denoted by Bi and its boundary by Gi[ We
set g�sm and choose trial polarizations of the form h�xpm and q� r = x\ on each
pore surface[ Here xp is the indicator function for the pore phase\ i[e[\ xp"x# �0 for
x in the pore phase and zero otherwise[ The trial polarization u $H0"Vm#per is taken
to be the solution of the boundary value problem[

Du� 9 in Vm\ u� b = x¦consti on Gi\ "4[0#

and

gGi

"−n =9u# ds� 9[

Here m\ r and b are vectors in R2[ The associated bound is given by the Theorem
below[

Theorem 4[0[

For any prescribed constant heat ~ux p¹ in R2 we have the following]

"se#−0p¹ = p¹−s−0
m p¹ = p¹¦

aa1
T

s1
m

Gp¹ = p¹ −max
"m\b\r#

"1L¹ "p¹\m\ r#−QÞ"m\ b\ r##\ "4[1#

where

LÞ"p¹\m\ r# � upp¹ =m−
"−aT#a

sm

Gr = p¹\ "4[2#

and

QÞ"m\ b\ r# � up"sm¦l# =m=1−1smup 0a−0
T r−

aC

aT

b1 =m¦aGr = r¦D
�
"s�

−"0¦up#I#b = b¦sm"I−"s�#−0# 0a−0
T r−

aC

aT

b1 = 0a−0
T r−

aC

aT

b1[ "4[3#
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Here l� "s−0
p −s−0

m #−0 and s� is the e}ective conductivity tensor of a composite
with perfectly conducting pores\ having the same geometry as the original composite\
embedded in a matrix of unit conductivity[

Proof] We observe that "4[2#\ follows immediately upon substitution of the pol!
arizations into "2[05#[ To obtain QÞ\ given by "4[3#\ we solve the auxiliary problems
"2[0#Ð"2[09#[ We _nd that ch �const inside the composite and cl is the solution of

Dcl � 9 in Vm\ cl � a−0
s r = x−"aC:aT#b = x¦consti on Gi\ "4[4#

and

gGi

ð9cl = nŁ ds� 9[

Inspection shows that cl is linear inside each pore\ i[e[\ cl � a−0
s r = x−"aC:aT#b = x

¦consti in Bi[ From the de_nition of s� it follows that

h¹ � =V=−0 g1V
"9cl = n#xds� "s�−I#"a−0

s r−"aC:aT#b#[ "4[5#

Since h¹ �9 it follows from "3[05# that

c� �s�−0
h¹ � "I−s�−0

#"a−0
s r−"aC:aT#b#[ "4[6#

A lengthy but straightforward application of "4[4#Ð"4[6#\ delivers

sm =V=−0 gV
=M"s�−0

"h¹¦h¹##¦R"l#¦P"h#¦s�−0
"h¹¦h¹#−h=1 dx

�sm 6up =m=1−1up 0a−0
T r−

aC

aT

b1 =m

¦"I−"s�#−0# 0a−0
T r−

aC

aT

b1 = 0a−0
T r−

aC

aT

b17[ "4[7#

Noting that u is a solution to "4[0# one obtains

gVm

=9u=1 dx� =V="s�−"0¦up#I#b = b\ "4[8#

and the theorem follows[
Optimization over all choices of m\ b and r gives the following explicit upper bounds

on the e}ective conductivity tensor for anisotropic porous ceramics[



R[ Lipton : Journal of the Mechanics and Physics of Solids 36 "0888# 0588Ð0625 0610

Theorem 4[1[

For any prescribed constant heat ~ux p¹ in R2]

"se#−0p¹ = p¹ −s−0
m p¹ = p¹−

aa1
T

s1
m

Gp¹ = p¹¦2
A B C

B D E

C E F 3
−0

F

G

G

G

G

f

upp¹

"−aT#aG

sm

p¹

9

J

G

G

G

G

j

=

F

G

G

G

G

f

upp¹

"−aT#aG

sm

p¹

9

J

G

G

G

G

j

\ "4[09#

where the 2×2 symmetric matrices A\ B\ C\ D\ E and F are given by

A� up"l¦sm#I\

B�−smupa
−0
T I\

C�−smup =
aC

"−aT#
I\

D� aG¦sma−1
T "I−s�−0

#\

E�sm 0
−aC

a1
T 1 "I−s�−0

#\

F�D
�
"s�−"0¦up#I#¦sm 0

aC

aT1
1

"I−s�−0
#[ "4[00#

For isotropic composites the surface energy tensor is G� 1
2
"s:=V=#I\ where s is the

surface area of the poreÐmatrix interface[ The speci_c surface area s½ is given by
s½ � "s:=V=#[ We introduce the rational function

UB"x\ y# �
def sm"upx¦sm"0−y##

upxy¦sm"0−y#
\ "4[01#

where UB"x\ y# is de_ned for the variables x\ y in the domain given by

−"sm−sp# ¾x³�\9¾ y¾
0

0¦
2up

um

[ "4[02#

For x\ y in the domain\ the function UB is decreasing in y and increasing in x[ We
introduce the dimensionless constants
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AT �
"−aT#asQ
sm−sp

s½
2up

\ AC �
aCas

D
s½

2up 0
s�−0

up

−01
−0

[ "4[03#

We introduce the variable Z de_ned by

Z� "sm−sp# 0
1AT

0¦1AC

−01\ "4[04#

and the upper bound for statistically isotropic porous ceramics is given by]

Theorem 4[2[ Upper bound on the e}ective conductivity tensor for statistically iso!
tropic porous ceramics[

se ¾UB"Z\ "s�#−0#[ "4[05#

For isotropic polydisperse suspensions of spheres s½ �2upða−0Ł and Theorem 0[0 of
Section 0 follows immediately[

We observe that UB"9\ "s�#−0# �sm and from monotonicity we obtain]

Theorem 4[3[ Upper energy dissipation inequality for isotropic suspensions of pores[

For any value of the pore volume fraction up]
If

1AT

0¦1AC

¾ 0\ "4[06#

then

se ¾sm[

It is evident from "4[04# that the parameter Z increases with s� and we indicate
the dependence by writing Z�Z"s�#[ One easily checks that the upper bound

UB"Z"s�#\ "s�#−0#

is increasing with s� and it follows that any upper bound s¹ on s� delivers an
upper bound on the e}ective conductivity of the form UB"Z"s¹ #\ "s¹ #−0#[ We consider
suspensions of spherical pores of di}erent radius for a given value of the geometric
parameter {q|[ Here {q| is de_ned to be the minimum\ over all pores\ of the ratio of
pore radius to the distance from the pore center to the nearest neighbor in the
suspension[ For this case one has the upper bound on s� derived by Bruno "0880#[
This bound is written

s� ¾W"�# �
SM

Sm 20¦
00−

up

d 1
1

"0−up:d#"−SM:d#¦"up:d
1#""um:2#−Sm#3[ "4[07#

Here d�SM−Sm\ where Sm � "0:2#"0−q2# and SM �A:"0¦A#[ The parameter A is
a function of q and can be determined numerically as shown in Appendix A of Bruno
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"0880#[ Estimating s� using "4[07# delivers an upper bound in terms of pore volume
fraction\ pore size distribution ða−0Ł and {q| given by]

Theorem 4[4[ Upper bound for the e}ective conductivity of a polydisperse suspension
of spherical pores with statistically speci_ed pore microstructure[

se ¾UB"Z"W"�##\W"�#−0#\

where

Z"W"�## �
sm−sp

0¦
1asaCupða−0Ł

D"W"�#−"0¦up##

0
1Q"−aT#asða−0Ł

"sm−sp#

−0−
1asaCupða−0Ł

D"W"�#−"0¦up##1\ "4[08#

and the upper bound function UB is given by "4[01#[
For monodisperse suspensions of spherical pores of radius a with a prescribed

nearest neighbor distribution function H"x#\ the upper bound on s� is given by the
security sphere bound developed by Torquato and Rubinstein "0880#[ This bound is
given by

s� ¾ J"H# � 0¦1aup g
�

0

2x2

x2−0
H"x# dx[ "4[19#

Here H"r# dr is the probability that a given sphere of diameter 1a at the origin\ has a
nearest neighbor with the center lying at a distance between r and r¦dr from its
boundary[ Estimation of s� using "4[19# delivers an upper bound in terms of pore
volume fraction\ pore size and the nearest neighbor distribution function {H"x#|[ The
upper bound is given by the following formula[

Theorem 4[5[ Upper bound for the e}ective conductivity of a monodisperse sus!
pension of spherical pores with statistically speci_ed pore microstructure[

se ¾UB"Z"J"H##\ J"H#−0#\

where

Z"J"H## �
sm−sp

0¦
1asaCupa

−0

D"J"H#−"0¦up##

0
1Q"−aT#asa

−0

"sm−sp#

−0−
1asaCupa

−0

D"J"H#−"0¦up##1[ "4[10#

5[ Lower bounds and energy dissipation inequalities

In this section we make speci_c choices of trial _elds in Theorem 2[1 to obtain
lower bounds and energy dissipation inequalities for the e}ective conductivity tensor[
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Explicit lower bounds are given for the e}ective conductivity tensor for anisotropic
porous materials] see Theorems 5[1 and 5[4[ For isotropic composites we present a
lower bound given in terms of the average surface to volume dissipation over the
pores] see Theorem 5[5[ The lower energy dissipation inequality is given in Theorem
5[6[ Theorems 5[7 and 5[8 give bounds on the e}ective conductivity in terms of
statistical information on the pore geometry[

We make a choice of trial _elds for which the integrals appearing in the variational
principle are easy to compute or estimate for any particle shape[ We choose p�xmm

where m is a vector in R2 and xm is the indicator function for the matrix phase\ i[e[\
xm"x# �0 for x in the matrix phase and zero otherwise[ For r in R2 we introduce the
polarization v�9sf

jrj on the surface of each pore\ where rj are the components of
the vector r and

Dsf
j �−nj on Gi\ "5[0#

and

Dfj � 9 in the pore Bi[

Here nj is the jth component of the outward unit normal to the poreÐmatrix interface[
We set g�sp and substitute these trial _elds into Theorem 2[1 to _nd the following]

Theorem 5[0[

For any prescribed constant temperature gradient E in R2

seE =E−spE =E−max
"m\r#

"1L"E\m\ r#−Q"m\ r##\ "5[1#

where

L"E\m\ r# � umE =m¦aTupE = r "5[2#

and

Q"m\ r# � "aT#1"s−0
p G¦L#r = r

−1"aT#s−0
p Gr =m""sm−sp#−0umI¦s−0

p G#m =m[ "5[3#

Here L is given by

L�
0

Qas "−aT#
U¦

aC

"−aT#QD
"smI−s9#\ "5[4#

where for N pores\ U is a matrix of interfacial parameters given by

Ukl � =V=−0 s
N

i�0 gGi

9sf
k =9sf

l ds[ "5[5#

For a prescribed constant temperature gradient r\ the matrix s9 is given by
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s9r = r� =V=−0 gVm

=9w¦r=1 dx\ where w is the V!periodic solution of

n = "9w¦r# � 9 on Gi\

Dw� 9 in Vm[ "5[6#

For any constant vector m the matrix G is de_ned by

Gm =m� =V=−0 gV
"xmm# =L"xmm# dx\ "5[7#

where L is the projection of L1"V#2
per onto the space of gradients of periodic potentials

in H0"V#[ The tensor G appears in the anisotropic HashinÐShtrikman bounds on the
e}ective conductivity for the perfectly bonded case] see Willis "0871# and Kohn and
Milton "0877#[ This tensor contains two!point correlation information on the pore
microstructure[ Indeed\ G can be written as

Gil � s
k�9

kikl

=k=1
=V=−0 gV

e1pik=tcbb"t# dt\

where cbb"t# is the two!point correlation\

cbb"t# � =V=−0 gV
xp"x¦t#xp"x# dx[

This function gives the probability that the ends of a rod of length and orientation
described by the vector t lies in the pore phase[ This description of G was given in
Willis "0871#[

Proof of Theorem 5[0[ Equation "5[2# follows directly from substitution of the trial
_elds into the _rst two terms of "2[20#[ The term containing the matrix U in "5[3# also
follows directly from substitution of trial _elds in the variational principle[ The terms
involving the matrices ðaC:"−aT#QDŁ"smI−s9# and G in "5[3# follow from expansion
of the following nonlocal terms

0D
�

gVm

=K"v# =1 dx¦sp gV
=N"p#¦aTS"v# =1 dx1

in "2[20#[ We _rst establish the identity

sp =V=−0 gV
=N"p#¦aTS"v# =1 dx�s−0

p "G""aT#r−m# = ""aT#r−m##[ "5[8#

To see this we substitute p�xmm into "2[15# to get

N"xmm# �−
0
sp

s
k�9

e
1pik=x

L
k

=k=1
"k =x¼m"k#m#[ "5[09#

To evaluate S"v# we recall the de_nition of the operator T given by "2[17# to obtain
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gG
e−

1pik=y

L Tvds�s
i gGi

e−
1pik=y

L T"9sf
jrj# ds

�−s
i gGi

e−
1pik=y

L r = nds

� 1pir = kx¼ p"k#[ "5[00#

Noting that for k� 9\ x¼ p �−x¼m\ we _nd that

S"v# �
0
sp

s
k�9

e
1pik=x

L
k

=k=1
"k = r#x¼m"k#[ "5[01#

Identity "5[8# follows\ observing that for any vector _eld p in L1"V#2
per the projection

L is given by

Lp� s
k�9

e
1pik=x

L
k

=k=1
"k = p¼ "k## "5[02#

and application of the Parceval identity[
Next we solve the auxiliary problem "2[11# and "2[12# for the choice v�9sf

jrj[ We
_nd that Cv is the solution of

−
aCQD
"−aT#

9C v = n� aCTv� aC"9s = "9sf
jrj## �−aCr = n on Gi\ "5[03#

and

DC v � 9 in Vm[

A straightforward calculation shows that

D
� =V=−0 gVm

=K"v# =1 dx�
"−aT#aC

QD
"umI−s9#r = r\ "5[04#

and the theorem follows[
Carrying out the optimization implied by "5[1# gives the lower bound on the

e}ective conductivity tensor for anisotropic porous ceramics[

Theorem 5[1[

For any prescribed constant temperature gradient E in R2

seE =E−spE =E¦0
"sm−sp#−0umI¦s−0

p G −s−0
p G

−s−0
p G s−0

p G¦L1
−0

0
smE

upE1 = 0
umE

upE1[
"5[05#

The tensor of interfacial parameters given by "5[5# can be calculated explicitly for
polydisperse suspensions of spherical pores[ For suspensions of pores of arbitrary
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shape this observation is generalized and the tensor is estimated in terms of the surface
to volume dissipation associated with each pore[ The surface to volume dissipation
was introduced to describe size e}ects for composites with highly conducting interface
in Lipton "0887#[ For a pore of unit thermal conductivity occupying the region Bi\ its
surface to volume dissipation {bi| is given by

bi � min
Du�9\in Bi

gGi

=9su=1 ds

gBi

=9u=1 dx
[ "5[06#

For a spherical pore with radius a\ the surface to volume dissipation is "1:a#[ Estimates
for surface to volume dissipation in terms of the dimensions of the pores are given
for convex and star!like pore shapes in Lipton "0887#[

We make the following two observations]

Theorem 5[2[

For a suspension of spherical pores having di}erent radii a0\ [ [ [ \ aN

U� up

ðaŁ
1

I\ "5[07#

where ðaŁ is the average pore radius for a given pore size distribution function as
de_ned in "0[7#[

For a suspension of arbitrarily shaped pores having di}erent values of surface to
volume dissipation b0\ [ [ [ \bN\ we de_ne the quantity ðb−0Ł by

ðb−0Ł� up s
N

i�0

b−0
i D"bi#\ "5[08#

where D"bi# is the relative volume fraction of pores with surface to volume dissipation
equal to bi and SN

i�0 D"bi# � up[

Theorem 5[3[

For a suspension of pores having di}erent values of surface to volume dissipation
b0\ [ [ [ \bN

U¾ upðb−0ŁI[ "5[19#

Moreover\ when the pores are spherical with radii a0\ [ [ [ \ aN\ we have bi � "1:ai# and
"5[19# holds with equality[

To prove Theorems 5[2 and 5[3 we use the linearity of the boundary value problem
"5[0# and write fr �fjrj where

Dsf
r �−n = r on Gi "5[10#

and
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Dfr � 9 in the pore Bi[

For a spherical particle of radius a is it shown in Lipton "0887# that the surface to
volume dissipation is precisely 1:a[ The minimizer of "5[06# is the solution of "5[10#
given by f½ r � "a:1#r = "x−xi# where xi are the coordinates of the sphere center[ The!
orem 5[2 follows from the de_nition of U[ To estimate U we write

Ur = r� =V=−0 s
i�0 gGi

=9sf
r =1 ds\ "5[11#

and for each pore we estimate

gGi

=9sf
r =1 ds[ "5[12#

Integration by parts on the poreÐmatrix interface gives

gGi

=9sf
r =1 ds�−gGi

"frDsf
r# ds� gGi

fr"r = n# ds[ "5[13#

Application of the GaussÐGreen theorem\ noting that Dfr �9\ gives

gGi

=9sf
r =1 ds� gGi

fr"r = n# ds� gBi

9fr = rdx[ "5[14#

From Cauchy|s inequality we have

gGi

=9sf
r =1 ds� gBi

9fr = rdx¾ >9fr>L1"Bi# =Bi =0:1 =r=[ "5[15#

From the de_nition of bi it is evident that

>9fr>1
L1"Bi# ¾b−0

i gGi

=9sf
r =1 ds[ "5[16#

Application of "5[16# to "5[15# delivers the estimate

gGi

=9sf
r =1 ds�¾b−0

i =Bi = =r=1[ "5[17#

From the estimate and "5[11# it follows that

Ur = r¾ =V=−0 0=Vp = s
i�0

b−0
i

=Bi =
=Vp =1 =r=1\ "5[18#

where the region Vp is the union of all pore regions and Theorem 5[3 follows[
We apply the estimate for U given by Theorem 5[3 to "5[1# and obtain the following

lower bound on the e}ective conductivity tensor for anisotropic suspensions of pores[
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Theorem 5[4[

For any prescribed constant temperature gradient E in R2

seE =E−spE =E¦0
A	 B	

B	 C	1
−0

0
smE

upE1 = 0
umE

upE1\ "5[29#

where

A	 � "sm−sp#−0umI¦s−0
p G\

B	 �−s−0
p G\

C	 �s−0
p G¦

upðb−0Ł
Qas "−aT#

I¦
aC

"−aT#QD
"smI−s9#[ "5[20#

We introduce the function

LB"z# �
def

sp¦
"0−up#z¦

u1
p

sm−sp

¦
up

2sp

0
up

2sp

¦
0

sm−sp1 z¦
up"0−up#

2sp"sm−sp#

\ "5[21#

de_ned for z−9[ The function LB is decreasing with z[ We introduce the dimensionless
constants]

A	T �
"−aT#asQ
sm−sp

0

1ðb−0Ł
\ A	C �

aCas

D
0

1ðb−0Ł 0
0−s9

up

−01\ "5[22#

and the variable t de_ned by

t� up"sm−sp#−0 0
0¦1A	C

1A	T 1[ "5[23#

The lower bound for statistically isotropic porous ceramics is given by]

Theorem 5[5[ Lower bound on the e}ective conductivity tensor for statistically iso!
tropic porous ceramics[

se −LB"t#[ "5[24#

For isotropic polydisperse suspensions of spheres ðb−0Ł�ðaŁ:1 and Theorem 0[1 of
Section 0 follows immediately[

We observe that LBðup:"sm−sp#Ł �sm and from monotonicity we obtain the fol!
lowing]
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Theorem 5[6[ Lower energy dissipation inequality for isotropic suspensions of pores[

For any value of the pore volume fraction up

If

1A	T

0¦1A	C

− 0\ "5[25#

then

se −sm[

The monotonicity of the lower bound shows that for t³�\

se −LB"t# ×LB"�# �HS−[ "5[26#

Here HS− is the Hashin and Shtrikman "0851# lower bound for isotropic perfectly
bonded two!phase composites[

It is evident from "5[23# that the parameter t is increasing as the value of s9

decreases[ It follows that any lower bound on s9 delivers a lower bound on the
e}ective conductivity se[ We consider suspensions of spherical pores of di}erent radius
for a given value of the geometric parameter {q|[ For this case one has the lower
bound on s9 derived by Bruno "0880#

s9 −W"9# �
0−SM

0−Sm 20¦
00−

up

d 1
1

"0−up:d#""0−SM#:d#¦"up:d
1#""um:2#−Sm#3[

"5[27#

Here\ d�SM−Sm\ where Sm � "0:2#"0−q2# and SM �A:"0¦A#[ Here\ A depends
upon q and is computed numerically[ Estimating s9 using "5[27# delivers a lower
bound in terms of pore volume fraction\ average pore size ðaŁ and {q|[ The bound is
given by]

Theorem 5[7[ Lower bound for the e}ective conductivity of a polydisperse suspension
of spherical pores with statistically speci_ed pore microstructure[

se −LB"t"W"9###

where

t"W"9## �
upðaŁ

1as "−aT#Q 00¦
1"as#as

ðaŁD 0
0−W"9#

up

−01−
1as "−aT#Q
ðaŁ"sm−sp#1

¦
up

sm−sp

\ "5[28#

and the lower bound function LB is given by "5[21#[
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For monodisperse suspensions of spherical pores of radius a with prescribed nearest
neighbor distribution function H"x#\ the lower bound on s9 is given by the security
sphere bound developed by Torquato and Rubinstein "0880#

s9 −F"H# �
0

0¦1aup g
�

0

2x2

1"x2−0#
H"x# dx

[ "5[39#

Estimation of s9 using "5[39# delivers a lower bound in terms of pore volume fraction\
pore size a and nearest neighbor distribution function {H"x#| given by]

Theorem 5[8[ Lower bound for the effective conductivity of a monodisperse suspension
of spherical pores with statistically speci_ed pore microstructure[

se −LB"t"F"H###\

where

t"F"H## �
upa

1as "−aT#Q 00¦
1"as#aC

aD 0
0−F"H#

up

−01−
1as "−aT#Q
a"sm−sp# 1

¦
up

sm−sp

[ "5[30#

6[ Physical interpretation of the parameters AT\ A	T\ AC and A	C and bounds on the

effective conductivity for a model of Y1O2

In this section we provide the physical interpretation for the parameters AT\ A	T\ AC

and A	C and discuss their relation to the parameters KT and KC introduced in Gam!
baryan et al[ "0882#[ We provide plots of the upper and lower bounds on the e}ective
conductivity for a yttrium oxide ceramic as functions of the pore radius[

We introduce the parameters KT and KC given by Gambaryan et al[ "0882# for
monodisperse suspensions of spherical pores of radius a

KT �
"−aT#asQ

sm

a−0\ KC �
aCas

D
a−0\ "6[0#

and recall the parameters AT\ AC\ A	T and A	C given by eqns "0[09# and "0[02#[ To relate
the two sets of parameters\ we neglect the e}ects of the surrounding pores and consider
a single pore of radius a embedded in an in_nite matrix[ Mathematically this is
expressed by representing the e}ective conductivities s� and s9 by their dilute expan!
sions

s� � 0¦2up¦O"u1
p# and s9 � 0−2

1
up¦O"u1

p#[ "6[1#

For a single pore\ ðaŁ� a\ ða−0Ł� a−0 and
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AC �
KC

1
¦O"up#\ A	C �

KC

1
¦O"up#[ "6[2#

Neglecting higher!order terms we have]

AC �A	C �
KC

1
[ "6[3#

One also has]

AT �A	T �
"−aT#asQ
a"sm−sp#

[ "6[4#

It is clear that AT �KT for dilute suspensions of nonconducting pores[ Arguing as in
Gambaryan et al[ "0882#\ we suppose that a characteristic temperature drop DT across
a single pore of radius a results in the corresponding changes DC and DCs[ We note
that the combination as:a has dimensions of di}usivity and applying the de_nitions
of the coe.cients aT and aC gives the following]

AC �A	C �
0
1

"as:a#DCs

a
a

DDC
�

0
1

qs

q
\ "6[5#

AT �A	T �
"−as:a#DCsQ

a
0

smDT
a

−
spDT

a

�
−qsQ
jm−jp

\ "6[6#

where jp is the convective heat ~ux across the pore _lled with the pore gas\ jm is the
convective heat ~ux across the pore if it were replaced with matrix material\ qs is the
concentration ~ux of impurities on the surface and q is the concentration ~ux of
impurities in the neighborhood surrounding the pore[ The quantity −qsQ is the net
heat ~ux across the pore due to the segregationÐdi}usion process[ Thus\ in the dilute
limit\ the parameters AT and A	T characterize the relative enhancement of the heat ~ux
across a pore due to the segregationÐdi}usion process\ while AC and A	C are measures
of the mass transfer of impurities from the matrix to the pore surface relative to the
~ux of impurities in the neighborhood surrounding the pore[ These interpretations can
be extrapolated to the non!dilute setting\ noting that the factors "ð"s�−0#:upŁ−0#−0\
"ð"0−s9#:upŁ−0# and averages ðaŁ\ ða−0Ł appearing in the formulas for AT\ AC\ A	T

and A	C are corrections taking into account the presence of other particles[ The
approach of Gambaryan et al[ "0882# follows Maxwell|s "0781# treatment\ therefore\
the parameters KT and KC naturally do not take into account the presence of neigh!
boring spheres[

The upper and lower bounds given by "4[10# and "5[30# are used to estimate the
e}ective conductivity of a random\ monodisperse suspension of pores[ The material
properties of the suspension are chosen to represent a yttrium oxide ceramic[ We
suppose the porosity is high\ up �9[3 and that the minimum distance between neigh!
boring pores is 9[0) of the pore radius[ For this case the parameters J"H# and F"H#
are given by J"H# �32[56 and F"H# �9[34[ When the temperature is greater than
0999>C almost all the segregated substance is dissolved in the bulk phase "see Gam!
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baryan et al[\ 0882#\ and we set aC �9[ It is evident from Theorem 0[3 that the upper
and lower bounds coincide when the pore radius equals the critical value R given by
R� ð1Qas"−aT#:"sm−sp#Ł[ This e}ect is illustrated in Fig[ 0 for the normalized
e}ective thermal conductivity se:sm at 0199>C[ Here we have taken Q�64 KJ:mol\
as �5×09−09 ms−0\ sm �2 W:mK and sp �09−5 W:mK[ The value of the parameter
aT at 0199>C\ is estimated from Fig[ 3 of Gambaryan et al[ "0882#[ The same bounds
are plotted for pore radii up to one micrometer in Fig[ 3[ In Table 0 we provide values
of the critical radius for temperatures between 0999Ð0299>C[

To illustrate the e}ect of the parameter aC we keep all other parameters the same
and plot the bounds on the normalized e}ective thermal conductivity se:sm for _nite
values of aCas:D in Figs 1 and 2[ It is seen from Figs 1 and 2 that the upper bound
remains _xed for small values of aC while the lower bound decreases signi_cantly[

It should be noted that the conductivity and di}usivity parameters for the interface
and matrix phase are estimated for the Y1O2 system\ so the results in this section give

Fig[ 0[ Bounds on e}ective conductivity for aCas:D � 9[

Fig[ 1[ Bounds on e}ective conductivity for aCas:D � 1×09−7[
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Fig[ 2[ Bounds on e}ective conductivity for aCas:D � 3×09−7[

Fig[ 3[ Bounds on e}ective conductivity for aCas:D � 9[

Table 0

R Temperature
">C#

2[22×09−7 m 0299
0[55×09−7 m 0199
9[22×09−7 m 0999

only a qualitative description of the dependence of the e}ective conductivity on the
pore size[

The methods used in this paper are variational in nature and allow one to treat the
problem directly without approximating the _eld interactions between pores[ The
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results given in this work corroborate the behavior of the e}ective thermal con!
ductivity on the parameters KT and KC as reported in Gambaryan et al[ "0882#[
Moreover\ the treatment given here predicts for the _rst time\ new size e}ects\ critical
radii and energy dissipation inequalities for heat conduction in the presence of coupled
heat and mass transport processes at the two phase interface[
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