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ABSTRACT: Two phase particle reinforced heat conducting composites are considered.
We treat the case when there is an interfacial thermal barrier between phases. We provide
novel rules of thumb for selecting the particle size distribution and minimum particle size
necessary for constructing composites with effective properties greater than that of the ma-
trix. The rules are based on new energy dissipation inequalities obtained in the work of Lip-
ton (1996, Journal of Applied Physics, 80:5583-5586).
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1. INTRODUCTION

HE EFFECT OF particle size on the thermal energy dissipated inside a particle
Treinforced composite conductor is addressed. We consider the technologi-
cally important case when there is an interfacial thermal barrier resistance between
phases. In the context of electronic packaging, it is necessary for the packaging
material to efficiently transport heat away from the device. Packaging made from
an electrically insulating matrix material with particles or fibers of high thermal
conductivity are attractive for this purpose [1].

Experiments show that for small particles, the presence of an interfacial bar-
rier can diminish or even negate the effect of a highly conducting reinforcement,
[24]. This phenomena is in striking contrast to what occurs for perfectly
bonded composites where there is no interfacial thermal barrier. Indeed, for per-
fectly bonded composites it is known that the addition of highly conducting par-
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ticles will always increase the effective conductivity independently of particle
size. Recent studies focusing on special micromechanical models and dilute
monodisperse suspensions of spheres strongly suggest that the effective
conductivity decreases with particle size [3,5-7]. These results show that as par-
ticle size decreases the effective property tends to that of a matrix with pores.
The experimental results of Hasselman and Donaldson {4] support this. The ef-
fective conductivity of a porous matrix naturally lies below that of a pure matrix
material. Thus from the perspective of design, it is important to know the critical
particle dimensions for which the effective conductivity lies below that of the
matrix. In this direction, it has been shown in Lipton and Vernescu [8] that for
any statistically isotropic monodisperse suspension of spheres there exists a
critical radius such that if the common sphere radii lie below it, then the effec-
tive conductivity of the suspension lies below that of the matrix. Conversely it is
shown in Reference [8] that when the particle size lies above critical then the
effective property is greater than that of the matrix. In the context of dilute
suspensions this observation has been made earlier in the work of Chiew and
Glandt [5]. This phenomenon has been seen in the context of micromodels such
as the effective medium theory and differential effective medium theory in the
work of Every, Tzou, and Hasselman [3}, Hasselman and Johnson [7], and
Davis and Arts [6].

For particles of a general shape it is necessary to know the suitable geometric
parameter that indicates when a given particle will decrease the overall conductiv-
ity. The answer to this question has been found recently by the author in Reference
[9]. This parameter is shown to be second Stekloff eigenvalue of the particle. The
second Stekloff eigenvalue has dimensions of inverse length and is a measure of
the heat shed from the particle surface relative to the heat dissipated inside the par-
ticle. We provide, in this paper, estimates for the Stekloff eigenvalue in terms of
particle dimensions for various particle shapes. These estimates are used to pro-
vide rules of thumb for selecting particle dimensions necessary for the construc-
tion of particle reinforced composites with effective properties greater than that of
the matrix. In this article we will consider convex and star shaped particles includ-
ing cylindrical and ellipsoidal particles.

The thermal conductivity associated with the reinforcement is denoted by ¢, and
that of the matrix by c... Here both conductors are assumed isotropic, and ¢, cm are
scalar quantities. The reinforcement is assumed to have a better heat conductivity
than the matrix, i.e., ¢, > c». The interfacial thermal barrier is characterized by a
scalar 8 with dimensions of conductivity per unit length.

The composite domain is denoted by Q and its volume is given by |Q| The resis-
tivity 1n51de the composites is described by, ¢™'(x) taking the values ¢, 'in the parti-
cles and ¢ in the matrix. For any vectorj in R’ we prescribe a heat ﬂux J -nonthe
boundary of Q and the thermal energy dissipated inside the composite is e - j
where,
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Here ds is the element of surface area, and the vector # is the unit normal pointing
into the matrix phase. The minimizer j, is precisely the heat flux in the composite
and is related to the temperature u,, by the constitutive law: j = c(x) Vu,,. The
constant tensor ¢, represents the effective conductivity of the composite.

We write down the geometric criterion that determines when the effects of the
interfacial thermal barrier overcome the benefits of a highly conducting reinforce-
ment. This criterion is general and applies to any reinforcement. In order to give
the criterion, we introduce the scalar R., given by:

1

R,=pYe'~¢") )

Here R., has dimensions of length. This quantity provides a measure of the rela-
tive magnitude of the interfacial barrier resistance with respect to the mismatch be-
tween the resistivity tensors of the matrix and reinforcement. For a given particle
or fiber reinforcement denoted by “Z”, the geometric parameter of interest is its
second Stekloff eigenvalue p,. The second Stekloff eigenvalue has dimensions of
conductivity per unit length and is given by:

Ja(e Von)s
= min
div (¢, Vg )=0 fx c, Vo -Vpde

P, &)

cf., Kuttler and Sigillito [10]. The Stekloff eigenvalue is a ratio measuring the rela-
tive importance between the particle’s ability to dissipate heat and the total heat
flux leaving through the particle boundary. For spheres filled with isotropic con-
ductor this ratio is proportional to the reciprocal of the sphere radius and is given
by
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We consider the replacement of matrix material with a particle 2 of conductiv-
ity ¢, and denote the associated effective conductivity tensor by €, . The criterion
on the particle geometry is given in the following theorem recently established in
Reference [9]:

1.1 Energy Dissipation Inequality

Given a reinforcement particle “X”, if p; satisfies,
RI'=c'p, (6)
then
¢, =¢, 0]

¢

Thus if a particle’s second Stekloff eigenvalue lies above Re, then the addition of
the particle to the suspension lowers the effective conductivity of the composite.

2. RULES OF THUMB ON MINIMUM PARTICLE DIMENSIONS
FOR SUSPENSION DESIGN

It follows from the energy dissipation inequality that if both conducting phases
are isotropic and if Z is a sphere of radius a that:

2.1 Critical Sphere Size

l

c. =¢ ®)
if
asR,=p"(c;'-¢")" ©)

This inequality motivates the following:

For polydisperse suspensions of spheres, the best conductivity properties are
obtained from suspensions consisting only of spheres with radii greater than or
equal to Re:.
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More generally, we consider starlike inclusions X filled with isotropic conduc-
tor ¢, embedded in an isotropic matrix with conductivity c... We suppose X is star-
like for the point “x” inside X and denote the minimum distance from the point “x”
to a tangent plane on the particle boundary by A.(x). The maximum and minimum

distance from “x” to the particle boundary are denoted by ridx) and r.(x) respec-
tively. We apply the isoperimetric inequalities of Bramble and Payne [11] to esti-

mate p, from below:
-1 1 |(r, 2 h, 0
c >_— ||| Zm
r pZ rM rM rM ( )

This inequality together with inequality (6) shows that:
2.2 Critical Particle Dimensions for Starlike Particles

¢, 2T a1

’
TSR, (12)

T | P

hal T
We consider an ellipsoidal reinforcement. Here we suppose that the half lengths
of the major and minor axes are specified by a and c respectively. For this case we
choose “x” to be the center of mass for the ellipse and it follows that r, =c, ry=aq,

hy = c, and we have:

2.3 Critical Dimensions for Ellipsoidal Reinforcement

Given an ellipsoidal reinforcement X with major and minor axes specified by a
and c respectively, then:

T (13)

3
a(ﬁ) <R, (14)
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This inequality motivates the following:

When constructing suspensions of particles made from ellipsoids one does best
using only those with major and minor axes for which

3
a(g) zR,
c

Next we consider cylindrical inclusions of length £and radius R. If #2 = Rthen
= ((0/2)* + R)'? and rr» = hn = R. On the other hand if ¢/2 < R, then: r,, = h,, =
/2. (For both cases we have chosen the reference point to be the center of mass for
the cylinder.) Such inclusions can be used to model chopped fiber suspensions.
We have:

2.4 Critical Dimensions for Cylindrical Inclusions with ¢2 = R

¢ 2%, (15)
if
¢/2y +R*)
WIARY 6

2.5 Critical Dimensions for Cylindrical Inclusions with /2 < R

c,=¢, amn

if

2/2)y +R*)
«—)er——)—s&, (18)

Rules of thumb for the design of chopped fiber reinforced composites follow
immediately from these inequalities.

We remark that the physical dimensions of the composite domain €2 enter into
the design problem. Indeed, it follows from the inequalities (13), (14) and (15),
(16) that:

Ifthe dimensions of the domain are such that only fibers wzth ¢2 z Rsatisfying
Equation (16) or fibers with £/2 < R satisfying Equation (18) can be placed inside
Q, then one obtains the best results by not reinforcing at all.



1328 ROBERT LIPTON

3. RULES OF THUMB BASED ON THE
SIZE DISTRIBUTION OF PARTICLES

We introduce design criteria based upon the size distribution of particles. The
region occupied by the reinforcement particles is denoted by 4 and the union of all
particle matrix interfaces is denoted by I'. We introduce the surface energy tensor
M defined by:

M, =| A" [ nnds (19)

Here, n; is the ith component of the outward pointing unit normal on the particle
matrix interface. For a heat flux of the form j - n prescribed on the boundary of the
composite domain we have the following criterion the particle reinforced configu-
ration.

3.1 Reinforcement Criterion
If

M-. . =
Sz 20)
171
then the energy dissipated inside the reinforced composite is less than the energy
dissipated when there is no reinforcement, (i.e., ¢;'j - j=<c,'j " ).
We set Ay to be the largest eigenvalue of M. Since

it follows immediately that if a reinforcement configuration satisfies:
A, <R (22)
then
c,=c,1 (23)

e m

where Listhe 3 x 3 identity matrix. We now apply these observations and consider
a suspension made from isotropically conducting spheres of different radii embed-
ded in a matrix of isotropic conductivity. We suppose that we know the volume
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distribution of sphere radii within the suspension. For a polydisperse suspension
of spheres withradii a,, a,, . . ., av we suppose that the volume occupied by spheres
of radius a; is given by the function V(a;) where Z% ¥ (a; )= A | For a prescribed
volume distribution function V(a) we write the mean of the reciprocal radii as:

N
<a'>=|A" Za;‘V(a,.) (24)

i=1
For this case calculation gives
M, =<a'>1, (25)
For polydisperse suspensions of spheres Equations (22), (23), and (25) imply:
if <a'>"=R, (26)
thenc, =c¢,1 27

where ¢,, is the matrix conductivity.
This motivates the following;:

Reinforced polydisperse suspensions of spheres with size distributions satisfy-
ing:

<a'>"'zR, (28)

have better overall conductivity properties than the unreinforced conductor.

Last we show how to establish the reinforcement criteria. We start by writing
the energy dissipation inside the reinforced composite as:

c.'jj=minlCOU} 29)
with
ciy= 1@ {f, cti Tde [ (ex' = )i jac+ B[ Gmidsy GO)

Next the energy dissipated inside the unreinforced domain is given by:
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-1, —.= < A
Cm J*J=min c() €2}
where
CH=1Qr" [, el jax (32)

It is easily seen that the constant current j is the minimizer for Equation (31).
Moreover, it is also an admissible trial field for the variational principle [Equation
(29)]. Substitution of j into Equation (29) gives the estimate:

cJi=e, i jHIQ LGXe,! = ) (G- nyds (33)
where
L()=R, — —Ll.—jlz-dx—= R, — IZIZ—. (34)
7 G-nyds M-y
Clearly
c.'jrj<elj<]
when

L(H)=0
and the reinforcement criteria follows.
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