1. Integrate: $\int_{0}^{1} \int_{0}^{2 x} \sqrt{1+x^{2}} d y d x$.
2. Let R be the triangle with vertices at $(-1,0),(1,0)$ and $(0,1)$. Express $\iint_{R} f(x, y) d A$ as an iterated integral in each of the two possible orders of integration. (Note: in one order, it will be written as a sum of two iterated integrals.)
3. Draw the region of integration and change the order of integration:

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

4. Let D be the disk of radius 1 about (0,0). Evaluate using polar coordinates:

$$
\iint_{D} \sqrt{1+x^{2}+y^{2}} d A
$$

5. Find the center of mass of the lamina that occupies the region in the first quadrant between the circle of radius 1 and the circle of radius 2 if the density is $\frac{1}{x^{2}+y^{2}}$.
6. Find $\iiint_{E} 2 y z d V$ where E is the region of space bounded by the vertical planes $x=0, y=0$ and $y=2-2 x$, bounded on the bottom by the x - y-plane and bounded on top by the surface $z=\sqrt{x+y}$.
7. Use spherical coordinates to compute $\iiint_{E} z d V$, where E is the region of space inside the cone $\phi=\frac{\pi}{4}$ and between the spheres $\rho=1$ and $\rho=2$.
8. Using the fact that the transformation $T(u, v)=(a u+b v, c u+d v)$ maps the unit square $S=\{(u, v) \mid 0 \leq u \leq 1 \& 0 \leq v \leq 1\}$ to the parallelogram R with vertices at $(0,0),(a, c),(a+b, c+d),(b, d)$, use the change of variables formula to convert $\iint_{R} x y d A$ to an integral of the form $\iint_{S} H(u, v) d A$. (Figure out what H must be.)
